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a b s t r a c t 

In this work, we propose a semi-analytical micromechanical model to study the elasto-plastic response 

of porous materials subjected to cyclic loading with isotropic and linear kinematic hardening at finite 

strains. To this end, we use an approximate but numerically efficient decoupled homogenization strategy 

between the elastic and plastic parts. The resulting effective back stress in the porous solid, similar to 

the macroscopic stress and plastic strain, has non-zero hydrostatic terms and depends on the porosity, 

the void shape and orientation as a result of the homogenization process. Subsequently, a complete set of 

equations is defined to describe the evolution of the microstructure, i.e., void volume fraction (porosity), 

(ellipsoidal) void shape and orientation both in the elastic and the plastic regimes. The model is then 

numerically implemented in a general purpose user-material subroutine. Full field finite element simula- 

tions of multi-void periodic unit cells are used to assess the predictions of the proposed model. The latter 

is found to be in good qualitative and quantitative agreement with the finite element results for most of 

the loading types, hardening parameters and porosities considered in this study, but is less accurate for 

very small porosities. The combined analytical and numerical study shows that elasticity is an important 

mechanism for porosity ratcheting in addition to strain hardening. Specifically, in order to recover the 

main qualitative features of porosity ratcheting for all cyclic loads considered in the present study, it is 

shown to be critical to take into account the evolution of the microstructure not only during the plas- 

tic loading, as is the usual hypothesis, but also during elastic loading. Finally, the effect of isotropic and 

linear kinematic hardening is found to be highly non-monotonic and non-trivial upon porosity ratcheting 

for most cases considered here. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

A large number of studies has been devoted the last years

o the modeling of elasto-plastic porous materials. Most of those

tudies focused on monotonic loading conditions, isotropic hard-

ning of the matrix and subsequent ductile damage prediction. The

umber of works on this topic are numerous and will not be re-

erred to here. On the other hand very few studies up to date have

ealt with the cyclic response of such porous solids. Several of the

uestions that arise when cyclic loading is applied are related to

lasticity effects, the presence of kinematic hardening, the use of

mall or finite strains to analyze the problem, the amplitude of the

verall stress/strain that is applied, the stress triaxiality and Lode

arameter or even anisotropy effects introduced by the void shape
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nd orientation, void shape and orientation effects and ultimately

he number of cycles analyzed. Obviously all these questions can-

ot be addressed in a single paper but are important to the study

f cyclic loading and fatigue of such materials. 

Advances in imaging techniques (SEM and tomography) have

learly revealed the presence of voids in metals. Recently, Limodin

t al. (2014) , Dezecot et al. (2016) and Dahdah et al. (2016) have

btained 3D tomographic images for aluminum alloys manufac-

ured by lost-foam-casting fabrication techniques. Voids of vari-

us sizes and shapes (spherical, ellipsoidal but also non-canonical)

ere observed. The presence of initial voids as well as of sec-

ndary porosity resulting from debonding and/or fracturing of sec-

nd phase particles was found to be critical for the fatigue life of

uch solids. The significance of voids has also been studied in a dif-

erent context by Charkaluk et al. (2014) , where a probability den-

ity function using a quantitative analysis of the microstructure of

he material was used to characterize the fatigue lifetime. 
model for porous ductile solids under cyclic loads com- 
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From the micromechanical point of view, early studies by

Devaux et al. (1997) , Brocks and Steglich (2003) , Besson and

Guillemer-Neel (2003) , Rabold and Kuna (2005) and Kondo et al.

(2003) have explored numerically and analytically the cyclic re-

sponse of porous materials at small and moderate number of cy-

cles with a main emphasis on axisymmetric loading states at large

strains. Their analysis has mainly focused on the prediction of

porosity ratcheting, which is a critical mechanism for fatigue frac-

ture. In particular, in Devaux et al. (1997) , porosity ratcheting has

been attributed to asymmetries between tension and compression

mainly due to hardening and elasticity. Besson and Guillemer-Neel

(2003) has proposed a rather complete model that takes into ac-

count isotropic and nonlinear kinematic hardening in the matrix

combined into a modified ( Gurson, 1977 ) model. While his study

has revealed a striking effect of void growth and ratcheting when

that model was used in structural calculations, it was stated that

the model itself predicts poorly the ratcheting effect. Subsequent

studies by Pirondi et al. (2006) ) and Jan-Hendrik Hommel and

Meschke (2010) have attempted to further calibrate those mod-

els for porous materials in order to analyze experimental axisym-

metric specimens. This proved a difficult task and use of a large

number of additional parameters was required. Yield surface evo-

lution of the cyclically loaded porous material has been studied by

Seifert and Schmidt (2009) . Yet, those models have proven insuffi-

cient to describe the low-cycle response of the experimental spec-

imens, especially at lower triaxialities. Moreover, micromechanical

models of porous material with ellipsoidal voids have been pro-

posed in literature particularly in the case of monotonic loading

(see for example Gologanu and Leblond, 1993; Leblond and Golo-

ganu, 2008 ). Two more recent studies, the first purely numerical

( Mbiakop et al., 2015b ) and the second numerical and analytical

( Lacroix et al., 2016 ) have contributed further to the understand-

ing of the macroscopic response of porous materials under cyclic

loading. 

Specifically, Mbiakop et al. (2015b ) has carried out an exten-

sive parametric study to investigate the effects of stress triaxiality,

Lode angle, initial void shapes, matrix elasticity and isotropic (but

much less kinematic) hardening upon the cyclic response of peri-

odic porous solids. Following, similar observations by Devaux et al.

(1997) (see also Mbiakop et al., 2015b ) show a significant effect of

the isotropic hardening and the matrix elasticity on the resulting

porosity ratcheting (i.e., void growth with increase of the number

of cycles). Of equal importance to porosity ratcheting was also the

stress triaxiality and the initial void shape. A possible interpreta-

tion is that porosity ratcheting is mainly a combined consequence

of hardening and elasticity, which induce under finite strains an

asymmetry in the void shape and porosity evolution. In turn, a

closer look to the deformation of the void revealed a strong de-

viation from an ellipsoidal void shape (called ellipsoidicity devia-

tion) at large number of cycles and axisymmetric loading states.

This last observation could put into question the use of simplified

homogenization and micromechanical models for porous materials

with ellipsoidal voids. Yet, as we will see in this work, these mod-

els, although being approximate in terms of void shape description,

can still provide qualitative and quantitative tools to analyze com-

plex loading paths such as cyclic loads. Finally, in a very recent

study, Lacroix et al. (2016) have analyzed in more detail the effect

of elasticity and hardening in a spherical porous shell under dif-

ferent triaxial states and reached similar conclusions. In that work,

based on an earlier model by Leblond et al. (1995) , a first attempt

to propose an improved Gurson model via radial discretization

of an underlying spherical microcell at each material point was

done. 

In the present study, we use the linear comparison composite

(LCC) homogenization method of Ponte Castañeda (1991) (see also

Michel and Suquet, 1992 ) to extend the MVAR model of Danas and
Please cite this article as: L. Cheng et al., A homogenization 
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ravas (2012) in the context of isotropic–linear kinematic harden-

ng and cyclic loads. The present model, which deals with general

llipsoidal void shapes and orientations, uses a simplified decou-

led homogenization strategy to separately deal with the elastic

nd plastic homogenization and proposes a complete set of evolu-

ion laws for the porosity, void shape and orientation during elas-

ic and plastic loading, respectively. In turn, isotropic hardening is

aken into account in a heuristic manner at the very end of the

omogenization process, since such a procedure has been shown

ecently ( Papadioti et al., 2016 ) to provide sufficiently accurate re-

ults not only for the macroscopic stress–strain response but also

or the average strains in the inclusions. 

It should be noted at this point that the decoupled homoge-

ization strategy followed in the present work can in practice in-

roduce errors in cyclic loads. These errors tend to be more im-

ortant at large volume fractions of the inclusions or pores ( Idiart

nd Lahellec, 2016 ) but they also tend to smear out at larger num-

er of cycles. In the present study we deal with moderate porosi-

ies (less than 10%) and the errors due to the decoupling strategy

re shown to be minor and negligible by comparison with the full

eld finite element results obtained in the present paper. In other

ases, however, that these errors could be large, the decoupling

trategy should probably be used with caution. To amend this, re-

ently, Lahellec and Suquet (2007) proposed an incremental vari-

tional formulation for materials with a hereditary behavior de-

cribed by two potentials: a free energy and a dissipation func-

ion. This method has been introduced mainly to deal with the

oupled elasto-plastic response of composites in an attempt to re-

olve the cyclic response of these materials (see also recent work

y Brassart et al., 2011 ). Note that these more advanced methods

se the aforementioned or variants of the LCC estimates. 

The aim of this paper is twofold. The first objective is to de-

elop a homogenization model for porous materials (denoted as

VARX model henceforth) subjected to cyclic loads, where the

lasticity contribution to the evolution of microstructure, the ge-

metric anisotropy of the microstructure (void shapes and orien-

ations) and the matrix hardening (isotropic and linear kinematic

nes) can be simultaneously taken into account. The second ob-

ective is to assess the proposed model with full field multi-void

omputations by comparing the stress and porosity ratcheting re-

ponse as a function of the number of cycles. More specifically,

fter a brief presentation of the microstructure (i.e., void geome-

ry) and the matrix properties in Section 2 , the instantaneous ef-

ective response is obtained in Section 3 both in the elastic and the

lastic regime. Next, Section 4 discusses the microstructure evolu-

ion equations and defines the elasto-plastic incremental modulus.

he numerical implementation of the present model into a user-

aterial subroutine (UMAT) in Abaqus is discussed in Appendix A .

he MVARX model is then assessed in Section 5 by comparison

ith results for ten and thirty cycles at finite strains obtained with

he finite element method (FEM). Additional parametric studies for

ifferent types of cyclic loads (with no compression and initial pre-

tress) are also carried using the MVARX model in Section 6 for

p to hundred cycles. We finally conclude the present work with

ection 7 . 

. Void geometry and local matrix response 

This section deals with the modeling of a porous elasto-plastic

aterial comprising ellipsoidal voids. In order to carry out the ho-

ogenization problem in Section 3 , we first define the void geom-

try (i.e., microstructure) by introducing the relevant microstruc-

ural variables and then describe the local constitutive response of

he phases. 
model for porous ductile solids under cyclic loads com- 
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Fig. 1. Representative volume element (RVE). 
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.1. Description of microstructure 

Let us consider a porous material whose microstructure is taken

o be statistically uniform and described by a representative vol-

me element (RVE) (see Fig. 1 ), denoted �. It is composed of the

atrix �(1) and the void space �(2) . Specifically, the matrix �(1) is

upposed to be made of an elastoplastic material with linear kine-

atic strain hardening, while the void phase is in the form of ellip-

oids uniformly distributed in the matrix. Note that the voids �(2) 

hange their volumes, shapes and orientations under finite defor-

ations, which leads to a deformation induced anisotropy. These

ariables are conveniently grouped by the set 

 α = 

{
f, w 1 , w 2 , n 

(1) , n 

(2) , n 

(3) = n 

(1) × n 

(2) 
}
. (1) 

he above variables are detailed below. 

• Porosity f = V (2) /V, where the total volume V = V (1) + V (2) 

compose the matrix V 

(1) and the vacuous phase V 

(2) . 

• Two void aspect ratios w 1 = a 3 /a 1 and w 2 = a 2 /a 1 , where 2 a i ,

(i = 1 , 2 , 3) denote the length of the principal axes of the rep-

resentative ellipsoidal void (note that all voids have the same

aspect ratios in this study). 

• The void orientation unit vectors n 

( i ) , (i = 1 , 2 , 3) defining the

orthogonal basis, respectively, coinciding with the principal

axes of the representative ellipsoidal void (note that all voids

have the same orientation in this study). 

.2. Local response of the matrix 

In order to simplify the homogenization process, we initially

eglect the isotropic hardening of the matrix phase which we

ill add in an ad-hoc manner at the final homogenized model in

ection 3 . 1 This approximation has already been shown to be suf-

ciently accurate ( Danas and Aravas, 2012; Cao et al., 2015; Papa-

ioti et al., 2016 ). By contrast, linear kinematic hardening is intro-

uced by use of an energy term and needs to be homogenized. The

elevant variables needed for the matrix are thus the microscopic

train tensor ε , the corresponding plastic one ε p and a second or-

er tensor α representing the linear kinematic hardening variable. 

Consequently, the Helmholtz free energy of the matrix mate-

ial can be described by two quadratic potentials (see for instance

haboche and Jung, 1998 ), one for the elastic energy and the other

or the stored energy, i.e., 

(ε 

e , α) = 

1 

2 

ε 

e : L e : ε 

e + 

1 

2 

α : L X : α (2)

ere, ε e is the elastic strain tensor and L e the elastic modulus ten-

or of the matrix phase which is the inverse of the elastic compli-
1 As is the usual practice in such problems, we first homogenize the elastic part 

sing small strains and the viscoplastic part using a stress potential which can be 

elated to an incremental strain-rate framework. Then, the homogenized problem is 

xtended to a finite strain framework in Section 3.3 . 

S  

v  

i  

T  

i  
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nce tensor M e . They take the form 

 e = M 

−1 
e , M e = 

1 

2 μe 
K + 

1 

3 κe 
J (3)

here μe and κe are the elastic shear and bulk moduli of the ma-

rix, respectively. Recall also here the fourth order deviatoric pro-

ection tensor K or K i jkl = (δik δ jl + δil δ jk ) / 2 − δi j δkl / 3 and the hy-

rostatic projection tensor J or J i jkl = δi j δkl / 3 , with δij being the

artesian components of the Kronecker delta. 

In turn, the potential related to the kinematic hardening, is de-

cribed here by an isotropic fourth-order tensor L X named as the

inematic strain hardening modulus, such that 

 X = M 

−1 
X , M X = 

1 

2 μX 

K + 

1 

3 κX 

J with μX = 

C 

3 

, κX �→ ∞ 

(4) 

n which C is the kinematic hardening parameter ( Prager, 1949 ;

ee also Chaboche and Jung, 1998; Chaboche, 2008 ). It is impor-

ant to emphasize here that the kinematic hardening bulk modulus

X �→∞ due to the plastic incompressibility of matrix, but the limit

ust be taken after the homogenization is carried out, otherwise

he effect of the porous phase will not be appropriately taken into

ccount. α in Eq. (2) is the tensorial internal variable describing

inematic hardening. 

The constitutive law derived from Eq. (2) reads: 

= 

∂W 

∂ε 

e 
= L e : ε 

e , χ = 

∂W 

∂α
= L X : α (5)

here χ is the microscopic (local) back stress tensor, which is de-

iatoric due to the incompressibility of the matrix. 

Next, we describe the dissipative character of the rate-

ependent plastic matrix phase by a stress dissipation (viscoplas-

ic) potential, which takes the form 

(σ − χ) = 

d 0 σ0 

n + 1 

[
(σ − χ) eq 

σ0 

]n +1 

, with 

(σ − χ) eq = 

√ 

3 

2 

(s − χ) : (s − χ) . (6) 

ere, the scalars σ 0 and d 0 denote the flow stress of the matrix

nd a reference strain rate, s is the deviator of the microscopic (lo-

al) stress tensor. 

Note that the viscoplastic nonlinearity of the matrix phase is

haracterized by the creep exponent n (i.e., strain-rate sensitivity

arameter m = 1 /n ) and the homogenization model discussed in

ection 3 is one for a general viscoplastic response and for any

alue of n . Nonetheless, the interest in this work is mainly on rate-

ndependent plasticity, which implies taking the limit of n �→∞ .

his again will be considered after the homogenization procedure

s carried out. In the rate-independent limit n �→∞ , the stress po-
model for porous ductile solids under cyclic loads com- 
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tential in (6) becomes 

(σ − χ) = 

{
0 , if (σ − χ) eq /σ0 ≤ 1 

∞ , otherwise 
(7)

which is the indicator function of the plastic domain in the case of

the linear kinematic hardening yield condition (i.e., Prager model

( Prager, 1949 )) in the matrix, defined by 

�(σ, χ) = (σ − χ) eq − σ0 ≤ 0 . (8)

Using finally the yield condition (8) , one obtains the constitutive

laws for the corresponding strain-rate measures by considering an

associated flow-rule 

˙ ε 

p = 

˙ λ
∂�

∂σ
, ˙ α = − ˙ λ

∂�

∂ χ
⇒ 

˙ ε 

p = 

˙ α, (9)

where the ( ̇ ) denotes time derivative. 

3. Instantaneous effective response – decoupled 

homogenization 

The main objective of this section is the description of the

decoupled linear/non-linear homogenization procedure for the

porous material described in Section 2 . The effective (macroscopic)

elastic and plastic behavior of the porous material will be treated

independently at this level (see similar work in Aravas and Ponte

Castañeda, 2004 and Danas and Aravas, 2012 ). The independent

treatment is of course an assumption, as discussed in detail by

Lahellec and Suquet (2007) , but as we will show later in the re-

sults section, it is a sufficiently accurate one for low to moderate

porosities considered here. By decoupling elastic and plastic re-

gions (similar to numerous earlier studies, e.g. one of the earliest

ones Aravas, 1987 ), one can treat the homogenization of the elastic

problem and the (visco)plastic problem separately. In the follow-

ing, we first present briefly the homogenization of the elastic prob-

lem in small strains. Then, we describe the nonlinear homogeniza-

tion of the (visco)plastic stress potential which can be related to a

strain-rate (i.e., velocity gradient) dissipation potential. Finally, we

assemble the two decoupled parts in a finite-strain framework by

using objective co-rotational rates and microstructural spins. The

numerical implementation of the presented homogenization model

is detailed in Appendix A . 

3.1. Effective free energy at small strains 

In this section, we describe the homogenization of the free en-

ergy in Eq. (2) . As mentioned before, we follow a decoupled strat-

egy allowing to homogenize the two-potentials in (2) separately,

neglecting then the coupling between them. This approach simpli-

fies considerably the homogenization problem but of course intro-

duces an error. Nevertheless, as we will see in the results section,

this error is relatively minor for low to moderate porosity and is

more present in the first cycle. 

Consequently, the effective free energy reads 

˜ 

 (E e , A ) = 

1 

2 

E e : ̃  L e : E e + 

1 

2 

A : ̃  L X : A , (10)

where E e is the effective elastic strain tensor and A the macro-

scopic counterpart of α. The effective elastic stiffness tensor, ˜ L e ,

and the secant linear kinematic hardening modulus, ˜ L X , respec-

tively, become 

 L e = 

˜ M 

−1 
e , ˜ M e = M e + 

f 

1 − f 
Q 

−1 
e , (11)

and (for κX �→∞ ) 

 L X = 

˜ M 

−1 
X , ˜ M X = 

1 

2 μX 

K + 

f 

1 − f 
Q 

−1 
X . (12)
Please cite this article as: L. Cheng et al., A homogenization 
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n these expressions, Q e and Q X are fourth order “compressible”

due to the void phase) microstructural tensors with both major

nd minor symmetries. They can be calculated from the Eshelby

ensor S e and S X , respectively ( Eshelby, 1957; Mura, 1987 ) via 

 e (μe , κe , w 1 , w 2 , n 

(1) , n 

(3) , n 

(2) ) = L e : ( I − S e ) . (13)

nd 

 X (μX , κX , w 1 , w 2 , n 

(1) , n 

(2) , n 

(3) ) = lim 

κX �→∞ 

L X : (I − S X ) (14)

ote again that the incompressibility limit κX �→∞ needs to be

valuated after the multiplication of the L X with (I − S X ) . 

The effective state law can be derived from the effective free

nergy (10) , where � is the macroscopic stress tensor and X is the

acroscopic back stress tensor: 

= 

∂ ̃  W 

∂E e 
= ̃

 L e : E e , X = 

∂ ̃  W 

∂A 

= ̃

 L X : A (15)

t should be emphasized here that the effective back stress tensor

 has a nonzero compressible part since L X is compressible. 

.2. Effective (visco)plastic potential 

The effective (visco)plastic stress potential of the porous mate-

ial is formally defined by 

˜ 

 (�, s α) = min 

σ∈ S(σ) 

∫ 
�

U(σ) dV = (1 − f ) min 

σ∈ S(σ) 

∫ 
�(1) 

U 

(1) (σ) dV 

(16)

here S ( σ) represents the set of statically admissible stress field,

.e., 

(σ) = { σ : div σ = 0 in �, σ = 0 in �(2) , 

σ · n = 0 on ∂�(2) } . (17)

Following the work of Mbiakop et al. (2015a ), which is based

n the original method of Ponte Castañeda (1991) , we introduce

he approximate estimates for the effective stress potential 

˜ 

 (� − X , s α) 	 stat 
μp 

{˜ U L (� − X , μp ) − (1 − f ) stat 
̂ σ−χ[

U L ( ̂  σ − χ, μp ) − U( ̂  σ − χ) 
]}

(18)

here ˜ U L denotes the effective stress potential of a LCC and U L de-

cribes the quadratic effective stress potential of the matrix in the

CC. In the present case, those read 

 L (σ − χ, μp ) = 

1 

6 μp 
(σ − χ) 2 eq , (19)

˜ 

 L (� − X , μp ) = 

1 

2 

(� − X ) : ˜ M p (μp ) : (� − X ) . (20)

n improved expression of the effective plastic compliance tensor̂ 

 p for the linear comparison porous material (see Danas and Ar-

vas, 2012 ) takes the form ˜ 

 p = 

˜ M 

var 
p + (q 2 J − 1) J : ˜ M 

var 
p : J , (21)

ith 

˜ 

 

var 
p = 

3 

2 μp 
K + 

3 f 

(1 − f ) μp ̂

 Q 

−1 
p , q J = 

1 − f √ 

f ln (1 / f ) 
. (22)

eaders are referred to the appendix of Cao et al. (2015) who pro-

ides explicit expressions for the evaluation of the tensor of ̂ Q p .

ollowing Danas and Aravas (2012) , it is easily shown that ˜ M p is

roportional to μ−1 
p . Therefore, by introducing a fourth order ten-
model for porous ductile solids under cyclic loads com- 

ng, International Journal of Solids and Structures (2017), 
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or which is homogeneous of degree zero in μp , e.g., 

̂ 

 p = μp ̃
 M p = 

3 

2 

K + 

3 f 

(1 − f ) ̂
 Q 

−1 
p + (q 2 J − 1) 

3 f 

(1 − f ) 
J : ̂  Q 

−1 
p : J , 

(23) 

he optimization with respect to μp in (18) is straightforward. 

More specifically, inserting (19) and (20) into (18) , and consid-

ring (6) , one obtains 

˜ 

 (� − X , s α) 	 stat 
μp 

[
1 

2 μp 
(� − X ) : ̂ M p : (� − X ) 

+(1 − f ) stat 
̂ σ−χ

( 

d 0 σ0 

n + 1 

(
( ̂  σ − χ) eq 

σ0 

)n +1 

− 1 

6 μ
( ̂  σ − χ) 2 eq 

)] 
. (24) 

he first optimization operation in (24) with respect to ̂ σ − X re-

ults in 

 0 

(
( ̂  σ − χ) eq 

σ0 

)n −1 

= 

σ0 

3 μp 
. (25) 

ubstitution of the above optimized expression (25) in (24) and

ptimization with respect to μp gives the optimized plastic modu-

us of the LCC as 

p = 

σ n 
0 

3 d 0 

[
1 − f 

3(� − X ) : ̂ M p : (� − X ) 

] n −1 
2 

(26) 

ith 

̂ M p being derived in Eq. (23) . 

Finally, substitution of the above result in (24) leads to the fi-

al expression, called here MVARX (modified variational with lin-

ar kinematic hardening) model, 

˜ 

 (� − X , s α) = (1 − f ) 
d 0 σy ( ̄ε p ) 

n + 1 

[
3(� − X ) : ̂ M p : (� − X ) 

(1 − f ) σ 2 
y ( ̄ε p ) 

] n +1 
2 

.

(27) 

n this expression, we have heuristically replaced σ 0 with σy ( ̄ε p )
o allow for a general isotropic hardening, as ε̄ p denotes the ac-

umulated (creep) plastic strain in the matrix phase. This is done

pproximately here since the homogenization process was car-

ied out for a matrix with no isotropic hardening. Nonetheless,

n numerous recent studies (see for instance Cao et al., 2015 and

apadioti et al., 2016 ), this approximation was shown to deliver

ery accurate results and thus is used here as well. In the present

tudy, the instantaneous yield stress σ y of the matrix phase is

xpressed in terms of the initial yield stress σ 0 , the initial yield

train ε0 of the matrix material and the isotropic hardening expo-

ent N , as 

y = σ0 

(
1 + 

ε̄ p 

ε 0 

)1 /N 

, ε 0 = 

σ0 

E 
. (28)

ny other isotropic hardening law for the matrix could be used

ithout incurring any changes in the homogenized model. 

Next, in order to obtain a yield criterion in the rate independent

imit, it suffices to consider the limit n �→∞ in (27) . This readily

eads to the effective yield condition for the porous material 

˜ (� − X , s α) = 

3(� − X ) : ̂ M p : (� − X ) 

1 − f 
− σ 2 

y ( ̄ε 
p ) = 0 . (29)

.3. Extension to finite strains 

In this section, we extend the previous set of equations in the

ontext of finite strains and objective co-rotational stress rates. The
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acroscopic strain-rate tensor D of the homogenized porous ma-

erial are classically assumed to be the sum of the elastic part D e 

nd the plastic one D p so that 

 = D e + D p . (30)

ext, by refering to the effective elastic energy (10) , we assume the

ffective hypoelastic response ( Aravas and Ponte Castañeda, 2004 )

 e = 

˜ M e : 
◦
�, with 

◦
� = 

˙ � − ω · � + � · ω, (31)

nd similarly 

◦
 = ̃

 L X : ˙ A = ̃

 L X : D p , with 

◦
X = 

˙ X − ω · X + X · ω, (32)

here we will show later in Eq. (33) that ˙ A = D p . The effective

ack stress X has a non-zero hydrostatic part and depends on the

orosity, void shape and orientation as a consequence of the com-

ressible ˜ L X tensor. This is of course due to the homogenization

f the corresponding potential energy for the kinematic harden-

ng in Eq. (10) . In the last two expressions, the superscript ( °) de-

otes rates that are co-rotational with the microstructure (i.e., void

nisotropy), which is measured by the so-called microscopic spin

f the voids ω (or the microstructural spin which is a skew sym-

etric second order tensor) ( Aravas and Ponte Castañeda, 2004 ) to

e defined formally in the following section. 

Finally, since the matrix obeys an associated plastic flow rule,

he homogenized porous material does too ( Rice, 1971 ) in the plas-

ic regime. As a result, the effective plastic strain-rate and effec-

ive hardening variable A (conjugate measure to the effective back

tress X ) are simply 

 p = 

˙ �
∂ ̃  �

∂�
= 

˙ � N, ˙ A = − ˙ �
∂ ̃  �

∂X 

= D p (33)

 p = 

˙ A is a direct consequence of the dependency of the effective

tress potential on � − X . 

. Microstructure evolution 

In this section, we write down the evolution laws for all the mi-

rostructural variables described in the context of relation (1) (see

ig. 1 ). Those include the porosity f , the shape of the voids, de-

cribed by the two aspect ratios w 1 and w 2 , and the orientation of

he principal axes of the representative ellipsoidal void n 

( i ) (with

 = 1 , 2 , 3 ). Moreover, as it will become apparent in the results

ections, we provide evolution equations for the above-mentioned

ariables not only during plastic loading as is the usual practice

n porous solids but also during elastic loading. Since the strategy

ollowed in this work is to decouple the elastic and plastic homog-

nization problems, it is natural that the same procedure may be

sed in the context of microstructure evolution. In other words,

he microstructural variables s α evolve in the elastic regime due to

he purely elastic strains and in the plastic regime due to the plas-

ic strains. Henceforth, all subscripts “e ” refer to elastic quantities

nd “p ” to plastic quantities, respectively. 

.1. Evolution laws in elastic regime 

In this section, we provide all the necessary quantities needed

o evaluate the evolution of the void microstructure in the context

f linear elasticity. In this regard, the estimation of the phase aver-

ge elastic strain-rate fields, D 

(1) 
e in the matrix phase and D 

(2) 
e in

he void phase, are given in terms of the strain-rate concentration

ensors by Hill (1963) , Laws (1973) and Willis (1981) 

 

(1) 
e = A 

(1) 
e : D e , D 

(2) 
e = A 

(2) 
e : D e , (1 − f ) D 

(1) 
e + f D 

(2) 
e = D e 

(34) 
model for porous ductile solids under cyclic loads com- 
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where the strain rate concentration tensor (or the localization ten-

sor) denoted as A 

(r) 
e ( r = 1 , 2 ) read 

A 

(1) 
e = 

1 

1 − f 
M e : ̃  L e , A 

(2) 
e = 

1 

f 

[
I − M e : ̃  L e 

]
, 

(1 − f ) A 

(1) 
e + f A 

(2) 
e = I . (35)

Here, M e and 

˜ L e are given by Eqs. (3) and (12) , respectively. Note

also that A 

(r) 
e (r = 1 , 2) are fourth-order tensors that exhibit minor

symmetry (but not necessarily major symmetry). 

Corresponding expressions have been introduced by Ponte Cas-

tañeda (1997) (see also Kailasam and Ponte Castañeda, 1998 ) for

the evaluation of the average spin tensors in the vacuous phase,

such that 

 

(2) 
e = W e − C e : D e , C e = −(1 − f ) T e : A 

(2) 
e , (36)

where T e is the fourth order Eshelby rotation tensor 2 depending

on the aspect ratios w 1 , w 2 and the orientation vectors n 

(1) , n 

(2) ,

n 

(3) , C e is skew-symmetric in the first two indices and symmetric

in the last two ones, and W e is the macroscopic elastic spin tensor.

Following the definition of the elastic concentration tensors

A 

(2) 
e and C e , the elastic contribution to the microstructure evolu-

tion, ˙ s α, becomes: 

• for the porosity evolution 

˙ f e = f 
[
tr (D 

(2) 
e ) − tr (D e ) 

]
. (37)

• for the two void aspect ratios evolution, 

˙ (w e ) 1 = (w e ) 1 
(
n 

(3) 
e � n 

(3) 
e − n 

(1) 
e � n 

(1) 
e 

)
: A 

(2) 
e : D e 

˙ (w e ) 2 = (w e ) 2 
(
n 

(3) 
e � n 

(3) 
e − n 

(2) 
e � n 

(2) 
e 

)
: A 

(2) 
e : D e 

(38)

• for the void orientation unit vectors, 

˙ n 

(i ) 
e = ω e · n 

(i ) 
e , i = 1 , 2 , 3 , (39)

where ω e is the elastic part of the microstructural spin tensor,

which is skew-symmetric and reads 

ω e = W e −
[ 

C e : D e − 1 

2 

3 ∑ 

i, j=1 , i � = j 

(w e ) 
2 
i + (w e ) 

2 
j 

(w e ) 
2 
i − (w e ) 

2 
j [(

n 

(i ) 
e � n 

( j) 
e + n 

( j) 
e � n 

(i ) 
e 

)
: A 

(2) 
e : D e 

]
(n 

(i ) 
e � n 

( j) 
e ) 

]
. 

(40)

In the same line of thought with the plastic spin ( Dafalias et al.,

1985 ), one could introduce the “elastic spin” W 

E 
e = W e − ω e , which

is used to defined the spin of the continuum relative to the mi-

crostructure when the porous material is under elastic loading.

One has then 

 

E 
e = C e : D e − 1 

2 

3 ∑ 

i, j=1 , i � = j 

(w e ) 
2 
i + (w e ) 

2 
j 

(w e ) 
2 
i − (w e ) 

2 
j 

×
[(

n 

(i ) 
e � n 

( j) 
e + n 

( j) 
e � n 

(i ) 
e 

)
: A 

(2) 
e : D e 

]
(n 

(i ) 
e � n 

( j) 
e ) . (41)

4.2. Evolution laws in the plastic regime 

A brief review of the plasticity contribution to the microstruc-

ture evolution is given in this section. Following the work of Ponte

Casta neda and Zaidman (1994) and Ponte Castañeda and Suquet

(1998) (see also Aravas and Ponte Castañeda, 2004 ), we first define

the evolution of the accumulated plastic strain ε̄ p which is used to

describe the isotropic hardening in the matrix phase (see Eq. (29) ).

Specifically, one can obtain the evolution law for ε̄ p by setting the
2 The tensor T e can be found in Mura (1987) or in the appendix of Aravas and 

Ponte Castañeda (2004) denoted with the symbol �. 

α

f
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acroscopic plastic work equal to the microscopic one, such that

(� − X ) : D p = (1 − f ) σy ( ̄ε 
p ) ˙ ε̄ p . (42)

onsidering the macroscopic flow rule (33) , one has then 

˙ ¯ p = 

˙ �
(� − X ) : N 

(1 − f ) σy ( ̄ε p ) 
= 

˙ � g 1 (� − X , s α) (43)

here N denotes the direction of the plastic flow and has been

efined in (33) while g 1 is a homogeneous function of degree zero

n 

˙ �. 

Next, the plastic strain rate and plastic spin concentration ten-

ors take the following form Danas and Aravas (2012) 

 

(1) 
p = 

3 

2(1 − f ) 
K : ̂ M 

−1 
p , A 

(2) 
p = 

1 

f 

[ 
I − 3 

2 

K : ̂ M 

−1 
p 

] 
, 

C p = −(1 − f ) T p : A 

(2) 
p (44)

here ̂ M p has been defined by Eqs. (21) –(23) , while the plastic

shelby rotation tensor T p is given in Aravas and Ponte Castañeda

2004) or Cao et al. (2015) (denoted with the symbol � in those

eferences). 

The microstructure evolution laws are then given as follows: 

• Porosity . Taking into account matrix incompressibility during

plastic loading, the corresponding evolution law for the poros-

ity is obtained from the kinematic relations 

˙ f p = α f (1 − f ) tr (D p ) = 

˙ �αp (1 − f ) tr (N) = 

˙ � g 2 (� − X , s α) 

(45)

where g 2 is a scalar homogeneous function of degree zero in
˙ � and αf ( f 0 ) is a calibration function of the initial porosity f 0 

introduced to enhance the accuracy of the initial porosity effect

on the void growth. In the present work, we use 

α f ( f 0 ) = a f 2 0 + b f 0 + c, 

with a = 42 . 80 , b = −2 . 69 and c = 1 . 04 , which are obtained

from the least squares method by considering the FEM com-

putations carried out in this work. 3 

• Aspect ratios . The plastic contribution to the evolution of the

aspect ratios of the ellipsoidal voids is defined by 

˙ (w p ) 1 = αw 

(w p ) 1 
(
n 

(3) 
p � n 

(3) 
p − n 

(1) 
p � n 

(1) 
p 

)
: A 

(2) 
p : 

D p = 

˙ � g 3 (� − X , s α) 

˙ (w p ) 2 = αw 

(w p ) 2 
(
n 

(3) 
p � n 

(3) 
p − n 

(2) 
p � n 

(2) 
p 

)
: A 

(2) 
p : 

D p = 

˙ � g 4 (� − X , s α) (46)

g 3 and g 4 are scalar homogeneous functions of degree zero in
˙ � while the scalar factor αw 

= 1 . 75 has been introduced simi-

lar to the original MVAR model ( Danas and Aravas, 2012 ) to im-

prove the corresponding prediction of the void shape evolution,

but could be seen more generally as a calibration parameter. 

• Void orientation vectors . The evolution of the orientation vectors

due to plastic strains reads 

˙ n 

(i ) 
p = ω p · n 

(i ) 
p , i = 1 , 2 , 3 (47)

with 

ω p = W p − ˙ �

[ 

C p : N − 1 

2 

3 ∑ 

i, j=1 , i � = j 

(w p ) 
2 
i + (w p ) 

2 
j 

(w p ) 
2 
i − (w p ) 

2 
j 

×
[(

n 

(i ) 
p � n 

( j) 
p + n 

( j) 
p � n 

(i ) 
p 

)
: A 

(2) 
p : N 

]
n 

(i ) 
p � n 

( j) 
p 

]
(48)
3 It should be noted here that from a practical and engineering point of view, 

f could also be calibrated from direct experimental measurements but this is not 

urther pursued here. 
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4 It should be pointed out here that the MVARX estimations and FEM compu- 

tations are realized by considering the porous material only with initial spherical 

voids but of course allow for void shape evolution during the deformation process. 

The initial void shape effects have been shown to have a significant effect on the 

cyclic response ( Mbiakop et al., 2015b ) but in the present study we choose to focus 

on the rest of the parameters of the problem and concentrate the study on porosity 

ratcheting only. 
Using further the well known definition of the “plastic spin”

( Dafalias et al., 1985 ) as W 

P 
p = W p − ω p = 

˙ �	P , one can rewrite

Eq. (48) as 

	P = C p : N − 1 

2 

3 ∑ 

i, j=1 , i � = j 

(w p ) 
2 
i + (w p ) 

2 
j 

(w p ) 
2 
i − (w p ) 

2 
j 

×
[(

n 

(i ) 
p � n 

( j) 
p + n 

( j) 
p � n 

(i ) 
p 

)
: A 

(2) 
p : N 

]
n 

(i ) 
p � n 

( j) 
p (49) 

Note that W 

P 
p describes the spin of the continuum relative to

the microstructure when the porous material is under purely

plastic loading. Alternative expressions that describe the evolu-

tion of the void aspect ratios and the orientation vectors, that

are not singular for spherical or spheroidal void shapes, have

been recently proposed by Madou et al. (2013) and could be

used readily used in the present model. 

.3. Elasto-plastic Jacobian 

In order to implement numerically the present constitutive

odel, it is useful to evaluate at this point the elasto-plastic Jaco-

ian, denoted by L 

ep . Using Jaumann objective measures, the gen-

ral form of the macroscopic constitutive law can be written as

 Aravas and Ponte Castañeda, 2004 ) 

� 

= L 

ep : D . (50)

The Jaumann rates 
� 
� and 

� 
X can also be obtained from the co-

otational Cauchy stress rate tensor 
◦
� and back stress tensor 

◦
X as

 function of the plastic spin W 

P 
p , i.e., 

� 

= 

◦
� + � · W 

P 
p − W 

P 
p · �, 

� 

X = 

◦
X + X · W 

P 
p − W 

P 
p · X (51)

hile, using Eq. (31) , the Cauchy stress co-rotational with the mi-

rostructure can be written as 

◦
= ̃

 L e : (D − D p ) = ̃

 L e : D − ˙ �˜ L e : N. (52)

n this last equation, the plastic multiplier ˙ � can be calculated

rom the consistency condition 

˙ � = 0 , as 

˙ ˜ = 

∂ ̃  �

∂�
: 

◦
� + 

∂ ̃  �

∂X 

: 
◦
X + 

∂ ̃  �

∂ ̄ε p 
˙ ε̄ p + 

∂ ̃  �

∂s α
· ◦

s α = 0 , (53)

here s α denotes the set of the microstructural variables defined

n (1) and by use of (47) , one readily gets 
◦
n 

(i ) 
= 0 . It is recalled

hat the co-rotational back stress rate has been defined in Eq. (32) .

Remark : For completeness, the Jaumann rates of the mi-

rostructural variables 
� 
s α are given as follows (see also Aravas and

onte Castañeda, 2004 ) 

 

s α = 

{
� 

f = 

˙ f , 
� 

w 1 = 

˙ w 1 , 
� 

w 2 = 

˙ w 2 , 
� 

n 

(i ) 

= − ˙ �	P n 

(i ) 

}
As a result, taking into account (33) , the consistency condition

53) can be recast into 

 : ( 
◦
� −

◦
X ) + 

∂ ̃  �

∂ ̄ε p 
˙ ε̄ p + 

∂ ̃  �

∂ f 
˙ f + 

∂ ̃  �

∂w 1 

˙ w 1 + 

∂ ̃  �

∂w 2 

˙ w 2 = 0 . (54)

ecall at this point that ˙ ε 
p = 

˙ �g 1 , ˙ f p = 

˙ �g 2 , ˙ w 

p 
1 

= 

˙ �g 3 and ˙ w 

p 
2 

=
˙ g 4 (see also Eqs. (45) and (46) ). Then, by introducing 

 = −
(

∂ ̃  �

∂ε p 
g 1 + 

∂ ̃  �

∂ f 
g 2 + 

∂ ̃  �

∂w 1 

g 3 + 

∂ ̃  �

∂w 2 

g 4 

)
(55) 

q. (54) becomes 

 : ( 
◦
� −

◦
X ) − ˙ �H = 0 . (56)
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ext, inserting (32) and (51) into Eq. (56) , one has 

 : ̃  L e : D − ˙ � · N : ̃  L e : N − ˙ � · N : ̃  L X : N − ˙ � · H = 0 , (57)

nd the plastic multiplier can be readily obtained as 

˙ = 

N : ̃  L e : D 

L 
, L = N : ̃  L e : N + N : ̃  L X : N + H. (58)

ombining (51), (52) and (58) , the Jaumann rate of the stress ten-

or can be explicitly expressed as 

� 

= 

[˜ L e − ( ̃  L e : N) � (N : ̃  L e ) 

L 
+ 

N : ̃  L e 

L 
� (� · 	P − 	P · �) 

]
: D

(59) 

rom which we obtain the elasto-plastic Jacobian 

 

ep = ̃

 L e − ( ̃  L e : N) � N : ( ̃  L e ) 

L 
+ 

N : ̃  L e 

L 
� (� · 	P − 	P · �) 

(60) 

his last expression has the same structure as the corresponding

ne in Aravas and Ponte Castañeda (2004) with the only difference

ying in the expression of L defined in Eq. (58) , which is augmented

ith the linear kinematic hardening modulus ̃  L X and the fact that

he normal N = N(� − X ) . The numerical implementation of the

odel is described in Appendix A . 

. Assessment of the MVARX model with FEM simulations 

In this section, the predictions of the MVARX model are as-

essed by comparison to FEM simulations for cyclic loadings and

nite strains. To this end, the MVARX model is implemented in a

ser-defined material subroutine (UMAT) in ABAQUS/Standard soft-

are. The homogenized elasto-plastic constitutive equations are in-

egrated at each Gauss point of a single cubic 8-node element,

hich serves immediately as a representative volume element.

ote that the isotropic and kinematic hardening are fully charac-

erized by the hardening exponent N and hardening modulus C

see Eqs. (6) and (4) ), as well as Young’s modulus E of the matrix

hase. 

In turn, for the FEM simulations, we use periodic unit cells

omprising uniformly distributed voids. This is achieved by use of

n Random Sequential Adsorption (RSA) algorithm as described in

opez-Pamies et al. (2013) . In Fig. 2 , we show three different re-

lizations comprising 30 monodisperse voids with a total initial

orosity f 0 = 5% . 4 The comparison between the MVARX model and

he FEM is done for the average macroscopic stress and porosity. 

Specifically, in this section, we consider a uniaxial ten-

ion/compression cyclic loading, as shown schematically in Fig. 3 .

n each step of each cycle, we control the average nominal strain

 22 = U 2 /L in the unit-cell ( U 2 is the axial applied displacement

nd L the initial side length of the RVE cube), which initially in-

reases from E 22 = 0 to E 22 = 0 . 05 (the later corresponds to the

aximal imposed displacement U max ), then unloads from E 22 =
 . 05 to E 22 = 0 , next reversely loads from E 22 = 0 to E 22 = −0 . 05

nd finally unloads from E 22 = −0 . 05 to E 22 = 0 . The number of cy-

les is denoted as N r . In addition, the matrix material has a Young

odulus E/σ0 = 300 , a Poisson ratio ν = 0 . 3 and an initial porosity

f = 0 . 05 , unless otherwise stated. 
model for porous ductile solids under cyclic loads com- 

ng, International Journal of Solids and Structures (2017), 
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(a) (b) (c)

Fig. 2. Geometries and meshes of three different realizations comprising 30 voids with a total initial porosity f 0 = 5% . 

Fig. 3. Schematic explanation of the uniaxial “traction-compression” cyclic loading. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Comparison of MVARX model predictions to FEM computations in 2 cycles 

loadings. (a) Effective constitutive response: 
22 − E 22 . (b) Porosity evolution f −
E 22 . 
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More specifically, Section 5.1 investigates first the detailed re-

sponse of MVARX in the case of two cycles. As expected, the influ-

ence of the matrix hardening on the effective constitutive relation


22 − E 22 and on the porosity evolution are clearly illustrated and

validated. This effect is also discussed in Section 5.2 in the case of

10 cycles. In the remaining Sections 5.3 and 5.4 we study the effect

of the Young modulus of the matrix material, the matrix elasticity

contribution and the initial porosity f 0 upon the effective cyclic re-

sponse of the porous material. 

5.1. Detailed response for 2 cycles 

In Fig. 4 , we show comparisons between the MVARX model and

the FEM for combined isotropic and kinematic hardening with N =
10 and C/σ0 = 10 for two complete cycles. In Fig. 4 (a), we observe

that the agreement between the MVARX predictions and the nu-

merical results for the effective stress–strain response 
22 − E 22 is

very good for the entire loading history. The effects of the isotropic

and kinematic hardening are well predicted in the present case. A

slight difference is observed in the inset of that figure exactly at

the elasto-plastic transition. This difference, as already mentioned

above, is due to the decoupled homogenization strategy used in

Section 3 . This difference is of course minor and thus justifies to

keep the present approximation. In turn, Fig. 4 (b) shows the evo-

lution of porosity f as a function of the nominal axial strain E 22 .

The MVARX model tends to overestimate the porosity evolution as

already observed in previous studies (see for instance Cao et al.,

2015 ) but qualitatively captures the increase of porosity at the sec-

ond cycle. For that, one only needs to follow the value of porosity

at E 22 = 0 . 05 after one and two cycles. Both the MVARX and the

FEM predict porosity ratcheting (see relevant numerical results of

Mbiakop et al., 2015b ), which is a highly non-trivial qualitative fea-

ture of the model. In the following parts of this section, we switch

to plots for larger numbers of cycles N r = 10 or 30 in order to as-
Please cite this article as: L. Cheng et al., A homogenization 

prising a matrix with isotropic and linear kinematic hardeni
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ess mainly the qualitative performance of the model with respect

o the FEM results. 

.2. Relative effect of isotropic and kinematic hardening of the matrix

In this section, we investigate the relative effect of the two

ypes of hardening by showing collective results for N r = 10 cy-

les. Note here that from now on, only the macroscopic state

t the maximum strain U max / L of each cycle will be considered

oth for the macroscopic uniaxial stress evolution with respect to

he number of cycles 
22 − N r and the porosity ratcheting f − N r .

ore specifically, we first switch off isotropic hardening by set-

ing N = ∞ and vary C/σ0 = 0 , 1 , 10 . In both Fig. 5 (a) and (b), the

VARX predictions for the macroscopic uniaxial stress response

nd the porosity evolution are in very good qualitative agreement

ith the FEM results for this number of cycles. In particular, we

bserve a slight decrease of the stress with increasing N r , which is

 direct consequence of porosity ratcheting (i.e., porosity increase)
model for porous ductile solids under cyclic loads com- 

ng, International Journal of Solids and Structures (2017), 
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Fig. 5. MVARX prediction and validation with FEM computations of the matrix kinematic hardening effect in 10 cycles loadings. (a) Effective uniaxial stress variation: 


22 − N r . (b) Porosity evolution f − N r . 
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Fig. 6. MVARX prediction and validation with FEM computations of the matrix isotropic hardening effect in 10 cycles loadings. (a) Effective uniaxial stress variation: 
22 − N r . 

(b) Porosity evolution f − N r . 
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s a function of N r (see Fig. 5 (b)). In turn, for the porosity evolu-

ion, we observe that the MVARX model initially overestimates f

ut, in turn, the porosity ratcheting slope (i.e., the porosity rate of

ncrease with the number of cycles) is in very good quantitative

greement with the FEM results. Both, the MVARX and the FEM,

redict porosity ratcheting, i.e., porosity increase with the number

f cycles N r . Again the initial difference in the porosity prediction

t cycle 1 is due to the quadratic character of the MVARX criterion,

hich tends to overestimate void growth in uniaxial tension loads

as discussed in Fig. 3b of Cao et al., 2015 ). This can be amended in

uture studies by use of “cosh” term following a similar procedure

ith that discussed in Cao et al. (2015) and Mbiakop et al. (2015a ).

A second very interesting result, obtained by both the MVARX

nd the FEM, is that for C/σ0 = 10 , porosity ratcheting is weaker

han for C/σ0 = 0 or C/σ0 = 1 . This implies that significant kine-

atic hardening could decelerate porosity ratcheting in certain

ases. Similar observations were done in the numerical study of

biakop et al. (2015b ), albeit for a nonlinear kinematic harden-

ng matrix. In Section 6 , we carry out a more complete parametric

tudy using the MVARX model to investigate further this effect and

e will see that the combined effect between C / σ 0 and N is highly

on-trivial and non-monotonic. 

Next, in Fig. 6 , we switch off the kinematic hardening effect by

etting C/σ0 = 0 and vary N = ∞ , 10 . A striking observation from

his figure is that even in the absence of both isotropic and kine-

atic hardening, i.e., for N = ∞ and C/σ0 = 0 , we observe a sig-

ificant porosity ratcheting for both the MVARX model and the
Please cite this article as: L. Cheng et al., A homogenization 

prising a matrix with isotropic and linear kinematic hardeni

http://dx.doi.org/10.1016/j.ijsolstr.2017.05.024 
EM results. This clearly shows that elasticity effects are predomi-

ant and cannot be neglected . In fact, it appears that under cyclic

oading elasticity is the main mechanism for porosity ratcheting,

hile hardening seems to slightly affect the porosity ratcheting

lopes and its amplitude, in this case. The effect of the matrix elas-

icity will be specifically studied in Section 5.3 . Again, the MVARX

odel is in very good qualitative agreement with the FEM results

or both the stress and porosity evolution as a function of the num-

er of cycles. Specifically, in Fig. 6 (a), the MVARX model is in ex-

ellent agreement with the FEM for the prediction of the stress

s a function of number of cycles N r , where we observe a signifi-

ant increase of the stress due to the isotropic hardening exponent

nd subsequent saturation at larger number of cycles, as expected.

imilar to the previous case discussed, in Fig. 6 (b), we have poros-

ty ratcheting and, while MVARX overestimates the actual porosity

atcheting (for the same reasons discussed previously in Fig. 5 ), it

oes on the other hand capture sufficiently well the porosity evo-

ution rate of increase as well as the effect on the hardening ex-

onent N . In fact, in this case, we observe that both MVARX and

he FEM give lower porosity ratcheting for N = 10 than for N = ∞ .

t should be noted that the present observations are valid for the

umber of cycles and types of loadings considered and could of

ourse lead to different conclusions if other triaxialities and Lode

ngles or general loading states are considered (see for instance

biakop et al., 2015b ). 
model for porous ductile solids under cyclic loads com- 

ng, International Journal of Solids and Structures (2017), 
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Fig. 7. MVARX prediction and validation with FEM computations of the matrix rigidity effect in 30 cycles loadings. (a) Effective uniaxial stress variation: 
22 − N r . (b) 

Porosity evolution f − N r . 
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5.3. Effect of the matrix elasticity 

In this section, we investigate the relative effect of the matrix

Young’s modulus E upon the stress and porosity evolution as a

function of the number of cycles N r . We thus first consider two

values for the Young modulus, E/σ0 = 30 0 , 10 0 0 without matrix

hardening (i.e., N = ∞ and C/σ0 = 0 ). In Fig. 7 (a), we observe that

the stress 
22 is well predicted by the MVARX model when com-

pared with the FEM. The uniaxial yield stresses 
22 (obtained at

 2 = U max of each cycle) is unaffected by Young’s modulus as a

consequence of the perfect plasticity considered in this case. 

In turn, Fig. 7 (b) shows an important effect of the matrix elas-

ticity modulus upon porosity ratcheting. As originally discussed by

Devaux et al. (1997) (and revisited more recently by Mbiakop et al.,

2015b and Lacroix et al., 2016 ), elasticity introduces an asymme-

try in the evolution of void growth and shape under a cyclic load.

This asymmetry builds up with increasing cycles and leads to dif-

ferent porosity ratcheting responses for different Young’s moduli.

This effect is relatively well captured by the MVARX model when

compared with the FEM results. Specifically, both FEM and MVARX

predict an increase of porosity ratcheting with decrease of Young’s

modulus. 

Additionally, the effect of the matrix elasticity is studied with

fixed values of the isotropic hardening exponent N = 10 and the

linear kinematic hardening constant C/σ0 = 10 by adopting three

different values of Young modulus E/σ0 = 30 0 , 10 0 0 , 10 , 0 0 0 . 5 It
5 Note that in the previous comparisons illustrated in Fig. 7 (a) and (b) where the 

matrix hardening is neglected (i.e., N = ∞ and C/σ0 = 0 ), corresponding results with 

E/σ0 = 10 , 0 0 0 are not shown due to convergence issues appearing in the numerical 

multi-void unit-cells as a consequence of the perfect plasticity. Nonetheless, similar 

reduction of porosity ratcheting at very large values of E / σ 0 and perfect plastic- 

w  

t  

i

M
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an be observed from Fig. 7 (c) that the stress 
22 is also well

redicted by the MVARX model comparing with the FEM com-

utations. The increase of the stress for higher Young’s moduli is

irectly related to the isotropic hardening law used in Eq. (28) ,

here the matrix yield stress is an explicit function of E / σ 0 . The

orresponding porosity ratcheting is shown in Fig. 7 (d) and by

omparison with the previous results for vanishing matrix hard-

ning ( Fig. 7 (b)), it is evident that elasticity plays a pre-dominant

ole in porosity ratcheting. 

In order to understand better the elasticity effect, we show

n Fig. 8 contours of the axial local plastic strain ε p 
22 

in the cy-

le N r = 30 , at maximum straining U max / L of the porous material

ith fixed values of the isotropic hardening exponent N = 10 and

he linear kinematic hardening constant C/σ0 = 10 . We observe

hat increase of E / σ 0 leads to more diffuse plastic zones extend-

ng to larger regions in the unit-cell. That is somewhat expected

ince a high Young’s modulus penalizes severely elastic strains and

hus the material tends to resort to plasticity. Nonetheless, the

lastic strain fields are highly heterogeneous due to the random

orous microstructure. In the case of the lowest Young’s modulus,

/σ0 = 300 , plasticity is more localized around the voids and in

he inter-void ligaments. This in turn leads to higher void growth

nd thus larger porosity ratcheting. 

In the following, we illustrate clearly the importance of taking

nto account the evolution of void volume, shape and orientation

uring the elastic loading and not only during the plastic loading

hich is the general practice in porous material modeling since

he early work of Gurson. The relevant expressions needed for that
ty but in a simpler one-void unit-cell have been reported previously in Fig. 24 of 

biakop et al. (2015b ). 

model for porous ductile solids under cyclic loads com- 

ng, International Journal of Solids and Structures (2017), 
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Fig. 8. Contours of the axial plastic strain ε p 
22 

in the first generation of mircrostructure (see Fig. 2 (a)) at the maximum macroscopic strain U max / L of the 30th cycle. Matrix 

hardening constants: N = 10 and C/σ0 = 10 . 
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Fig. 9. MVARX prediction and validation with FEM computations of the matrix elasticity contribution effect to the microstructure evolution in 30 cycles loadings. (a) Effective 

uniaxial stress variation: 
22 − N r . (b) Porosity evolution f − N r . 
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as been discussed in detail in Section 4.1 . Specifically, in Fig. 9 ,

e show the stress and porosity evolution as a function of the

umber of cycles N r . The stress response in Fig. 9 (a) shows very

light and negligible dependence upon whether the elastic con-

ribution to the microstructure evolution is taken into account or

ot. However, porosity ratcheting is strongly affected by elasticity,

s clearly observed in Fig. 9 (b). By neglecting elasticity contribu-

ion to the microstructure evolution, porosity ratcheting is signif-

cantly weaker and with lower slope. Therefore, in our modeling

pproach, it appears that this elasticity contribution cannot be ne-

lected, even if the elastic part is reversible. The reason is related

o the above described argument of asymmetry in the tension-

ompression response during the elastic regime which, in fact, has

on-negligible effects upon microstructure evolution since the am-

litude of elastic strains are comparable to plastic strains in the

ase of cyclic loading. In fact, the void volume and shape are asym-

etrically evolving due to elasticity but also due to isotropic and

inematic hardening. 

.4. Effect of initial porosity 

For completeness, we conclude the assessment of the MVARX

odel by showing in Fig. 10 , the effect of initial porosity f 0 on the

yclic response of the porous material. Specifically, in Fig. 10 (a),

he MVARX predicts very accurately the stress response as a func-

ion of the number of cycles N r . By contrast, porosity ratcheting

s predicted with much less accuracy as shown in Fig. 10 (b). Even

hough, the differences are highly amplified by the normalization

f the curves as we show f / f (instead of f where the results look
0 

Please cite this article as: L. Cheng et al., A homogenization 

prising a matrix with isotropic and linear kinematic hardeni
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uch closer), the present version of the MVARX model tends to

verestimate porosity ratcheting at smaller initial porosities such

s f 0 = 0 . 001 , when compared with the FEM results, even though

ualitatively shows the same trends. Thus, the present MVARX es-

imates should be considered as conservative, while for better ac-

uracy one can either use more accurate homogenization schemes

see for instance Danas et al., 2009a ; Danas and Ponte Castañeda,

009b ) or calibrate the model by using more Gurson-type yield

urfaces as in Cao et al. (2015) . In any case, further calibration of

he model with experimental results is necessary for quantitative

greement. 

. MVARX predictions at large number of cycles 

In this section, we propose to carry out a parametric study at

 larger number of cycles N r = 100 using the MVARX model to

nderstand in more detail the relative effect of isotropic and lin-

ar kinematic hardening by varying the isotropic hardening expo-

ent N and the kinematic hardening parameter C / σ 0 , for which, as

hown in Fig. 11 , we introduce another two different cyclic load-

ng conditions. In this figure, in addition to the usual tension-

ompression with zero average cyclic load ( Fig. 11 (a)), we also con-

ider cyclic loads with tension loading-elastic unloading with a

on-zero positive mean stress ( Fig. 11 (b)), as well as with a pos-

tive prestress and cycling this point ( Fig. 11 (c)). Again, we control

he axial displacement U 2 (or the average strain E 22 = U 2 /L ), such

hat the average nominal strain takes the value E 22 = 0 . 05 . This al-

ows to enter well the plastic region, while the elastic strains re-

aining still significant. For the sake of brevity of this parametric
model for porous ductile solids under cyclic loads com- 

ng, International Journal of Solids and Structures (2017), 
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Fig. 10. MVARX prediction and validation with FEM computations of the initial porosity effect in 30 cycles loadings. (a) Effective uniaxial stress variation: 
22 − N r . (b) 

Porosity evolution f − N r . 
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Fig. 11. Schematic explanation of three types of uniaxial cyclic loading. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

t  

t  

c  

k  

e  

(  

N

 

t  

i  

l  

i  

I  

i  

n  

t  

e

 

f  

t  

s  

c  

t  

e  
study, we keep the rest of the parameters fixed, i.e., Young’s mod-

ulus E/σ0 = 300 , Poisson ratio ν = 0 . 3 , initial porosity f = 5% , and

initially spherical void shapes. 

• Type 1 (see Fig. 11 (a)): same loading condition as discussed in

Section 5 . 

• Type 2 (see Fig. 11 (b)): in each cycles, U 2 initially increases

from U 2 = 0 to U 2 = U max (note that U max /L = 0 . 05 ), then un-

loads from U 2 = U max to U 2 = 0 . 

• Type 3 (see Fig. 11 (c)): U 2 initially increases from U 2 = 0 to

U 2 = U max , then unloads–loads between U 2 = U max and U 2 =
U max / 2 . 

In Fig. 12 , we investigate the effect of cyclic loading type on

porosity ratcheting for various values of N and C / σ 0 . First of all, in

the absence of any hardening, the MVARX model predicts poros-

ity ratcheting, as shown in Fig. 12 (a), which is in agreement with

the corresponding FEM results in Fig. 6 (b). This is true for all load-

ing Types 1–3 considered in this study. In addition, by comparing

Fig. 12 (a) and (b) and Fig. 12 (c) and (d), we note that the addi-

tion of kinematic hardening introduces a weak initial decrease of f

for loading Types 1 and 2 at small number of cycles, while its ef-

fect smears out at larger number of cycles. It can also observed by

comparing Fig. 12 (a) and (b) that the addition of linear kinematic

hardening tends to decelerate the porosity ratcheting when N = ∞ .
Please cite this article as: L. Cheng et al., A homogenization 

prising a matrix with isotropic and linear kinematic hardeni

http://dx.doi.org/10.1016/j.ijsolstr.2017.05.024 
.1. Relative effect of hardening for the three loading types 

Fig. 13 shows the porosity evolution curves for N = ∞ , 10 , 5 for

hree different kinematic hardening modulus of C/σ0 = 0 , 1 , 10 in

he case of the loading type 1 as defined in Fig. 11 (a). From these

urves, it is evident that the interplay between the isotropic and

inematic hardening is non-trivial. For instance, depending on the

xponent N , the addition of kinematic hardening can either reduce

see for instance N = ∞ in Fig. 13 (a)) or increase (see for instance

 = 5 in Fig. 13 (c)) porosity ratcheting for this type of loading. 

For a more comprehensive visualization, we show in Fig. 14

he cross plots of porosity at U 2 = U max of N r = 100 cycles. Specif-

cally, in Fig. 14 (a), we observe that decrease of N (or equiva-

ently increase of 1/ N ) could lead to a non-monotonic effect for f

f C/σ0 = 0 while it remains monotonically increasing if C/σ0 = 10 .

n turn, in Fig. 14 (b), decrease of N from ∞ to 5 leads to a general

ncrease in porosity ratcheting. Again the relative effect of C / σ 0 is

on-monotonic with the maximum observed at C / σ 0 ∼ 1. Beyond

hat point, kinematic hardening tends to decelerate porosity ratch-

ting for all N considered here. 

Next, Fig. 15 , shows porosity evolution curves for N = ∞ , 10 , 5

or three different kinematic hardening values of C/σ0 = 0 , 1 , 10 in

he case of the loading type 2 as defined in Fig. 11 (b), which corre-

ponds to a tension loading and elastic unloading with no overall

ompression. In this case, observe a relatively minor effect of both

he kinematic hardening parameter C / σ 0 and the isotropic hard-

ning exponent N . Moreover, for all N , we observe a crossover of
model for porous ductile solids under cyclic loads com- 
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Fig. 12. Effect of cyclic loading type on porosity ratcheting for various values of N and C / σ 0 . 

Fig. 13. Detail porosity evolution within 100 cycles of the Type 1 cyclic loading with several matrix hardening parameters. (a) Without matrix isotropic hardening N = ∞ 

and C/σ0 = 0 , 1, 10 , (b) N = 10 and C/σ0 = 0 , 1, 10, (c) N = 5 and C/σ0 = 0 , 1, 10. 
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he curves. Again for a better illustration, Fig. 16 shows cross plots

f porosity at N r = 100 cycles. Even though, in Fig. 16 (a), we ob-

erve a minimum of f for 1/ N ∼ 0.02, the curves seem to be rather

nsensitive to both N and C / σ 0 . 

Fig. 17 shows porosity evolution curves for N = ∞ , 10 , 5 for

hree different kinematic hardening values of C/σ0 = 0 , 1 , 10 for

he loading Type 3 defined in Fig. 11 (b), which corresponds to a

ositive tensile pre-stress and subsequent cyclic loading around

his pre-stress. In this case, we observe a significant cross-over of

he curves for N = ∞ but no cross-over for N = 5 for increasing

umber of cycles N . For instance, when N = ∞ , the porosity curve
r 
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orresponding to C/σ0 = 10 initially decreases with N r attaining a

inimum at N r ∼ 5 and then starts increasing again as N r goes

o 100 cycles. Similar to the previous cases, Fig. 18 shows corre-

ponding cross-plots of porosity at N r = 100 cycles. In this case,

n Fig. 18 (b), f decreases to an asymptote as C / σ 0 increases except

or N = ∞ that exhibits first a minimum. In turn, Fig. 18 (a) shows

 highly non-monotonic response of f , exhibiting a maximum for

/ N ∼ 0.04 (or N ∼ 25). In this type of loading, increase of 1/ N ,

.e., a material with significant isotropic hardening tends to reduce

orosity ratcheting. 
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Fig. 14. MVARX predictions of porosity at 100 cycles for Type 1 cyclic loading with symmetric tension/compression loads. (a) C / σ 0 is, respectively, fixed at 0, 1, 10 and N 

varies between ∞ and 5 (i.e., 1/ N varies between 0 and 0.2) (b) N is, respectively, fixed at ∞ , 10, 5 and C / σ 0 varies between 0 and 10. 

Fig. 15. Detail porosity evolution within 100 cycles of the Type 2 cyclic loading with several matrix hardening parameters. (a) Without matrix isotropic hardening N = ∞ 

and C/σ0 = 0 , 1, 10 , (b) N = 10 and C/σ0 = 0 , 1, 10, (c) N = 5 and C/σ0 = 0 , 1, 10. 
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Fig. 16. MVARX predictions of porosity at 100 cycles for Type 2 cyclic loading. (a) C is, respectively, fixed at 0, 1, 10 and N varies between ∞ and 5 (i.e., 1/ N varies between 

0 and 0.2 (b) N is, respectively, fixed at ∞ , 10, 5 and C / σ 0 varies between 0 and 10. 
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7. Concluding remarks 

In this work, we have developed a nonlinear homogenization

model (termed MVARX) to study the response of elasto-plastic

porous material with an isotropic and linear kinematic hardenable

matrix subjected to cyclic loading and finite strains. The proposed

model is an extension of the MVAR model of Danas and Aravas

(2012) to include linear kinematic hardening and evolution of mi-
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rostructure during elastic loading. It is obtained by use of a de-

oupled homogenization strategy and is used to describe both the

lastic and plastic effective response. The resulting effective back

tress in the homogenized model, as for the macroscopic stress

nd plastic strain, has non-zero hydrostatic terms as a result of

he homogenization procedure for a porous material. The model is

lso numerically implemented in an efficient general purpose user-

aterial subroutine for structural calculations. The model is exten-
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Fig. 17. Detail porosity evolution within 100 cycles of the Type 3 cyclic loading with several matrix hardening parameters. (a) Without matrix isotropic hardening N = ∞ 

and C/σ0 = 0 , 1, 10 , (b) N = 10 and C/σ0 = 0 , 1, 10, (c) N = 5 and C/σ0 = 0 , 1, 10. 

Fig. 18. MVARX prediction of the matrix hardening effect on the porosity evolution at 200 cycles of Type 3 cyclic loading. (a) C is, respectively, fixed at 0, 1, 10 and N varies 

between ∞ and 5 (i.e., 1/ N varies between 0 and 0.2 (b) N is, respectively, fixed at ∞ , 10, 5 and C / σ 0 varies between 0 and 10. 
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ively validated by full field finite element calculations of multi-

oid periodic unit cells for a number of hardening and elastic pa-

ameters. A major finding of this work is that elasticity is the pre-

ominant mechanism for porosity ratcheting as illustrated by both

he numerical analysis and the analytical model. 

Specifically, the MVARX model is found to be in very good qual-

tative agreement with the finite element results for all loading

ypes, hardening parameters and porosities considered. Specifically,

orosity ratcheting is predicted by both the numerical analysis and

he analytical model and is found to be a non-trivial consequence

f both the isotropic and linear kinematic hardening. The effect

f linear kinematic hardening is shown to be weaker than that of

he isotropic hardening at large number of cycles but still present.

he main reason for the observed porosity ratcheting is the ini-

ial asymmetry introduced in the response of the porous solid dur-

ng the first cycles, which lead to an asymmetric evolution of the

icrostructure during tension and compression. This asymmetry

uilds up with the increase of the cycles. This explains partially

he importance of the isotropic hardening in porosity ratcheting,

hich is predominant in the first cycles and then as is well-known

aturates at larger cycles. 

A second observation, which was found to be of critical im-

ortance in our modeling approach, is the effect of elasticity in

he evolution of microstructure. Elastic effects combined of course

ith hardening effects contribute even more to the asymmetric

volution of the porosity and need to be taken into account in the

nalytical modeling approach. Since our modeling uses standard
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inear homogenization techniques for the linear regime, such an

peration is straightforward by direct use of the phase concentra-

ion (or localization) tensors, which are readily available from the

omogenization procedure. The plastic part of the homogenization

s built along the lines discussed by Aravas and Ponte Castañeda

2004) and more recently by Danas and Aravas (2012) . 

The MVARX model was used then to investigate three dif-

erent cyclic loading types and effects of several values of the

sotropic and linear kinematic hardening parameters. The three

oading types considered involve a standard tension/compression

ycle with equal amplitude positive and negative axial strain, a

ension loading-elastic unloading with a non-zero positive average

tress state, as well as a cyclic load where a positive prestress is

dded first and then cycling around this point is carried out. For

he amplitudes considered here, the tension/compression load is

ound to lead to the largest porosity ratcheting effect while the

ositive prestress load to the smallest one. The relative effect of

sotropic and kinematic hardening in those three loading states is

ound to be very different. In the last two loading types the kine-

atic hardening appears to have a weaker effect than in the first

ne. The effect of the corresponding isotropic hardening on the

orosity ratcheting is most of the times non-monotonic and there-

ore highly non-trivial. 

We conclude this work by noting that the present model was

ound to be less accurate in quantitative terms especially at smaller

nitial porosities. This is mainly attributed to the quadratic charac-

er of the original MVAR model of Danas and Aravas (2012) and
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carries on to the present MVARX model, which tends to overes-

timate the porosity evolution in the first cycle for uniaxial ten-

sion loads. To amend this, Cao et al., 2015 has proposed a mod-

ification of the original MVAR model for monotonic loads, which

consists in re-writing it in a Gurson-type form. This led to a de-

crease of the porosity estimation and a better agreement with cor-

responding finite element results. Such a modification is straight-

forward in the present model since it affects only the plastic part

and will be pursued in a future study. Again, as shown in Cao et al.

(2015) , the present model could be easily calibrated by use of a

very small number of parameters in order to describe experimental

data. 

Last but not least, the proposed model is able to deal with gen-

eral initial void shapes and orientations but such a study has not

been attempted here for the sake of keeping the work focused and

concise. However, as has been discussed by Mbiakop et al. (2015b ),

the initial void shape as well as different triaxialities have signif-

icant effects on the cyclic response of the porous solids. Such a

study is left for the future. Alternatively, the consideration of a

fully coupled homogenization method ( Lahellec and Suquet, 2007;

Idiart and Lahellec, 2016 ) may also constitute a challenging exten-

sion at finite strains, which could pave the way to a refined, prob-

ably more quantitative porosity ratcheting prediction. 
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Appendix A. Numerical implementation of the MVARX model 

This section describes the numerical implementation of the

aforementioned constitutive model. First, it is essential to define

the velocity boundary conditions that are related to the applied fi-

nite strains. Thus, one has 

v = L · x , with L = 

˙ F · F −1 (A.1)

where L and F are, respectively, the macroscopic velocity gra-

dient and macroscopic deformation gradient. The symmetric and

skew-symmetric part of L denote the macroscopic strain-rate D =
1 / 2 

[
L + L 

T 
]

and the macroscopic spin W = 1 / 2 
[
L − L 

T 
]
. Note

that similar to the decomposition of the strain-rate to an elas-

tic part and a plastic part (see Eq. (30) ), we also decompose the

macroscopic spin tensor to W = W e + W p . Those tensors have al-

ready been used in the previous sections to describe the evo-

lution of the void orientation vectors in the elastic and plastic

regime. 

Remark. For non-viscous plasticity, the magnitude of v (or L ) does

not affect the final result. Hence, the total displacement u is ex-

pressed in terms of the velocity v via u = x − ζ = v · t (t n ≤ t ≤
 n +1 ) , where x and ζ, respectively, define the deformed current

configuration and the undeformed reference configuration, while

v is constant in time t . 

Moreover, in order to implement the present model, we recall

here the polar decomposition of the deformation gradient F ( t ) into

a rotation tensor R ( t ) and right stretch tensor U ( t ) during the time

increment [ t n , t n +1 ] , such that 

F (t) = � F (t) · F n = R(t) · U (t) · F n , R 

T (t) · R(t) = I (A.2)
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he strain-rate and the spin tensors can then be obtained from

A.1) as 

D (t) = 

1 

2 

[
( � ̇

 F (t) · � F (t) ) + ( � ̇

 F (t) · � F (t) ) T 
]
, 

 (t) = 

1 

2 

[
( � ̇

 F (t) · � F (t) ) − ( � ̇

 F (t) · � F (t) ) T 
]
. (A.3)

urthermore, using the logarithmic strain E(t) = ln U (t) at the be-

inning of the time increment t = t n and assuming that the eigen-

ectors of U ( t ) remain constant in the time increment [ t n , t n +1 ] ,

ne has 

 (t) = R(t) · ˙ E (t) · R 

T (t ) , W (t ) = 

˙ R (t) · R 

T (t) (A.4)

sing this last decomposition, one can write the Jaumann rates of

he macroscopic stress, the macroscopic back stress, and the orien-

ation vectors as 
� 

�(t) = R(t) · ˙ ̂ �(t) · R 

T (t ) , 
� 

X (t ) = R(t) · ˙ ̂ X (t) · R 

T (t) , 
� 

 

(i ) (t) = R(t) · ˙ ̂ n 

(i ) 
(t) (A.5)

here the quantities with the superscript ( ̂  ) are the usual time

erivatives. 

To be more precise, one has at each Gauss integration point the

ollowing known and unknown quantities: 

• at the beginning of the increment t = t n , the known quantities

are: 

F n , F n +1 , �n , X n , s α | n (A.6)

• at the end of the increment t = t n + 1 , the following quantities

need to be computed 

�n +1 , X n +1 , s α | n +1 . (A.7)

Next, in order to probe the plastic yield surface, we introduce

he standard “elastic predictor” as ̂ 

e = ̂

 �n + ̃

 L e : � E. (A.8)

s is usual in elasto-plastic integration schemes, if ˜ �( ̂  �e −̂ 

 n , ̂  s α | n ) < 0 , the material is elastically loaded and the linear elas-

ic equations have to be used, whereas if ˜ � ≥ 0 the material is

lastically loaded. 

.1. Elasticity implementation 

In the case of ˜ � < 0 , the porous material is under elastic load-

ng thus is convenient to adopt the forward Euler method to com-

ute the unknowns listed above (A.7) , which leads to ̂ �n +1 = 

̂ �e ̂ X n +1 = 

̂ X n 

f e | n +1 = f e | n exp 

[
tr (A 

(2) 
e | n : � E) − tr ( � E) 

]
(w e ) 1 | n +1 = (w e ) 1 | n + (w e ) 1 | n (n 

(3) 
� n 

(3) − n 

(1) 
� n 

(1) ) : 

A 

(2) 
e | n : � E 

(w e ) 2 | n +1 = (w e ) 2 | n + (w e ) 2 | n (n 

(3) 
� n 

(3) − n 

(2) 
� n 

(2) ) : 

A 

(2) 
e | n : � E ̂ n 

(i ) 
e | n +1 = exp 

(
−W 

E 
e | n 

)̂ n 

(i ) 
e | n (A.9)

t should be noted that the porosity at the end of the time incre-

ent f e | n +1 can be directly evaluated from Eq. (37) . 

.2. Plasticity implementation 

If ˜ � ≥ 0 , the porous material is under plastic loading. In this

ase, the elastic predictor �e is corrected to satisfy the plastic cri-

erion (29) through ̂ 

n +1 = ̂

 �e − ˜ L e | n : � E 

p + � �( ̂  �n · 	p − 	p · ̂ �n ) (A.10)
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ue to the linear kinematic hardening obtained in the present

odel and the Jaumann rate definition in (51) 2 , the macroscopic

ack stress ̂ X n +1 at the end of the time increment t = t n +1 takes

he form ̂ 

 n +1 = 

̂ X n + ̃

 L X | n : � E 

p + � �( ̂  X n · 	P 
n − 	P 

n · ̂ X n ) . (A.11)

Next, the accumulated plastic strain at the end of time incre-

ent is calculated via 

¯ p 
n +1 

= ε̄ p n + 

̂ �n : � E 

(1 − f n ) σ0 ( ̄ε 
p 
n ) 

(A.12) 

Following the combined implicit-explicit scheme of Aravas and

onte Castañeda (2004) and Danas and Aravas (2012) , the mi-

rostructure variables at t = t n +1 can be computed by 

f p | n +1 = f p | n + α f (1 − f p | n ) tr ( � E) 

(w p ) 1 | n +1 = (w p ) 1 | n + αw 

(w p ) 1 | n (n 

(3) 
� n 

(3) − n 

(1) 
� n 

(1) ) : 

A 

(2) 
p | n : � E 

(w p ) 2 | n +1 = (w p ) 2 | n + αw 

(w p ) 2 | n (n 

(3) 
� n 

(3) − n 

(2) 
� n 

(2) ) : 

A 

(2) 
p | n : � E ̂ n 

(i ) 
p | n +1 = exp 

(
−� �	P 

n 

)
· ̂ n 

(i ) 
p | n (A.13) 

Eq. (A.13) provides an explicit scheme for the microstructural

ariables during plastic loading phase. Note that the stability of

his numerical approach is very good by using below a fully im-

licit scheme for the plastic strains and yield function. In fact such

 scheme was found to work better than a fully implicit scheme

or all variables of the problem. In this regard then, the above

q. (A.13) , � � and � E are evaluated using a standard Newton–

aphson scheme in the instantaneous yield function and plastic

ow equations ˜ �( ̂  �n +1 − ̂ X n +1 , ̂  s α | n ) = 0 (#1) 

� E 

p = � � ̂ N n +1 (#6) . 
(A.14) 

ere the symbol # is used to denote the number of equations.

ote also that for simplicity in the present work we use the con-

inuum tangent elastoplastic modulus (60) described in Section 4.3 .
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