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A B S T R A C T

The response of idealised cermets comprising approximately 60% by volume steel spheres in a
Sn/Pb solder matrix is investigated under a range of axisymmetric compressive stress states.
Digital volume correlation (DVC) anal`ysis of X-ray micro-computed tomography scans (μ-CT),
and the measured macroscopic stress-strain curves of the specimens revealed two deformation
mechanisms. At low triaxialities the deformation is granular in nature, with dilation occurring
within shear bands. Under higher imposed hydrostatic pressures, the deformation mechanism
transitions to a more homogeneous incompressible mode. However, DVC analyses revealed that
under all triaxialities there are regions with local dilatory and compaction responses, with the
magnitude of dilation and the number of zones wherein dilation occurs decreasing with
increasing triaxiality. Two numerical models are presented in order to clarify these mechanisms:
(i) a periodic unit cell model comprising nearly rigid spherical particles in a porous metal matrix
and (ii) a discrete element model comprising a large random aggregate of spheres connected by
non-linear normal and tangential “springs”. The periodic unit cell model captured the measured
stress-strain response with reasonable accuracy but under-predicted the observed dilation at the
lower triaxialities, because the kinematic constraints imposed by the skeleton of rigid particles
were not accurately accounted for in this model. By contrast, the discrete element model
captured the kinematics and predicted both the overall levels of dilation and the simultaneous
presence of both local compaction and dilatory regions with the specimens. However, the levels
of dilation in this model are dependent on the assumed contact law between the spheres.
Moreover, since the matrix is not explicitly included in the analysis, this model cannot be used to
predict the stress-strain responses. These analyses have revealed that the complete constitutive
response of cermets depends both on the kinematic constraints imposed by the particle
aggregate skeleton, and the constraints imposed by the metal matrix filling the interstitial
spaces in that skeleton.

1. Introduction

Cermets are particulate composites comprising a high volume fraction of ceramic particles (typically carbides, nitrides, and
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oxides, in the range of 50–95% by volume) within a ductile metal binder phase (e.g. Mo, Ni, Co, Al) (ASTM Committee C-21, 1955;
Tinklepaugh and Crandall, 1960). They offer a good compromise between the hardness of ceramics and toughness of metals, e.g.
typical values for WC/Co composites are in the range of 500–2000 HV and 8–20 MPa m1/2, respectively (Fang, 2005). This
combination of mechanical properties has led to their extensive use in small volume applications such as tips of cutting tools. Recent
advances in manufacturing methods have provided the ability to produce cermets in large volumes at low cost. This has resulted in
cermets being considered as materials for lightweight ballistic armour applications, where the high hardness is required to erode the
projectile (Shockey et al., 1990; Walley, 2010), and the improved toughness increases the ability of the armour to sustain multiple
impacts (Blumenthal et al., 1994; Compton and Zok, 2013).

The prediction of the strength of cermets has received considerable attention. Current models typically fall into two categories: (i)
empirical e.g. the models for hardness by Lee and Gurland (1978) and Engqvist et al. (2002), and (ii) microstructurally motivated
models based on either homogenisation schemes (Arsenault and Taya, 1987; Bao et al., 1991; Christman et al., 1989) or dislocation
models (Gustafson et al., 1997; Lee et al., 1998; Taya et al., 1991). The predictive microstructurally motivated models are primarily
based on extending approaches developed for composites such as the so-called self-consistent models (Budiansky, 1965; Hershey,
1954; Hill, 1965) and models that provide bounds on the response of particulate composites (Hashin and Shtrikman, 1962). These
models have the advantage that they do not make a priori assumptions on the microstructure but rather describe the microstructure
through statistical information such as volume fraction and particle position correlation functions. However, this statistical
information is typically only valid in the low particle volume fraction limit ( < 20% by volume particles) when particle-particle
contacts are negligible. By contrast, most commercial cermets with ~80% particle volume fractions are well above the percolation
threshold and a large number of the ceramic particles in these cermets are parts of percolated chains of ceramic particles.

The percolated chains, known as force chains in the granular materials literature (Liu et al., 1995; Travers et al., 1987), have a
very significant effect on the properties of the cermets. In fact, cermets with high volume fractions of hard ceramic inclusions are
more akin to a granular medium with a high cohesive strength rather than a typical particle-reinforced composite. For example,
recent studies (Pickering et al., 2016; Tarantino et al., 2016) have demonstrated that the multi-axial yield response of cermets is not
solely governed by the von-Mises stress. Rather, similar to granular materials, cermets dilate under compression and thus their
strength is also dependent on the imposed hydrostatic pressure. Moreover, Bele and Deshpande (2015) have demonstrated that
composite models based on periodic unit cells significantly under-predict the strength of cermets as they do not include the effects of
force chains. Similar effects are also observed in other high volume particulate composites such as asphalt (Deshpande and Cebon,
1999) and polymer-bonded explosives (Bardenhagen and Brackbill, 1998). Discrete element models (Cundall and Strack, 1979),
wherein the particles are modelled as discrete bodies interacting via contact relations are likely to be more appropriate for modelling
the deformation of cermets. These approaches have been successfully used to predict the yielding and dilation of soils during
confined compression (McDowell and Harireche, 2002; Powrie et al., 2005) as well as the uniaxial deformation of asphalt (Cai et al.,
2013; Collop et al., 2007; Wu et al., 2011). However, there have been no reported attempts of discrete element models for cermets.

The experimental characterisation of the deformation of cermets has primarily been based on macroscopic strain measurements.
While such measurements give some information on the deformation, they provide little insight into the microscopic deformation
processes including the particle kinematics. By contrast, digital image correlation (DIC) techniques have been extensively deployed
to quantify the deformation of soils. For example DIC techniques to observe deformation mechanisms in two-dimensional (2D)
uniaxial compression (Desrues et al., 1996, 1985; Finno et al., 1997) have demonstrated the existence of force chains under plane
strain loading in granular materials. Moreover, with the increased spatial resolution of X-ray micro-tomographic techniques, it has
now become possible to quantify the three-dimensional (3D) deformation of granular materials using the so-called digital volume
correlation (DVC) technique. Using this technique, Lenoir et al. (2007) have reported full-field incremental strain measurements
during confined compression of argillaceous rock and Hu et al. (2015) studied deformation mechanisms in uniaxially compressed
polymer bonded sugar (PBS) specimens. Such DVC measurements are typically not reported for triaxial compression due to the
complexity of taking X-ray scans of specimens within high-pressure triaxial cells.

1.1. Scope of this study

Commercial cermets typically have very high yield strengths (in the range 5–10 GPa), which makes testing of these materials
difficult. Thus, most strength measurements rely on hardness measurements that are typically difficult to interpret. The aim of this
study is to develop an understanding of the deformation mechanisms of cermets under multi-axial loading. We therefore use the so-
called idealised cermets developed by Bele and Deshpande (2015). These materials comprise hard steel spheres in soft metal matrix
and have a significantly lower yield strength compared to commercial cermets. However, a similar contrast in the properties of the
phases of the idealised and commercial cermets makes the idealised cermets suitable model materials to study the deformation
mechanisms in commercial cermets.

The outline of the paper is as follows. Firstly, to clarify the deformation mechanisms under a range of stress triaxialities, μ-CT
imaging was combined with ex-situ triaxial compression tests and the results were analysed by means of DVC. Next, two modelling
approaches are reported in an attempt to gain insight into these measurements: (i) a periodic unit cell model comprising nearly rigid
spheres in a porous plastic matrix and (ii) a discrete element model comprising a large number of randomly packed spheres
interacting via a contact law. The features and drawbacks of these models are discussed and used to reveal the key deformation
mechanisms that govern the mechanical response of the idealised cermets.
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2. Experimental protocol

The overall aim of the experimental program is to determine the deformation modes of the idealised cermets as a function of
stress triaxiality. To achieve this aim, we conducted axisymmetric triaxial compression tests, interrupted at known macroscopic
strains Ee to acquire X-ray micro-computed tomograms (μ-CT). The resulting μ-CT volumes derived after each loading step were
then used to perform DVC analyses to reveal the deformation modes. Here we briefly describe the main aspects of the experimental
methods.

2.1. Manufacture of specimens

Idealised cermets comprising a volume fractionV ≈ 0.60f of 2 mm diameter AISI 52100 steel spheres (referred to subsequently as
particles) in a Sn/Pb solder matrix (Sn 60, Pb 38, Ag 2 wt%), were investigated in this study. The cermet specimens were circular
cylinders of diameter 18.5 mm and height 40 mm and were manufactured using the procedure described in Bele and Deshpande
(2015) and Pickering et al. (2016). Briefly, the steel spheres were cleaned via ultrasonic vibration in an acetone bath and then packed
into a cylindrical crucible of the diameter ~18.5 mm. The crucible was vibrated under a low applied axial compressive stress of
∼0.1 MPa to maximise the packing density. High temperature magnets were then placed around the periphery of the crucible to
preserve the skeleton structure of the steel spheres, and solder powder (of average particle size 25–38 μm) was infiltrated into the
interstitial sites between the particles. A small amount of ZnCl flux was added to improve interfacial adhesion, and the assembly was
pressure-cast at a temperature of 200 °C for 1 h. An optical image of the as-cast specimen is included in Fig. 1a, and a X-ray
computed tomogram through the centre of the specimen along the longitudinal axis is shown in Fig. 1b. μ-CT imaging revealed that
the void volume fraction was in the range 1.5–5%. The Young’s modulus and yield strength of the AISI 52100 steel was 210 GPa and
2.1 GPa, respectively while the Sn/Pb solder had modulus and yield strength values of 32 GPa and ~30–40 MPa, respectively.

2.2. Interrupted triaxial tests

A high-pressure apparatus (see Pickering et al. (2016) for details of the triaxial cell) was used to subject the specimens to
axisymmetric triaxial compression tests (Fig. 2a). It consists of a pressure cell with a maximum capacity of 100 MPa, and a piston for
the application of axial force. Hydraulic fluid was used as the pressurising medium, and axial load is applied by displacing the piston
via a screw-driven test machine. A submerged load cell provided readings of the axial load independent of the pressure of the
surrounding fluid. Two linear variable differential transformer (LVDT) transducers were attached to the specimen in order to
measure the axial displacement imposed on the specimen. A third LVDT was attached to the mid-height of the specimen to measure
the change in specimen diameter over a 3 mm central portion of the cylindrical specimen.

The applied stresses/forces on a cylindrical specimen of initial height ℓ0 and radius R0 are sketched in Fig. 2b. The hydraulic fluid
exerts a pressure P (taken to be positive in compression) on the specimen and the axial force measured by the submerged load cell is
Fa (this is a force in excess of that exerted by the fluid pressure, and is taken to be positive in compression). The radial Cauchy stress
is P– , and the axial stress can be inferred from Fa as follows. The current specimen height ℓ and radius R give the axial and radial
stretches as λ = ℓ/ℓa 0 and λ R R= /r 0, respectively. The nominal axial and radial stresses then follow as N F πR Pλ= − [ /( )+ ]a a r0

2 2 and
N Pλ λ= –r a r , respectively. We can then define a nominal mean stress as

)b()a(
5mm

Fig. 1. (a) Photograph of the as-cast idealised cermet specimen and (b) a computed tomogram through the centre of the specimen along the longitudinal axis.
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where Nij denotes the nominal stress tensor. Similarly, an invariant of the trace-less nominal stress (analogous to the von-Mises
stress) is given by

N N N N N≡ 3
2

′ ′ = | − |,e ij ij a r (2.2)

where N N N δ′ = −ij ij m ij, with δij denoting the Kronecker delta.
Tests were conducted along proportional stress paths with the direction of the stress path defined by the relation N ηN= −m e. The

triaxiality parameter η can take values over the range η = 1/3 (uniaxial compression) to η = ∞ (hydrostatic compression). In the
proportional loading tests of this study, η was kept constant throughout the experiments by a feedback process whereby the fluid
pressure P and the axial stress Na were increased while keeping the triaxiality η fixed.

In the remainder of this study we discuss distributions of the Green-Lagrange strains as measured by the DVC analysis, and thus
here we express the measured macroscopic strains in terms of the Green-Lagrange strains. The radial and axial Green-Lagrange
strains follow from the stretches via the relations

E λ= 1
2

( − 1),r r
2

(2.3)

and

E λ= 1
2

( − 1),a a
2

(2.4)

respectively. Then with Eij denoting the Green-Lagrange strain tensor, we define a mean strain given by E E≡m kk, a trace-less strain

tensor E E δ E′ = − /3ij ij ij m and an invariant of this trace-less strain, E E E≡ (2/3) ′ ′e ij ij , analogous to the von-Mises effective strain. For
axisymmetric loading these reduce to

E E E= 2 + ,m r a (2.5)

and

E E E= 2
3

− .e r a (2.6)

We emphasise that in general Em is not equal to the volumetric strain, i.e. E ΔV V≠ /m 0, where ΔV andV0 are the change in volume
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Fig. 2. (a) Sketch of the triaxial apparatus used to apply the axisymmetric stress states. The inset shows a magnified view of the specimen with the axial and radial
LVDTs used to measure strain. (b) Sketch of the axisymmetric stress state and the three-pin localisation system used to ensure specimen alignment between
successive CT scans.
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and original volume respectively. Thus, E ′ij is not a deviatoric strain in the sense of representing a deviation from the volumetric
strain. However, as discussed in Appendix A, for the relatively small strains considered in this study E ΔV V≈ /m 0 and it suffices to use
the strain measures Em and Ee to illustrate volumetric and shear deformations. Given that we present results in terms of the Green-
Lagrange strains, it is appropriate to use the 2nd Piola-Kirchhoff stress measure. The work-conjugate 2nd Piola-Kirchhoff stresses to
Ea and Er are S N λ= /a a a and S N λ= /r r r , respectively. Then, analogous to Eqs. (2.1) and (2.2),we define the mean and effective stresses
as S S≡ /3m kk and S S S≡ (3/2) ′ ′e ij ij , respectively where Sij is the 2nd Piola-Kirchhoff stress tensor and S S S δ′ = −ij ij m ij is the
corresponding trace-less stress.

All experiments reported here were conducted for an applied loading rate N ̇ ≈ 10 kPase
−1 and prior to the start of each test the

specimen was consolidated within the triaxial cell by applying a pure hydrostatic pressure P = 100 MPa. This consolidation step was
found to improve the repeatability of the measurements. The DVC analysis was conducted using three specimens loaded along
proportional stress paths of η = 1/3, 0.75 and 1.0. The images for the DVC were acquired via X-ray micro-tomography (μ-CT) at four
strain levels: an initial reference state scan at E = 0e (representing the state of the specimen after consolidation to P = 100 MPa), and
three scans acquired by interrupting the triaxial test and unloading to accumulated strain levels E = 0.02, 0.035e and 0.055. After
each scan, the specimen was reinserted into the triaxial cell and loaded to the next strain level. Since the DVC analysis requires fixed
reference points, the specimens were attached to a small, non-symmetric platen via three tool steel pins; see Fig. 2b. This enabled us
to maintain the orientation of the specimen between each μ-CT scan and loading within the triaxial cell.

2.3. X-ray micro-computed tomography and digital volume correlation

The μ-CT scans for the DVC analyses were acquired using a custom Nikon/Metris scanner consisting of a 450 kVp power source
coupled with a cesium-iodide detector (1621 Perkinelmer). The specimens were positioned 116.5 mm from the source, resulting in a
pixel resolution of 28.3 μm. Each tomogram comprised 1601 angular projections collected at an angular step of ~0.225o over a 360o

rotation of the sample. The projection data was reconstructed using Nikon's CTPro and CTAgent reconstruction software, which uses
a filtered back projection algorithm.

Similar to digital image correlation, DVC involves dividing the 3D scan volume into smaller sub-volumes, which can then be
tracked between load steps using the internal microstructure of the material (Bay et al., 1999). The new position of the sub-volume
centroid is taken to be at a location where the correlation coefficient between the original and displaced sub-volume is best. Here we
performed the DVC analysis using DaVis software (LaVision, DaVis v.8.2.3 Software, Goettingen, Germany) by comparing the three
strained states back to the reference scan at E = 0e . The strain fields are then determined from the spatial gradients of displacement
vector fields of the sub-volumes over a gauge length equal to 50% of the sub-volume size, as described in Gillard et al. (2014). A noise
study was performed using sub-volume sizes between 24 and 192 voxels (based on the resolution of the μ-CT scan each voxel
represents a cube of side length ~28.3 μm) (Gillard et al., 2014). A 150 voxel sub-volume size with 50% overlap gave the best
compromise between noise and an adequate spatial resolution for strain in these specimens. Thus, the DVC was performed with
cubes of side length ~4.2 mm (volume ~64 mm3): with the 50% overlap this implied that approximately 7 sub-volume cubes were
present in the analysis across the diameter of the specimens.

3. Summary of experimental results

We proceed to describe the key findings of the experimental study on the triaxial responses of idealised cermets, and the
associated deformation modes/strain distributions as determined from the DVC analysis.

3.1. Mechanical responses

A detailed study of the triaxial response of the idealised cermets is presented in Pickering et al. (2016). Here we summarise some
key findings in order to explain the context of the DVC strain distribution measurements. The measured equivalent stress versus
strain responses (S E−e e) responses for triaxiality values in the range η = 1/3 (uniaxial compression) to η = 1.5 are plotted in Fig. 3a,
and the corresponding variations of the mean strain Em with the effective strain Ee are included in Fig. 3b. The stress-strain curves of
Fig. 3a show that both the initial elastic response and the yield stress (defined at the 0.2% strain offset) are largely independent of η.
However, the subsequent plastic hardening response is strongly affected by the triaxiality: while the uniaxial response is
approximately perfectly plastic, the plastic hardening rate increases up to η = 1. Intriguingly, the S E−e e curves become virtually
identical for η ≥ 1. Some insight into this triaxiality dependent response is given by the corresponding E E−m e curves included in
Fig. 3b. In the low triaxiality limit ( η1/3 ≤ ≤ 0.75), two distinct regimes are seen: (i) an initial compaction regime where
dE dE/ < 0m e , and (ii) a dilation regime with dE dE/ > 0m e , wherein the volume of the specimen increases even though the hydrostatic
pressure is compressive. While dilation commences very early under uniaxial compression (at approximately the yield strain of
E = 0.5%e ), the dilatory regime is delayed at higher triaxialities, e.g. starting at E = 3.5%e in the tests with η = 0.75. We argue that
similar to granular media, the work done against the hydrostatic pressure by the dilatory response of the cermet results in the plastic
hardening rate increasing with η, as seen in Fig. 3a. With further increases in triaxiality, the dilatory part of the response is further
delayed: over the strain levels tested here no dilation occurred in the regime η ≥ 1, and the E E−m e curves are very similar (Fig. 3b).
Since the plastic response is now nearly volumetrically incompressible, the stress-strain curves are uniquely described by the
effective stress Se with no sensitivity to η as seen in Fig. 3a.
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The initial yield surface of these idealised cermets and the evolution of this surface with plastic strain is summarised in Fig. 4. The
initial yield strength is obtained by the 0.2% strain offset in the S E−e e curves. A plot of the stress pair S S( , )m e corresponding to this
definition of the yield point at all the values of η tested here marks the locus of the initial yield surface. Loci of S S( , )m e at three
selected values of applied effective strain Ee, and fits to the data using the yield criterion suggested in Pickering et al. (2016) are also
included. Superimposed on these loci is the direction of the plastic strain rate vector E E( ̇ , ̇ )m e at selected loading points, with the Eṁ
and Eė axes co-incident with the Sm and Se axes respectively. These measurements suggest that two distinct deformation
mechanisms/regimes exist:

(i) At low triaxialities, the yield surface has a Drucker and Prager (1952) characteristic with the yield strength being pressure
dependent and the response dilatant even under compressive hydrostatic stresses, similar to granular materials.

(ii) At high triaxialities, the yield surface asymptotes to a von-Mises surface with the yield strength independent of pressure and the
overall deformation nearly incompressible.

3.2. Strain distributions

While the strain measurements in Fig. 3b give the overall deformation state, it is unlikely that a “granular” medium like this
idealised cermet will undergo homogenous deformation. We therefore report DVC measurements of the strain distribution. The
Green-Lagrange strain tensor is denoted as Eij and, analogous to definitions used for the macroscopic average strains in Section 2, we
define a mean strain as E E=m kk and a trace-less strain E E δ E′ = − /3ij ij ij kk , where δij is the Kronecker delta. The effective strain is then
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defined as

E E E= 2
3

′ ′ .e ij ij (3.1)

Distributions of Em and Ee on a longitudinal cross-section through the specimen are included in Figs. 5 and 6 respectively for
three proportional stressing paths (η = 1/3, 0.75 and 1.0) at applied macroscopic strains E = 0.02e , 0.035 and 0.055. First consider
the uniaxial compression η( = 1/3) case. Early in the deformation (E = 0.02e ), the strain distributions are reasonably uniform though
it is clear that nearly the entire specimen is undergoing dilation (Fig. 5a). With increasing Ee, the deformation becomes more
localised and both the Em and Ee distributions show an inclined band near the top of the specimen within which the strains
significantly exceed those in the remainder of the specimen. To illustrate that this band exists through the specimen we include in
Fig. 7 contours of Em for E = 0.055e on four longitudinal cross-sections through the specimen at orientations φ: this orientation is
defined in the inset of Fig. 7 (φ = 0o is an arbitrarily chosen section through the specimen). The band of localised deformation is seen
on all orientations confirming that this band persists through the specimen. With increasing triaxiality (i.e. η = 0.75 and 1.0) two
main changes occur: (i) the deformation is seen to become more homogenous and (ii) the level of dilation decreases. Regions of both
compaction and dilation are seen at E = 0.055e in the specimens loaded with η = 0.75 and 1.0, however the values of positive Em
remain small in relation to the η = 1/3 case.

To further emphasise these differences, we define an average volumetric strain E z( )m as the average value of Em on the plane
x z=3 where the co-ordinate system xi is defined in the inset in Fig. 7 and x = 03 is the bottom face of the cylindrical specimen. The
variations of Em with the normalised co-ordinate z/ℓ0, where ℓ = 40 mm0 is the initial height of specimen, are included in Fig. 8a, b
and c for η = 1/3, 0.75 and 1.0, respectively. In each case, we include the variations at E = 0.02e , 0.035 and 0.055. The overall
conclusions from the distributions in Fig. 5 are further confirmed here, viz.: (i) the level of volumetric straining decreases with
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Fig. 5. Digital volume correlation (DVC) measurements of the spatial distribution of the volumetric strain Em on a longitudinal section of the idealised cermet

specimen at three applied macroscopic strains Ee. Results are shown for three stress paths (a) η = 1/3, (b) η = 0.75 and (c) η = 1.0.
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increasing η and (ii) the deformation is more localised at the lower values of η (a band with high deformation for the specimen loaded
with η = 1/3 is marked and labelled as a “localised band” in Fig. 8a).

These measurements confirm our qualitative understanding that a transition in the deformation mechanism from granular
(dilatory response within a shear band) to metal-like (uniform, incompressible deformation) occurs with increasing stress triaxiality.
Importantly, they show that deformation is heterogeneous with local dilatory and compaction regions. The magnitude of dilation and
the number of dilating zones decreases with increasing η, giving rise to the observed changes in the macroscopic strain states.
However, several aspects remain unclear. These include: (i) the microscopic mechanisms by which the transition from dilatory to
incompressible behaviour occurs; and (ii) the roles of the matrix and the particle skeleton in dictating the kinematic response of the
cermets. We proceed to develop two types of numerical models in an attempt to address these questions.

4. Analysis of periodic particulate composites

Here we model the idealised cermet as a periodic composite comprising spherical elastic particles in a voided elastic-
plastic matrix. Such periodic models have been used extensively to analyse metal matrix composites (MMCs) following the
initial work of Bao et al. (1991). Cermets differ from MMCs by the fact that they comprise a significantly higher volume
fraction of particles/inclusions compared to MMCs, and here we aim to investigate whether such a model is capable of
capturing their response.

4.1. Brief description of model

We consider a three-dimensional unit cell with the spherical particles arranged in a face-centred-cubic (FCC) lattice as
shown in Fig. 9. This is done in order to be able to reach higher local strains in the matrix while minimising mesh distortion.
The particles are assumed to be isotropic elastic with shear modulus Gp and Poisson’s ratio νp while the matrix is modelled as a
porous elastic-plastic solid. The porous solid is modelled using a simplified version of the modified variational model (MVAR)
presented in Danas and Aravas (2012) based on the nonlinear homogenisation approach of Ponte Castañeda (1991). Thus,
unlike the particles, the voids (shown in the inset of Fig. 9) are not discretely modelled but rather smeared-out in the matrix.
This approximation is acceptable given the large separation of length scales between the particle and void sizes. The general
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indicated.
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MVAR model considers a single family of ellipsoidal voids with arbitrary orientation, leading to an overall anisotropic
response. Our aim here is to qualitatively investigate the fidelity of such a modelling approach for analysing cermets and thus
we consider a simplified version wherein we restrict attention to spherical voids whose shape remains unchanged with
deformation.1 The resulting model thus remains isotropic at finite strains and reduces to the Gurson (1977) model in the
hydrostatic loading limit but is more compliant for non-zero deviatoric stresses. For the sake of completeness we briefly
describe the key constitutive equations of the matrix phase.

The matrix is modelled as an isotropic elastic plastic solid with shear modulus Gm and Poisson’s ratio νm. The elastic properties
are assumed to be fixed and do not change with evolving porosity f . The plastic response is described by a yield surface given in
terms of the von-Mises effective Cauchy stress σe and the hydrostatic Cauchy stress σ σ≡ /3m kk as

Φ f σ f
f

σ f σ≡ 1 + 2
3

+ 9
4

1 −
ln

− (1 − ) = 0,e m Y
2

2
2 2 2⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ (4.1)

where σ ε( )Y e
p is the uniaxial yield strength of the plastic matrix material with zero porosity. The strain hardening response of the

parent matrix material is assumed to be of the form

σ σ
ε
ε

= 1 + ,Y
e
p N

0
0

1/⎛
⎝⎜

⎞
⎠⎟ (4.2)

where N is the hardening exponent, ε σ ν G≡ /[2(1 + ) ]m m0 0 is the yield strain, and εe
p the von-Mises effective plastic strain in the

parent solid material. Plastic normality is assumed with the matrix plastic strain rate given in terms of the plastic multiplier κ ̇ as

D κ Φ
σ

= ̇ ∂
∂

,ij
p

ij (4.3)

with the total strain rate taken as the sum of the elastic and plastic strain rates. The effective plastic strain rate in the matrix follows
from a work balance (Gurson, 1977) as

ε
σ D

σ f
̇ =

(1 − )
,e

p ij ij
p

Y (4.4)

which is integrated to give εe
p. It now remains to specify the evolution relation for the porosity f . Following Aravas and Castañeda

(2004) we assume that the pore volume fraction is only affected by plastic deformation. Then recalling that the matrix absent of voids
is plastically incompressible, the evolution rate of the pore volume fraction f is given as

f f Ḋ = (1 − ) ,kk
p (4.5)

which can be integrated knowing the plastic straining history and the initial porosity f0 to obtain the current f .
We analyse the cubic periodic unit cell sketched in Fig. 9. It is subjected to periodic boundary conditions, such that the stress

triaxiality σ σΥ = − /m e
2 and Lode angle Θ defined as

σ
σ

cos3Θ = 27
2

det ( ′)
,ij

e
3 (4.6)

where σ σ δ σ′ = − /3ij ij ij kk , are held fixed throughout the finite deformation loading. Here the overbar denotes the macroscopic stress
quantities corresponding to the volume averages over the unit cell of the corresponding local quantities. Corresponding to the
axisymmetric compression tests reported in Section 3.1, we fix Θ = 60o and apply volumetric average stresses σ ≤ 033 and
σ σ= ≤ 011 22 such that the stress state is axisymmetric about the x3-axis (see Fig. 9 for definition of the co-ordinate system). This is
achieved using the procedure described in Mbiakop et al. (2015) to keep Υ and Θ fixed.

Simulations are reported for Υ1/3 ≤ ≤ 1.0. The material properties used in the simulations are as follows. The particles are
modelled as essentially rigid compared to the matrix, consistent with the contrast between the matrix and particle phases in the
idealised cermet. This is achieved by choosing a ratioG G/ = 10p m

3 and ν ν= = 0.3p m . The matrix, absent of voids, is assumed to have a
yield strain ε = 0.1%0 and a hardening exponent N = 10. Moreover, unless otherwise stated, all calculations are presented for an
initial porosity f = 10%0 (recall that the idealised cermets have an overall porosity in the range 1–5%, which corresponds to a matrix
porosity in the range 2.8–14%). All calculations were performed using the commercial finite element (FE) package Abaqus FEA and
the unit cell discretised via 10-noded tetrahedral element (C3D10 in the Abaqus FEA notation) with a minimum element size D~0.05 ,
where D is the diameter of the spherical particles. The mesh is chosen to be denser in the narrow inter-particle channels, and coarser
inside the elastic particles. All calculations are carried out in a finite strain setting.

We emphasise here that loading is specified in terms of the Cauchy stresses and the corresponding triaxiality Υ , consistent with
stress measures employed in the porous matrix constitutive model. However, we present the stress predictions in terms of the 2nd

1 At high triaxialities, voids remain reasonably spherical. Thus, in this limit a model with evolving voids shapes (full model) and the simpler model used here give
very similar predictions. Calculations with the full model were performed for the high volume fraction composites analysed here. The predictions of the two models
were very similar since regions of high triaxiality dominate the responses of these composites.
2 We note that Υ is the stress triaxiality in terms of the Cauchy stress while η is the triaxiality in terms of the nominal stress. These two are approximately equal for

the small macroscopic strains considered here but we denote them by different symbols to clarify this distinction.
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Piola-Kirchhoff stress S JF σ F≡ij ik kl jl
−1 −1, where Fij is the macroscopic deformation gradient (i.e. volume average of the deformation

gradient over the unit cell) and J F≡ det ( )ij , in order to be consistent with the measurements discussed in Section 3.1.
Correspondingly, the strains are presented in terms of the macroscopic Green-Lagrange strains E F F δ≡ 0.5( − )ij ki kj ij , which are
work-conjugate to Sij. The macroscopic effective stresses and strains then follow the definitions in Section 2.

4.2. Summary of predictions for the periodic composites

Predictions of the S σ E/ −e e0 responses under uniaxial compression Υ( = 1/3) are plotted in Fig. 10a, with the corresponding strain
paths in E E−m e space included in Fig. 10b for particle volume fractions in the range V0.2 ≤ ≤ 0.65f and f = 0.10 . As expected, the
strength increases with increasing Vf . More intriguingly, the strain paths show a qualitative change with increasing particle volume
fraction. At low Vf , the composite undergoes volumetric compaction with the porosity in the matrix decreasing, consistent with the
compressive mean stress associated with uniaxial compression. However, with increasing Vf , after an initial compaction phase the
composite begins to dilate with dE dE/ > 0m e even under the imposed compressive mean stress. In fact, for the V ≥ 0.6f composites,
there is overall dilation on the order of 0.5% after deforming the composite to about E = 0.06e .

In order to understand these differences, we include in Fig. 11a and b spatial distributions of the stress triaxiality (υ σ σ≡ − /m e)
within models with V = 0.2f and 0.65, at E = 0.07e . The stress state is more spatially homogeneous in the low volume fraction
composite with υ > 0. By contrast, at high volume fractions, υ is spatially very heterogeneous and there exist regions wherein υ < 0
(i.e. tensile mean stresses) even though the macroscopic mean stress is compressive. These tensile mean stresses within the matrix
result in the dilation of the matrix with an associated increase in the porosity. Contours of porosity, included in Fig. 12, show clearly
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that in the V = 0.65f composite there are regions with significant increases in the porosity at the prescribed deformation, whereas in
the V = 0.2f composite, the porosity is seen to mainly decrease from this initial value. This high porosity is localised in between the
thin inter-particle zones where the triaxiality is also higher. The increase in porosity in the V = 0.65f composite results in an overall
dilation.

This general behaviour is strongly affected by the initial porosity f0. Predictions of the variation of Em with Ee for uniaxial
compression of the V = 0.6f

3 composite are included in Fig. 13 for f0.001 ≤ ≤ 0.10 . While the high porosity composites undergo
initial compaction, this compaction phase is reduced or eliminated with decreasing porosity. On the other hand, dE dE/m e is nearly
independent of f0 when the deformations as parameterised by Ee are large. This nevertheless implies that for a given Ee the overall
levels of positive Em are larger for composites with lower f0 as seen in Fig. 13 as the compaction mode is penalised at low f0.

Predictions of the S σ E/ −e e0 responses of the V = 0.6f ( f = 0.10 ) composite with varying levels of triaxiality Υ are included in
Fig. 14a, and corresponding strain paths in E E−m e space are plotted in Fig. 14b. The corresponding measured S σ E/ −e e0 responses
are also included in Fig. 14a with the choice σ = 30 MPa0 (Bele and Deshpande, 2015). There are some clear consistencies between
measurements and predictions: (i) the stress-strain measurements and predictions are in remarkable agreement with the predictions
capturing the increase in the hardening rate with increasing triaxiality and (ii) both predictions and measurements show a transition
from dilation to compaction with increasing triaxiality, which is in qualitative agreement with the experiments. Nevertheless, a clear
quantitative discrepancy remains between the numerical predictions and measurements: the levels of predicted dilation at low stress
triaxialities are relatively small compared to the analogous experimental results (compare Figs. 3b and 14b). This difference can be
understood by recalling that the level of dilation increases with increasingVf (Fig. 10b) due to the constraint imposed by the particle
skeleton. While the particle volume fractions of these periodic models are approximately equal to those of the idealised cermets,
there exists a key microstructural difference. The experimentally investigated cermets have a random packing of the spherical
particles with particle-particle contacts forming force chains as discussed in Bele and Deshpande (2015) and Pickering et al. (2016).
This imposes a strong kinematic constraint on the deformation mode, and we anticipate that similar to granular materials it results
in relatively high macroscopic dilation.

We note in passing here that the conventional porous plasticity model (i.e. model with no higher order terms such as gradients of
plastic strain etc.) used to describe the matrix allows for large plastic strains to develop at the particle/matrix interfaces. In reality,
the blockage of dislocation motion by the elastic particles will inhibit plastic straining near the interface (Danas et al., 2010) and
thereby enhance the effective matrix strength. This strengthening effect due to the formation of a boundary layer at the interface is
only significant in thin matrix films on the order of a few microns. While the roles of such higher order plasticity effects are not
investigated here, the fact that the conventional plasticity model predicts the measured strength to reasonable level of accuracy
(Fig. 14a) suggests that these effects play a minor role in the idealised cermets analysed here. By contrast, FE calculations performed
as part of this study, but not shown here for the sake of brevity, suggest that de-bonding between the matrix and the particles
significantly reduces the strength of the composite and increases the overall dilation levels. For instance, we found that for a
composite with V = 0.6f , the uniaxial compressive strength of the de-bonded composite is about half that of the composite with
bonded particles but this de-bonded composite dilates to E ≈ 0.02m at an imposed strain E = 0.05e whereas the corresponding
dilation in the bonded composite is negligible.
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Loading is axisymmetric about the x −3 axis.

3 Henceforth we restrict results to the V = 0.6f case for the high volume fraction composites. With increasing Vf , the thin matrix channels resulted in numerical
convergence difficulties and a full set of results could not be obtained for V > 0.6f .
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The analysis of random composites with a high volume fraction of spherical particles, even though theoretically possible (see for
instance Lopez-Pamies et al. (2013), albeit at lower particle volume fractions), is beyond the scope of current numerical tools for two
reasons: the analysis will require (i) the modelling of large representative volume elements and many millions of degrees of freedom
to adequately represent the porous matrix and the particles and (ii) the inclusion of the very thin matrix films in between particles
that are touching each other; accurate FE modelling of the deformation of such thin porous films that undergo very large local
deformations further complicates the FE modelling. A more appropriate discrete particle model that is free of such disadvantages is
presented in the following section.

5. Analysis of the deformation of a random assembly of spherical particles

The periodic regular composite analysed in Section 4 does not adequately capture the kinematic constraints imposed by the
particle skeleton. Hence in order to understand the kinematics of idealised cermets, we analyse the response of a model comprising a
random aggregate of densely packed particles, with no matrix filling the interstitial sites (i.e. a so-called discrete element model).
This approximation thus represents the other extreme, i.e. we model the constraints due to the particle skeleton but do not
accurately account for the constraints imposed by the matrix.

5.1. Brief description of model

Here we analyse a “full specimen” rather than a RVE. The specimen is a cuboid of height H and square cross-section of side
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length H /2, containing randomly packed spherical particles of diameter D H≈ /12 as shown in Fig. 15a. The particles are packed
using the Lubachevsky-Stillinger algorithm (Lubachevsky and Stillinger, 1990), which has been used extensively to simulate random
packing of objects within boundary walls. Within the cuboidal box, 400 spheres are packed to a volume fractionV ≈ 0.6f . Both tensile
and compressive inter-particle forces are modelled, in order to ensure the stability of the assembly under hydrostatic and deviatoric
applied stress states. The contact model sketched in Fig. 15b defines these forces. Such a modelling scheme is commonly referred to
in the literature as a “discrete element” simulation.

The contact law between particles is defined as follows. An elastic-plastic truss (i.e. a strut that can carry tensile and compressive
loads but no shear or bending loads) of cross-sectional area AT , tensile yield strength ΣT , compressive yield strength ΣC and Young’s
modulus YT connects the centres of each neighbouring particle. The undeformed length of the truss (i.e. state when the truss carries
no force) is its length in the initial undeformed configuration of the assembly with the truss exerting either compressive or tensile
forces between the connecting particles as it is shortened or lengthened, respectively from this initial state. In order to represent the
full kinematic constraint of the particles, we also include a soft contact particle model along the lines of the model introduced by
Cundall and Strack (1979). This contact model is sketched in Fig. 15b. Briefly, with r as the distance of separation of the particle
centres, and the particle interpenetration given by δ r D= −n , the normal contact force during active contact (δ < 0n ) is given by
F K δ=n n n so that the total contact force equals the contact force Fn and the force exerted by the truss. A tangential force Fs between the
particles also only exists during an active contact, and opposes sliding. It is limited in magnitude to F μ F<s n , where μ is the friction
coefficient. This frictional force Fs is defined by an elastic-plastic Coulomb type relation with stiffness Ks, i.e.

F K δ F μ F Fδ=
̇ if < or ̇ < 0

0 otherwise
’s

s s s n s s
⎧⎨⎩ (5.1)

with δṡ defined as the tangential displacement rate between the contacting particles. Unless otherwise specified, all calculations are
presented with K Y A D= 70 /n T T , K K= 2/7s n, μ = 0.6, Σ Y= /100C T and Σ Σ/ = 1T C . The purpose of this model is only to investigate the
kinematics and does not attempt to predict the stress versus strain response. While the absolute values of these strengths and
stiffnesses do not affect the kinematics, for completeness we mention that the calculations used a relatively low truss strength
Σ = 10 MPaC .

Similar to the experiments reported in Section 3, the cuboidal specimen (Fig. 15a) analysed here was subjected to axisymmetric
loading about the x3-axis with proportional stress paths. This loading was imposed as follows. The specimen was compressed in the
x −3 direction between two rigid platens as shown in Fig. 15a. All displacement degrees of freedom were constrained on the bottom
platen, while in the top platen all rotations, and translations in the x1 and x2 directions, were constrained. The top platen was
compressed against the specimen by the application of a compressive force F3 in the x −3 direction such that the nominal axial stress
N F H= 4 /33 3

2, with F3 defined to be negative in compression. Further, a non-sliding frictional constraint was imposed on the particles
in contact with both the platens, i.e. the translation in the x x−1 2 plane of particles in contact with the platens was constrained. The
specimen was subjected to an axisymmetric stress state by specifying that the nominal stresses N N=11 22. These stresses are related
to the axial stress via the triaxiality η via

N N η
η

N= = 3 + 1
3 − 2

.11 22 33
(5.2)

F3

F2

F3

H

H/2 H/2

x1 x2

x3

(a)

Normal spring 
constant Kn

Tangential spring 
constant Ks

Coulomb friction 
coefficient μ

Elastic-plastic 
truss YT, ΣT, ΣC, AT

r

D ≈ H/12

(b)

F2

F1

F1

Fig. 15. (a) The assembly of 400 spherical particles forming a cuboidal specimen of height H and base H H/2 × /2 analysed using discrete element simulations.
Axisymmetric loading about the x3-axis was applied by compressing the specimen between the rigid platens included in the sketch. (b) Sketch of the inter-particle
contact model used in the simulations.
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Note that here we use the symbol η to denote triaxiality, as it is defined in a manner analogous to the experiments in terms of the
nominal stresses. The forces on the lateral surfaces with outward normal nj (in the undeformed configuration) that generate these
nominal stresses N11 and N22 are given as

F H N n=
2

.i ij j
2

(5.3)

This total force is distributed equally over all particles on that lateral outer surface, i.e. a force f F K= /i i is applied at the centre of
each of the K surface particles on the respective lateral surface. This scheme ensures that the specimen is subjected to proportional
axisymmetric stressing with overall force equilibrium guaranteed and moment equilibrium satisfied by the force distributions
generated by the contact of the specimen with the rigid platens on the top and bottom surfaces.

The main aim of this model is to predict both the overall deformation state and also the distribution of deformation within the
specimen. The local “strains” within the assembly are defined as follows. The domain is discretised into linear (i.e. 4-noded)
tetrahedral elements with the nodes at the centres of the particles. The displacements at the four nodes of the tetrahedra along with
their associated shape functions in the undeformed configuration are used to calculate the deformation gradient Fij

k( ) within element

k( ) and the corresponding Green-Lagrange strain E F F δ≡ 0.5( − )ij
k

ki
k

kj
k

ij
( ) ( ) ( ) . The volume averaged deformation gradient over the M

tetrahedral elements with the specimen then follows as

∑F
V

V F≡ 1 ,ij
k

M
k

ij
k

0 =1

( ) ( )

(5.4)

where V V= ∑k
M k

0 =1
( ) withV k( ) the undeformed volume of element k( ). In the following we discuss distributions of the volumetric and

effective strains Em
k( ) and Ee

k( ), respectively defined in a manner analogous to the DVC analysis of Section 3.2. We emphasise here that
Eij is not the strain in the matrix or the particles but rather a measure of the average strain in the tetrahedron comprising both matrix
and particles. The corresponding macroscopic average strains Eij as well as Em and Ee are defined from Fij as detailed in Section 4.1.
We note in passing that the non-linear definition of the Green-Lagrange strain implies that Eij is not equal to the volume average of
Eij

k( ).

5.2. Deformation fields and effect of triaxiality

Predictions of the variation of Em with Ee are plotted in Fig. 16 for selected triaxialities η. Consistent with observations (Fig. 3b)
and predictions of the periodic model (Fig. 14b), the levels of dilation increase with decreasing triaxiality η and the aggregate
undergoes overall compaction at the higher triaxialities over the range of deformations considered here. However, unlike the
periodic model of Section 4, the levels of dilation are now significantly higher for the low triaxialities and similar to those seen in the
measurements. This confirms our initial hypothesis that at a relatively high particle volume fraction, a random particle arrangement
invariably implies percolated particle chains, and results in kinematic constraints that give rise to high levels of dilation at low
triaxialities.

Three-dimensional views of the specimen showing distributions of Em and Ee are included in Figs. 17 and 18, respectively. The
views are shown at four levels of applied strain Ee and for three values of η (the two largest values of Ee are omitted for the highest
triaxiality of η = 1.5 as those calculations encountered numerical convergence difficulties). First consider the distributions of Em. At
low levels of overall deformation (E = 0.02e ), regions of both compaction and dilation are observed for all values of η. With increasing
deformation, regions of dilation dominate for the η = 1/3 case while regions of compaction dominate for η = 1.5. This is consistent
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Fig. 16. Discrete element predictions of the variation of the macroscopic strains Em and Ee for varying levels of triaxiality η.
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with the overall levels of Em seen in Fig. 16 but nevertheless it is worth emphasising that regions of compaction and dilation are
observed for both η = 1/3 and 1.5 at all levels of Ee, in line with the DVC measurements reported in Section 3.2. By contrast the
distributions of Ee are reasonably similar for the three triaxialities η included in Fig. 18.

To further illustrate the observation that the kinematic response of a region within the specimen is dependent on the macroscopic
stress triaxiality, we consider in Fig. 19 the evolution of Em with the overall deformation Ee for three tetrahedra within the specimen.
Results in Fig. 19 are shown for the η = 1/3 and 1.5 cases and exemplifies the complexity of the kinematics. Tetrahedra labelled (i)
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Fig. 17. Discrete element predictions of the spatial distribution of the volumetric strain Em (shown on the deformed configurations) in the idealised cermet specimen

at selected applied macroscopic strains Ee. Results are shown for three stress paths (a) η = 1/3, (b) η = 1.0 and (c) η = 1.5. The numerical simulations did not converge

for E > 4%e for η = 1.5 and hence those cases are omitted in (c).
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and (ii) in Fig. 19 switched from dilatory paths to compactive paths as triaxiality was changed from η = 1/3 to 1.5 while the
tetrahedron labelled (iii) dilated for deformation with η = 1.5 but slightly compacted with η = 1/3.

While the dependence of local particle kinematics on the macroscopic stress state is relatively complex, the trends of the
collective response are clear from Fig. 16: the specimen undergoes less dilation and even compaction with increasing triaxiality. This
suggests that with increasing triaxiality, a larger fraction of the specimen is compacting rather than dilating. In order to quantify this,
we define a dilated volume fraction as
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Fig. 18. Discrete element predictions of the spatial distribution of the effective strain Ee (shown on the deformed configurations) in the idealised cermet specimen at

three applied macroscopic strains Ee. Results are shown for three stress paths (a) η = 1/3, (b) η = 1.0 and (c) η = 1.5. The numerical simulations did not converge for

E > 4%e for η = 1.5 and hence those cases are omitted in (c).
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where [∙] is a Heaviside step function. The variation of ϕ with Ee is included in Fig. 20 for η = 1/3 and η = 1.5: clearly ϕ is
significantly higher at the lower triaxiality value. Moreover, while ϕ is nearly monotonically increasing with Ee for η = 1/3, the ϕ
versus Ee relation fluctuates at η = 1.5 as regions of the specimen compact and dilate alternatively during different stages in the
deformation.

5.3. Effect of inter-particle contact properties

The differences in the local kinematic response to the imposed stress triaxiality are related to the relative constraints against
compaction and dilation, and can be understood in a qualitative manner as follows. For the purpose of this discussion assume that
there are two modes whereby a local region can be deformed to a given level of Ee: a dilatory and a compaction mode. The dilatory
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spherical particles analysed here. The three tetrahedra are indicated in the specimen and the E E−m e curves shown for η = 1/3 and η = 1.5.
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mode is inhibited with increasing triaxiality as the mode involves work done against the externally applied pressure, with the
compaction mode becoming more favourable as seen in the results presented above. Moreover, increasing the internal constraints
can also inhibit the dilatory mode. For example, an incompressible matrix filling all the interstitial gaps between the particles will
significantly reduce the tendency of the system to dilate, with the dilation mode only activated if the tensile hydrostatic stress within
the matrix exceeds the cavitation pressure. In order to illustrate the effect of varying the level of the dilatory and compaction
constraints, we report here calculations with unequal compressive and tensile yield strengths: viz. the tensile truss yield strength ΣT

is decreased from Σ Σ=T C to Σ Σ/ = 100C T while keeping all other particle contact properties unchanged from the reference values
detailed in Section 5.1.

Predictions of the variation of ϕ with Ee are included in Fig. 20 for Σ Σ/ = 10C T and 100 in addition to the reference value of
Σ Σ/ = 1C T for both η = 1/3 and 1.5. With increasing Σ Σ/C T , the dilated fraction ϕ clearly increases at η = 1/3, due to the fact that the
lower tensile truss strength favours the dilatory mode over the compaction mode. A similar increase is also observed for η = 1.5 but
the changes are relatively small as only a small fraction of the specimen dilates at this high triaxiality.

It is thus evident that a full quantitative prediction of the response of the idealised cermets reported in Section 3 will require not
only the accurate capture of the constraint imposed by the porous matrix (using formulations as in Section 4) but also the analysis of
large RVEs with a high volume fraction of randomly packed spheres that include the constraints on the kinematics imposed by the
contact of the particles. Such an analysis is beyond the scope of current computational capability but the limiting models presented
here reveal some key physics and illustrate the limitations of these simplified models.

6. Concluding remarks

The response of idealised cermets comprising approximately 60% by volume steel spheres in a Sn/Pb solder matrix is
investigated under a range of axisymmetric compressive stress states. The measured macroscopic stress-strain responses, and digital
volume correlation (DVC) analyses revealed two distinct deformation mechanisms. At low triaxialities, the cermets behave as
granular media and dilate under compressive loading. This gives rise to an increasing hardening rate with increasing triaxiality. By
contrast, at sufficiently high triaxialities the deformation switches to a macroscopically incompressible mode, resulting in a stress
versus strain response that is independent of triaxiality. However, the DVC reveals that under all triaxialities there are local regions
with dilatory and compaction responses; the magnitude of dilation and the number of zones wherein dilation occurs decreases with
increasing triaxiality.

Two numerical models are presented in order to understand these mechanisms: (i) a FCC periodic unit cell model comprising
nearly rigid spherical particles in a porous metal matrix and (ii) a discrete element model comprising a large random aggregate of
spheres connected by non-linear normal and tangential “springs”. The periodic unit cell model captures the measured stress-strain
response with reasonable accuracy but significantly under-predicts the observed dilation at the lower triaxialities. While this model
does predict overall dilation at low triaxialities, it under-predicts the magnitude of the dilation significantly because the non-
contacting particles in this model underestimate the kinematic constraints imposed by the percolated particle chains in the idealised
cermets.

By contrast, the discrete element model captures the kinematics and predicts not only the overall levels of dilation but also the
fact that both local compaction and dilatory regions exist for all triaxialities. However, this model does not explicitly include the
matrix and it is unclear how the inter-particle contact law can be directly connected to the matrix properties. Thus, the model cannot
be used as a predictive tool for the overall stress versus strain responses of idealised cermets.

The analyses reported here have revealed that the complete constitutive response of cermets depends sensitively on both the
kinematic constraints imposed by the particle aggregate skeleton and the constraints imposed by the metal matrix filling the
interstitial spaces in that skeleton. It is thus evident that a full quantitative prediction of the response of the idealised cermets will
require the analysis of large RVEs comprising a high volume fraction of randomly packed spheres within a porous plastic matrix.
While such an analysis is beyond the scope of current computational capability, the limiting models presented here reveal some key
physics of the deformation mechanisms of cermets.
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Appendix A. Volumetric and deviatoric strains for Green-Lagrange strain measures

Throughout the main body of the paper we have used Green-Lagrange strain measures. This is because local strains and rotations
within the idealised cermets might be large and thus it is most convenient to illustrate the deformations as measured by the DVC
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analysis via a finite strain measure such as the Green-Lagrange strain measure. Further, for simplicity, we then used E δm ij and
E E E δ′ = − /3ij ij m ij to parameterise the volumetric and deviatoric strains, respectively. These measures were motivated from the
analogous small strain definitions but are not precise in the finite strain context.

While the decomposition E E E δ= ′ + /3ij ij m ij ensures that E′ij is trace-less it is not a deviatoric strain in the sense of representing a
deviation from the volumetric strain. This is because Em is not the Green-Lagrange volumetric strain. An alternative decomposition
suggested by Bažant (1996) is

E E δ E= + /3,ij ij
d

ij v (A1)

with

E E E= 3 + 1
2

,v 0 0
2⎛

⎝⎜
⎞
⎠⎟ (A2)

where E J≡ −10
1/3 with J F= det( )ij and Fij the deformation gradient. With this decomposition δ E /3ij v is the Green-Lagrange strain

tensor for purely volumetric deformations and therefore Eij
d is a deviatoric strain tensor (i.e. vanishes for purely volumetric

deformation). However, now Eij
d is no longer trace-less as is the case with small strain measures of the deviatoric strain tensor. We

can then define a measure of the deviatoric deformation analogous to the von-Mises effective strain as

E E E≡ 2
3

,eq ij
d

ij
d

(A3)

and decompositions of the average strain measures Eij follow analogous definitions. The data in Fig. 3b for η = 1/3, 0.75, 1 and 1.5 is
re-plotted in Fig. A1a as Ev versus Eeq with the data in terms of Em versus Ee also included for comparison purposes. The differences
are relatively small over the full range of strains investigated here.

We emphasise that while E δv ij is a volumetric tensor, neither Ev nor Em gives the volumetric strain defined as ΔV V/ 0, where ΔV
andV0 are the change in volume and initial volumes, respectively of the specimen. To illustrate this we re-plot in Fig. A1b the data of
Fig. 3b in terms of ΔV V J/ = − 10 versus Ea along with Em also versus Ea. Again, we can see that the differences between Em and
ΔV V/ 0 are relatively small even at the highest levels of deformation investigated here. Similar small discrepancies are also seen
between Ev and ΔV V/ 0 (omitted here for the sake of brevity). We thus conclude that for strain levels investigated here the simple
measures of volumetric and deviatoric deformations motivated by small strain definitions suffice but we anticipate significant
differences to emerge at larger strains.
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