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In Part I, an exact solution was determined for the problem of the overall nonlinear

elastic response of Gaussian (or Neo-Hookean) rubber reinforced by a dilute isotropic

distribution of rigid particles. Here, this fundamental result is utilized to construct an

approximate solution for non-Gaussian rubber reinforced by an isotropic distribution of

rigid particles at finite concentration. This is accomplished by means of two different

techniques in two successive steps. First, the dilute solution is utilized together with a

differential scheme in finite elasticity to generate a solution for Neo-Hookean rubber

filled with an isotropic distribution of rigid particles of polydisperse sizes and finite

concentration. This non-dilute result is then employed within the context of a new

comparison medium method — derived as an extension of Talbot-Willis (1985)

variational framework to the non-convex realm of finite elasticity — to generate in

turn a corresponding solution for filled non-Gaussian rubber wherein the underlying

elastomeric matrix is characterized by any I1-based stored-energy function CðI1Þ of

choice. The solution is fully explicit and remarkably simple. Its key theoretical and

practical merits are discussed in detail.

Additionally, the constructed analytical solution is confronted to 3D finite-element

simulations of the large-deformation response of Neo-Hookean and non-Gaussian

rubber reinforced by isotropic distributions of rigid spherical particles with the same

size, as well as with different sizes. Good agreement is found among all three sets of

results. The implications of this agreement are discussed.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In the preceding paper (Lopez-Pamies et al., in press), henceforth referred to as Part I, we determined an exact solution for
the overall (or macroscopic) nonlinear elastic response of Gaussian (or Neo-Hookean) rubber reinforced by a dilute isotropic
distribution of rigid particles. The objective of this paper is to make use of this fundamental result to construct an
approximate solution for the corresponding response of non-Gaussian rubber reinforced by an isotropic distribution of rigid
particles at finite concentration. Given that standard reinforcing fillers (e.g., carbon black and silica) typically agglomerate into
‘‘particles’’ of many different sizes (see, e.g., Chapter 4 in Leblanc, 2010 and references therein), the focus is in particular on
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isotropic distributions of particles of polydisperse sizes. This is accomplished here with the help of two different techniques
in two successive steps. In the first step of the derivation, the dilute solution of Part I is extended to finite-concentration
suspensions of particles in Neo-Hookean rubber via an iterated dilute homogenization technique. In the second step, a
nonlinear comparison medium technique is utilized to construct in turn an approximate solution1 for finite-concentration
suspensions of particles in non-Gaussian rubber.

Iterated dilute homogenization methods—also referred to as differential schemes—are a class of iterative techniques
that make use of results for the overall properties of dilute composites in order to generate corresponding results for
composites with finite concentration of constituents. The basic form of these techniques was introduced in the 1930s by
Bruggeman (1935) to determine the linear dielectric constant and conductivity of a certain class of two-phase composites.
The idea was later generalized by various authors to determine the linear mechanical/physical properties of multiphase
composites with an admittedly broad range of microstructures; see, e.g., Norris (1985), Avellaneda (1987), Braides and
Lukkassen (2000), and Chapter 10.7 in the monograph by Milton (2002). To be useful, these techniques require knowledge
of a dilute solution from which to start the iterative construction process. It is because of this requirement that this
approach has been utilized by and large in the restricted context of linear problems where — as opposed to nonlinear
problems — there is a wide variety of dilute solutions available. Nevertheless, the central idea of these techniques is
geometrical in nature and can therefore be applied to any constitutively nonlinear problem of choice, provided, again, the
availability of a relevant dilute solution. In the context of finite elasticity of interest in this work, Lopez-Pamies (2010a) has
recently put forward an iterated dilute homogenization technique for the special case of two-phase composites. In this
paper, we utilize this technique together with the dilute solution of Part I in order to construct a solution for the nonlinear
elastic response of Neo-Hookean rubber reinforced by an isotropic distribution of polydisperse rigid particles at finite
concentration.

Comparison medium methods are variational techniques that allow to generate approximations for the overall
properties of composites in terms of the properties of ‘‘simpler’’ comparison media. The idea behind these techniques was
formalized for linear problems by Hashin and Shtrikman (1962) and later recognized by Willis (1983) to be apposite to deal
with nonlinear problems as well. In a seminal contribution, Talbot and Willis (1985) provided a fairly general framework
for constructing approximations for the overall nonlinear mechanical/physical properties of composites in terms of the
overall properties of any comparison medium of choice, possibly nonlinear and heterogeneous. To render useful
approximations, however, this framework requires the selection of an ‘‘optimal’’ comparison medium complex enough
to mimic the behavior of the actual nonlinear composite yet simple enough that its overall properties can be computed.
In the context of finite elasticity, such a selection process has proved particularly challenging because of the constitutive

non-convexity and nonlinear incompressibility constraint typical of nonlinear elastic solids. Among the various attempts that
have been pursued (Ponte Castañeda, 1989; Ponte Castañeda and Tiberio, 2000), the latest choice of a comparison medium
that is a linear composite as prescribed by Lopez-Pamies and Ponte Castañeda (2006) has led to the more physically
consistent results thus far. Yet, a critical limitation of this approach is that it cannot rigorously recover the overall
incompressibility constraint typical of filled elastomers beyond 2D problems (Lahellec et al., 2004; Lopez-Pamies, 2008). In
this paper, we work out an extension of the framework of Talbot and Willis (1985) that is free of the limitations of previous
formulations at the expense of employing a nonlinear composite as the comparison medium. With the filled Neo-Hookean
rubber constructed from the above-described iterated dilute homogenization technique as the choice for the comparison
medium, we then employ this new formulation to generate an explicit approximate solution for the nonlinear elastic
response of isotropic suspensions of rigid particles of polydisperse sizes and finite concentration in non-Gaussian rubber.

For purposes of gaining further insight and of assessing the accuracy of the proposed analytical approximation, in this
paper we also generate full 3D FE (finite-element) results for the large-deformation response of Neo-Hookean and non-
Gaussian rubber reinforced by isotropic distributions of rigid spherical particles. Specifically, we consider the cases of
infinite periodic media where the repeated unit cells contain a large number of monodisperse and polydisperse spherical
particles that are randomly distributed as dictated by a sequential adsorption algorithm. Full 3D computations of this sort
have been previously considered in the context of infinitesimal elasticity by a number of authors (see, e.g., Gusev, 1997;
Michel et al., 1999; Segurado and Llorca, 2002; Galli et al., 2008), but the finite elasticity simulations performed in this
paper appear to be the first of their kind in the literature.

The presentation of the work is organized as follows. Section 2 introduces some basic notation and formulates the
problem of the overall response of non-Gaussian rubber reinforced by a random and isotropic distribution of rigid particles
under arbitrarily large deformations. In Section 3, the iterated dilute homogenization technique is presented and utilized
together with the dilute solution of Part I to derive the first main result of this paper: the overall nonlinear elastic response of

Neo-Hookean rubber with stored-energy function W ¼ m=2½I1�3�, filled with an isotropic distribution of rigid particles of

polydisperse sizes and finite concentration c, is characterized by the effective stored-energy function

W ¼
m

2ð1�cÞ5=2
½I1�3�: ð1Þ
1 As in Part I, this work concentrates on the ‘‘hydrodynamic’’ reinforcing effect of the fillers and thus filled elastomers are viewed as two-phase

particulate composites comprising a continuous nonlinear elastic matrix phase reinforced by a statistically uniform distribution of firmly bonded rigid

inclusions.
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Here, m stands for the initial shear modulus of the rubber and I1 ¼ F � F is the first principal invariant associated with the
macroscopic deformation gradient F. The extension of the Talbot–Willis framework to finite elasticity for the case when
the comparison medium is selected as a nonlinear composite is worked out in Section 4. In that same section, the
framework is employed with the Neo-Hookean result (1) as the choice for the comparison medium in order to derive the
following more general result: the overall nonlinear elastic response of non-Gaussian rubber with I1-based stored-energy

function W ¼CðI1Þ, filled with an isotropic distribution of rigid particles of polydisperse sizes and finite concentration c, is

characterized by the effective stored-energy function

W ¼ ð1�cÞC
I1�3

ð1�cÞ7=2
þ3

 !
: ð2Þ

Section 4 includes a discussion of the key theoretical and practical merits of this result. The FE calculations are presented in
Section 5, and compared with the analytical solution (2) in Section 6. Finally, Section 7 provides some concluding remarks.

2. The problem

The general problem to be addressed is that of determining the overall (or macroscopic) elastic response of an
elastomer reinforced by a random distribution of rigid particles firmly bonded across interfaces that is subjected to
arbitrarily large deformations. The spatial distribution of the particles is taken to be statistically uniform and their sizes to
be much smaller than the macroscopic size. The constitutive behavior of the elastomer is characterized by a quasi-convex
stored-energy function W of the deformation gradient F. The rigid particles are also described as nonlinear elastic solids
with stored-energy function

WpðFÞ ¼
0 if F¼Q 2 Orthþ

þ1 otherwise

(
, ð3Þ

where Orthþ stands for the set of all proper orthogonal second-order tensors. The Lagrangian pointwise constitutive
relation for the material is thus formally given by

S¼
@W

@F
ðX,FÞ, WðX,FÞ ¼ ð1�yðXÞÞWðFÞþyðXÞWpðFÞ, ð4Þ

where S denotes the first Piola–Kirchhoff stress tensor and y is the indicator function of the spatial regions occupied
collectively by the particles, taking the value of 1 if the position vector X lies in a particle and zero otherwise.

The filled elastomer is considered to occupy a domain O, with boundary @O, in its undeformed stress-free configuration
and, for convenience, units of length are chosen so that O has unit volume. The regions occupied by the elastomer and
particles are respectively denoted by Om and Op so that O¼Om [Op. The macroscopic response of the material can then
be defined as the relation between the averages of the first Piola–Kirchhoff stress S and the deformation gradient F over
the volume O under the affine displacement boundary condition x¼ FX on @O, where the second-order tensor F is a
prescribed quantity (Hill, 1972). In this case, it follows from the divergence theorem that

R
OFðXÞ dX¼ F, and hence the

derivation of the macroscopic response reduces to finding the average stress S6
R
OSðXÞ dX for a given F. The result reads

formally as

S ¼
@W

@F
ðF,cÞ, ð5Þ

with

W ðF,cÞ ¼ ð1�cÞmin
F2K

1

9Om9

Z
Om

WðFÞ dX: ð6Þ

In these last expressions, W is the so-called effective stored-energy function (which physically corresponds to the total
elastic energy per unit undeformed volume stored in the material), c6

R
OyðXÞ dX is the initial volume fraction or

concentration of particles, and K denotes a suitable set of kinematically admissible deformation gradient fields with
prescribed volume average F.

2.1. The case of isotropic suspensions in non-Gaussian rubber

The main objective of this work is to determine the effective stored-energy function (6) for the practically relevant case
when the particles are polydisperse in size and isotropically distributed in space, and the elastomeric matrix is isotropic
and incompressible. The focus is on elastomers characterized by I1-based stored-energy functions

WðFÞ ¼
CðI1Þ if J6l1l2l3 ¼ 1,

þ1 otherwise,

(
ð7Þ
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where I1 ¼ F � F¼ l2
1þl

2
2þl

2
3, l1, l2, l3 have been introduced to denote the singular values of the deformation gradient F,

and C is any non-negative function of choice satisfying the linearization conditions

Cð3Þ ¼ 0 and
dC
dI1
ð3Þ ¼

m
2

, ð8Þ

with m denoting the initial shear modulus of the elastomeric matrix, and the physically based strong ellipticity conditions
(Zee and Sternberg, 1983)

dC
dI1
ðI1Þ40 and

dC
dI1
ðI1Þþ2½I1�l

2
k�2l�1

k �
d2C
dI2

1

ðI1Þ40 ðk¼ 1,2,3Þ 8 I1Z3: ð9Þ

Stored-energy functions of the functional form (7) with (8)–(9) are generalizations of the classical Neo-Hookean energy
CðI1Þ ¼ m=2½I1�3� that have been shown to describe reasonably well the response of a wide variety of elastomers over large
ranges of deformations (see, e.g., Arruda and Boyce, 1993; Gent, 1996; Lopez-Pamies, 2010b). These types of constitutive
models have the further merit that they are derivable from microscopic considerations based on realistic non-Gaussian
statistical distributions of the underlying polymeric chains (see, e.g., Beatty, 2003).

Owing to the assumed isotropy of the microstructure and the constitutive isotropy and incompressibility of the matrix
material (7) and rigid particles (3), the resulting overall elastic response is isotropic and incompressible. This implies that

the effective stored-energy function W in this case depends on the macroscopic deformation gradient F only through its

singular values l1, l2, l3 and becomes unbounded for non-isochoric deformations when J6det F ¼ l1l2l3a1. Accord-

ingly, the result (6) can be simply written as a symmetric function of l1, l2, l3 subject to the constraint l1l2l3 ¼ 1.
Alternatively, in this work we shall find it more convenient to write (6) as a function solely of the two principal invariants

I1 ¼ F � F ¼ l
2

1þl
2

2þl
2

3 and I2 ¼ F
�T
� F
�T
¼ l

2

1l
2

2þl
2

1l
2

3þl
2

2l
2

3 in the form

W ðF,cÞ ¼
CðI1,I2,cÞ if J ¼ l1l2l3 ¼ 1,

þ1 otherwise:

(
ð10Þ

As outlined in the Introduction, our strategy to generate a solution for (10) involves two main steps and makes use of
two different techniques. In the first step, presented in Section 3, we work out a solution for the special case of filled Neo-
Hookean rubber by means of an iterated dilute homogenization technique. This Neo-Hookean solution is then utilized in
the second step, presented in Section 4, to work out in turn a solution for filled non-Gaussian rubber via a nonlinear
comparison medium method. In order to assist the presentation of the results, the unbounded branch of the energies (7)
and (10) is omitted in most of the remainder of the analysis.

3. A solution for filled Neo-Hookean rubber via iterated dilute homogenization

In this section, we construct a solution for the effective stored-energy function (10) for the special case when the
elastomeric matrix is Neo-Hookean rubber. This amounts to solving the relevant minimization problem (6) with (7) and

CðI1Þ ¼
m
2
½I1�3�: ð11Þ

To this end, we make use of the iterated dilute homogenization procedure of Lopez-Pamies (2010a) together with the
result derived in Part I as the required dilute solution from which we start the iterative construction process. For clarity of
exposition, we first present the iterated dilute homogenization technique in its general form (Section 3.1) and then work
out its application to filled Neo-Hookean rubber (Section 3.2).

3.1. An iterated dilute homogenization method in finite elasticity

Following Lopez-Pamies (2010a), we begin by considering that the unit-volume domain O is occupied by matrix
material 0, a homogeneous elastomer with stored-energy function W (possibly compressible and anisotropic at this stage).
We then embed a dilute distribution of rigid particles (of possibly any shape and orientation) with infinitesimal
concentration f1 in material 0 in such a way that the total volume of the composite remains unaltered at 9O9¼ 1; that
is, we remove a total volume f1 of material 0 and replace it with rigid particles. Assuming a polynomial asymptotic
behavior in f1, the resulting reinforced material has an effective stored-energy function W 1 of the form

W 1ðF,f1Þ ¼WðFÞþGfWðFÞ; Fgf1þOðf2
1Þ, ð12Þ

where G is a functional with respect to its first argument W and a function with respect to its second argument F.
Considering next W 1 as the stored-energy function of a ‘‘homogeneous’’ matrix material 1, we repeat the same process

of removal and replacing while keeping the volume fixed at 9O9¼ 1. This second iteration requires utilizing rigid particles
that are much larger in size than those used in the first iteration, since the matrix material 1 with stored-energy function
(12) is being considered as homogeneous. Specifically, we remove an infinitesimal volume f2 of matrix material 1 and
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replace it with rigid particles. The composite has now an effective stored-energy function

W 2ðF,c2Þ ¼W 1ðF,f1ÞþGfW 1ðF,f1Þ; Fgf2, ð13Þ

where the order of the asymptotic correction term has been omitted for notational simplicity. We remark that the
functional G in (13) is the same as in (12) because we are considering exactly the same dilute distribution as in (12).
More elaborate construction processes are possible (corresponding, for instance, to using different particle shapes and
orientations at each iteration), but such a degree of generality is not needed for our purposes here. We further remark that
the total concentration of rigid particles at this stage is given by c2 ¼f2þf1ð1�f2Þ ¼ 1�

Q2
j ¼ 1ð1�fjÞ, and hence that the

increment in total concentration of rigid particles in this second iteration is given by c2�f1 ¼f2ð1�f1Þ.
It is apparent now that repeating the same above process iþ1 times, where i is an arbitrarily large integer, generates a

particle-reinforced nonlinear elastic solid with effective stored-energy function

W iþ1ðF,ciþ1Þ ¼W iðF,ciÞþGfW iðF,ciÞ; Fgfiþ1, ð14Þ

which contains a total concentration of rigid particles given by

ciþ1 ¼ 1�
Yiþ1

j ¼ 1

ð1�fjÞ: ð15Þ

For unbounded i the right-hand side of expression (15) is, roughly speaking, the sum of infinitely many concentrations of
infinitesimal value, which can amount to a total concentration ciþ1 of finite value. The increment in total concentration of
rigid particles in this iteration (i.e., in passing from i to iþ1) reads as

ciþ1�ci ¼
Yi

j ¼ 1

ð1�fjÞ�
Yiþ1

j ¼ 1

ð1�fjÞ ¼fiþ1ð1�ciÞ, ð16Þ

from which it is a trivial matter to establish the following identity:

fiþ1 ¼
ciþ1�ci

1�ci
: ð17Þ

Substituting expression (17) in (14) renders

ð1�ciÞ
W iþ1ðF,ciþ1Þ�W iðF,ciÞ

ciþ1�ci
�GfW iðF,ciÞ; Fg ¼ 0: ð18Þ

This difference equation can be finally recast — upon using the facts that the increment ciþ1�ci is infinitesimally small and
that i is arbitrarily large — as the following initial value problem:

ð1�cÞ
@W

@c
ðF,cÞ�GfW ðF,cÞ;Fg ¼ 0, W ðF,0Þ ¼WðFÞ: ð19Þ

The differential equation (19)1, subject to the initial condition (19)2, provides an implicit framework for constructing
solutions for the effective stored-energy function W of elastomers reinforced by finite concentrations c of rigid particles
directly in terms of corresponding solutions — as characterized by the functional G — when the particles are present in
dilute concentration. It is worthwhile to emphasize that the formulation (19) is applicable to any choice of the stored-
energy function W (including compressible and anisotropic) describing the behavior of the underlying elastomeric matrix.
By construction, the results generated from (19) correspond to polydisperse microstructures where the particles have
infinitely many diverse sizes. Again, this feature is of practical relevance here because standard reinforcing fillers
(e.g., carbon black and silica) typically agglomerate, resulting effectively in polydisperse microstructures with ‘‘particles’’
of many different sizes. By the same token, the results generated from (19) are realizable in the sense that they are exact for
a given class of microstructures. This implies that the generated effective stored-energy functions W are theoretically and
physically sound. They are then guaranteed, for instance, to be objective in F, to linearize properly, and to comply with any
macroscopic constraints imposed by microscopic constraints, such as the strongly nonlinear constraint of incompressi-
bility. To be useful, however, the formulation (19) requires having knowledge of the functional G describing the relevant
dilute response of the filled elastomer of interest, which is in general a notable challenge.

3.2. Application to filled Neo-Hookean rubber

In Part I, with help of the realizable homogenization theory developed in Lopez-Pamies et al. (2011), we derived a solution
for the overall nonlinear elastic response of Neo-Hookean rubber reinforced by a dilute isotropic distribution of rigid particles.
Below, we make direct use of this result in the framework (19) to construct in turn a corresponding solution for Neo-Hookean
rubber reinforced by an isotropic distribution of rigid particles with polydisperse sizes at finite concentration.

The exact form of the solution derived in Part I is given implicitly in terms of an Eikonal partial differential equation in
two variables which ultimately needs to be solved numerically (see Eqs. (42) and (37)–(38) in Part I). To make analytical
progress, we do not utilize here the exact form of the solution but instead invoke its closed-form approximation, as devised
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in Section 6 of Part I. In terms of the notation introduced in (10)–(12), this approximate dilute solution takes the form

CðI1,I2,cÞ ¼CðI1ÞþGfCðI1Þ; I1,I2gc, ð20Þ

where c is the infinitesimal concentration of particles, CðI1Þ ¼ m=2½I1�3�, and the functional G is given explicitly by

GfCðI1Þ; I1,I2g ¼
5

2
CðI1Þ: ð21Þ

Substitution of (21) in the general formulation (19) leads to the initial-value problem

ð1�cÞ
@C
@c
ðI1,I2,cÞ�

5

2
CðI1,I2,cÞ ¼ 0, CðI1,I2,0Þ ¼CðI1Þ ¼

m
2
½I1�3�, ð22Þ

which defines the effective stored-energy function C of Neo-Hookean rubber filled with an isotropic distribution of rigid
particles of polydisperse sizes and finite concentration c. Remarkably, this first-order partial differential equation admits
the explicit solution

CðI1,I2,cÞ ¼
m

2ð1�cÞ5=2
½I1�3�: ð23Þ

Thorough comments on the theoretical and practical merits of this result are deferred to Section 4.2, where the more
general case of filled non-Gaussian rubber is addressed. At this stage it is important to emphasize, however, that the
effective stored-energy function (23) is not in general an exact realizable result. This is because use has been made of the
approximate functional (21) — and not the exact functional — in the formulation (19) in order to favor analytical
tractability. Nevertheless, in view of the high functional and quantitative accuracy of the approximation (21) for the dilute
response (see Section 6 in Part I), the stored-energy function (23) is expected to be very close to an exact realizable result.2

4. A solution for filled non-Gaussian rubber via a nonlinear comparison medium method

The general case of isotropic suspensions of rigid particles in non-Gaussian rubber could be addressed by means of the
same iterated dilute homogenization technique utilized in the foregoing section for Neo-Hookean rubber. That route
would require explicit knowledge of the appropriate functional G in (19), which in principle could be computed by means
of the same procedure followed in Part I but now specialized to energies of the form (7) as opposed to just the
Neo-Hookean energy (11). While plausible, preliminary calculations indicate that this approach is not likely to provide
explicit results and hence we do not pursue it here.

In the sequel, stimulated by the works of Willis (1994), Talbot and Willis (1994), and deBotton and Shmuel (2010), we
pursue instead a nonlinear comparison medium approach. Roughly speaking, the idea is to make use of the formalism of
Talbot and Willis (1985) to devise a variational framework that allows to construct an explicit approximate solution for the
effective stored-energy function (10) for filled non-Gaussian rubber directly in terms of the ‘‘simpler’’ effective stored-
energy function (23) for filled Neo-Hookean rubber. We begin in Section 4.1 by presenting the comparison medium
framework in its general form and then work out its application to filled non-Gaussian rubber in Section 4.2.

4.1. A nonlinear comparison medium method in finite elasticity

In order to account for the perfectly rigid behavior (3) of the particles in the analysis that follows, it is expedient not to work
with (3) directly but to consider instead the regularized case of compressible non-rigid particles with stored-energy function

WpðFÞ ¼ f pðF, JÞ ¼
mp

2
½F � F�3�þmp

1

2
ðJ�1Þ2�ðJ�1Þ

� �
, ð24Þ

where the material parameter mp denotes the initial shear modulus of the particles and the notation WpðFÞ ¼ f pðF, JÞ has been
introduced for subsequent use; the special case of rigid behavior (3) can then be readily recovered from (24) by taking the limit
mp-þ1. Also for subsequent use, the stored-energy function for the elastomeric matrix material is rewritten here in the form

WðFÞ ¼ f mðF, JÞ: ð25Þ

Consistent with the notation introduced in (24) and (25), we henceforth rewrite the pointwise energy (4) for the filled
elastomer as

WðX,FÞ ¼ f ðX, F, JÞ ¼ ð1�yðXÞÞf mðF, JÞþyðXÞf pðF, JÞ: ð26Þ

Now, borrowing ideas from Talbot and Willis (1985), it proves fruitful to introduce a comparison medium with
pointwise energy

W0ðX,FÞ ¼ f 0ðX,F, JÞ, ð27Þ
2 In this regard, it is interesting to recall that the analogous solution C ¼m=ð2ð1�cÞ2Þ½I1�2� for the corresponding 2D problem is an exact realizable

result (Lopez-Pamies, 2010a).
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where f0 is at this stage an arbitrary function, and to define the Legendre transformation3

ðf�f 0Þ
n
ðX,P,Q Þ6sup

F, J
½P � FþQ J�f ðX,F, JÞþ f 0ðX,F, JÞ�: ð28Þ

Note that while the function ðf�f 0Þ may not be convex in F and J, the function ðf�f 0Þ
n is convex in P and Q by definition.

A direct consequence from (28) is that, for any P, Q, F, and J,

WðX,FÞ ¼ f ðX,F, JÞZ f 0ðX,F, JÞþP � FþQ J�ðf�f 0Þ
n
ðX,P,Q Þ, ð29Þ

and hence that

W ðF,cÞZmin
F2K

Z
O
½f 0ðX,F, JÞþP � FþQ J�dX�

Z
O
ðf�f 0Þ

n
ðX,P,Q Þ dX, ð30Þ

the minimum being evaluated over a suitable set K of kinematically admissible deformation gradient fields with
prescribed volume average F as for (6). The further inequality

W ðF,cÞZmin
F2K

Z
O

f 0ðX,F, JÞ dXþmin
F2K

Z
O

P � F dXþmin
F2K

Z
O

Q J dX�
Z
O
ðf�f 0Þ

n
ðX,P,Q Þ dX ð31Þ

follows from a well-known property of the minimum of sums. The first term in (31) is nothing more than the effective
stored-energy function of the comparison medium with local energy (27). We denote it by

W 0ðFÞ6min
F2K

Z
O

W0ðX,FÞ dX: ð32Þ

The second and third terms in (31) are bounded from below only so long as P is divergence-free and Q is a constant (and
hence also divergence-free). For simplicity, we choose both these fields to be constant and denote them by P¼ P and
Q ¼ Q . This gives

W ðF,cÞZW 0ðFÞþP � FþQ J�

Z
O
ðf�f 0Þ

n
ðX,P,Q Þ dX: ð33Þ

Relation (33) provides a lower bound for the effective stored-energy function W for the filled elastomer with local energy
(26) in terms of the effective stored-energy function W 0 for a comparison medium with local energy (27). It is valid for any
choice of constants P and Q , and any choice of the function f0 describing the local constitutive behavior and microstructure
of the comparison medium. Optimization of (33) with respect to P and Q leads to

W ðF,cÞZW 0ðFÞþsup
P ,Q

P � FþQ J�

Z
O
ðf�f 0Þ

n
ðX,P,Q Þ dX

� �
¼W 0ðFÞþ

Z
O
ðf�f 0Þ

n dX

� �n
ðF, JÞ: ð34Þ

Optimizing this result in turn with respect to f0 leads formally to

W ðF,cÞZsup
f 0

W 0ðFÞþ

Z
O
ðf�f 0Þ

n dX

� �n
ðF, JÞ

� �
: ð35Þ

A partially optimized explicit formulation. The computation of the ‘‘optimal’’ bound (35) involves two technical
difficulties. First, the polar function ðf�f 0Þ

n may have corners, and hence the computation of the Legendre transform of
its average in (35) may require the use of subgradients as opposed to standard differentiation; see, e.g., Willis (1991) for
similar difficulties in the classical context of convex energies. Second, the supremum operation in (35) involves
optimization with respect to the local constitutive behavior of the comparison medium as well as with respect to its
microstructure, which may require the computation of complicated integrals in the second term of (35). A detailed
analysis of these two issues is a substantial task more appropriate for presentation elsewhere. In this work, we shall be
content with employing a partially optimized version of the result (33) — and not the fully optimized bound (35) — which
avoids the above-mentioned technical difficulties altogether.

A natural prescription to avoid the computation of subgradients in the above development is to set P ¼ 0 and Q ¼ 0.
Then, after recognizing from (28) that

ðf�f 0Þ
n
ðX,0,0Þ ¼ sup

A,a
½�f ðX,A,aÞþ f 0ðX,A,aÞ� ¼�min

A,a
½ f ðX,A,aÞ�f 0ðX,A,aÞ�, ð36Þ

it follows from (33) that

W ðF,cÞZW 0ðFÞþ

Z
O

min
A,a
½ f ðX,A,aÞ�f 0ðX,A,aÞ� dX: ð37Þ
3 It is possible to invoke Legendre transformations that are more general and efficient than (28) (see, e.g., Chapter 6 in Dacorogna, 2008), but the

choice (28) proves general enough for the isotropic material systems of interest in this work.



O. Lopez-Pamies et al. / J. Mech. Phys. Solids 61 (2013) 19–3726
To avoid the computation of complicated integrals in the second term of (37), it is reasonable to restrict attention to a
comparison medium in the form of a filled elastomer with the same microstructure as the actual filled elastomer, namely,

W0ðX,FÞ ¼ f 0ðX,F, JÞ ¼ ð1�yðXÞÞf 0m
ðF, JÞþyðXÞf 0p

ðF, JÞ, ð38Þ

where the indicator function y is the same as in (26). Since the interest here is in elastomers reinforced by rigid particles,
it suffices in fact to restrict attention to a comparison filled elastomer of the form (38) in which the particles are also rigid.
Without loss of generality, this can be easily accomplished by setting

f 0p
ðF, JÞ ¼ f pðF, JÞ ¼

mp

2
½F � F�3�þmp

1

2
ðJ�1Þ2�ðJ�1Þ

� �
: ð39Þ

Substituting (26) and (38) with (39) in (37) and then taking the limit of rigid particles mp-þ1 renders,4 with a slight
change in notation,

W ðF,cÞZW 0ðF,cÞþð1�cÞmin
A,a
½ f mðA,aÞ�f 0m

ðA,aÞ�: ð40Þ

This lower bound is non-trivial only so long as fm grows faster than the choice of stored-energy function f 0m
for the

comparison matrix material in the limit as JFJ,9J9-þ1. For the opposite case5 when f 0m
grows faster than fm as

JFJ,9J9-þ1, the symmetry of (40) in the pairs ðW ,f mÞ and ðW 0,f 0m
Þ implies the following non-trivial upper bound

W ðF,cÞrW 0ðF,cÞþð1�cÞmax
A,a
½ f mðA,aÞ�f 0m

ðA,aÞ�: ð41Þ

At this stage, it is a simple matter to combine the inequalities (40) and (41) to finally establish the main result of this
section

W ðF,cÞ ¼

W 0ðF,cÞþð1�cÞmin
A,a
½ f mðA,aÞ�f 0m

ðA,aÞ� if f m�f 0m
4�1

W 0ðF,cÞþð1�cÞmax
A,a
½ f mðA,aÞ�f 0m

ðA,aÞ� if f m�f 0m
o1,

8><
>: ð42Þ

where the equality has been used in the sense of a variational approximation. Expression (42) provides an explicit
framework for constructing approximate solutions for the effective stored-energy function W of elastomers with (possibly
compressible and anisotropic) stored-energy function WðFÞ ¼ f mðF, JÞ reinforced by a finite concentration c of rigid particles
directly in terms of the effective stored-energy function W 0 of different elastomers with stored-energy function
W0ðFÞ ¼ f 0m

ðF, JÞ reinforced by exactly the same distribution of rigid particles (i.e., exactly the same indicator function y).
The framework is valid for any choice of the function f 0m

, which prompts the following optimization:

W ðF,cÞ ¼

sup
f 0m

fW 0ðF,cÞþð1�cÞmin
A,a
½ f mðA,aÞ�f 0m

ðA,aÞ�g if f m�f 0m
4�1

inf
f 0m

fW 0ðF,cÞþð1�cÞmax
A,a
½ f mðA,aÞ�f 0m

ðA,aÞ�g if f m�f 0m
o1:

8>><
>>: ð43Þ

The usefulness of the formulation (43) — or more generally (42) — hinges upon having knowledge of the effective stored-
energy function W 0 for the comparison filled elastomer. While there have been no prior results available for such classes of
materials (other than a few strictly in 2D), we now have at our disposal the results for filled Neo-Hookean rubber worked
out in the preceding section.

4.2. Application to filled non-Gaussian rubber

Below, we make use of the filled Neo-Hookean rubber considered in Section 3 as the choice for the comparison medium
in the formulation (43) in order to construct an approximate solution for the effective stored-energy function (10) for filled
non-Gaussian rubber. To this end, we set

f mðF, JÞ ¼CðI1Þþ
mþm0

2
ðJ�1Þ2�mðJ�1Þ and f 0m

ðF, JÞ ¼
m0

2
½I1�3�þ

m0þm0

2
ðJ�1Þ2�m0ðJ�1Þ, ð44Þ

where m0 and m0 are positive material parameters, and note that in the limit as m0-þ1 these regularized compressible
energies reduce identically to the incompressible non-Gaussian and Neo-Hookean stored-energy functions

f mðF, JÞ ¼
CðI1Þ if J¼ 1

þ1 otherwise

(
and f 0m

ðF, JÞ ¼

m0

2
½I1�3� if J¼ 1

þ1 otherwise

8<
: ð45Þ

of interest here.
4 An alternative direct derivation of the formula (40) follows mutatis mutandis from a derivation of Willis (see, e.g., Eq. (3.3) in Willis, 1991; Eq. (8.17) in Willis,

2002; see also deBotton and Shmuel, 2010) of Ponte Castañeda’s (1991) bound in the context of convex energies: W ¼min
F2K

R
O½W0þðW�W0Þ�

dXZW 0þ
R
OminðW�W0Þ dX.

5 For the isotropic matrix materials of interest in this work, mixed cases in which f 0m
grows faster (slower) in F but slower (faster) in J than fm need

not be considered.
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Upon substitution of (44) in the general formulation (43), it is straightforward to show that

W ðF,cÞ ¼

8><
>:

max
m0

n
W 0ðF,cÞþð1�cÞmin

I1

CðI1Þ�
m0

2
½I1�3�

h io
if CðI1Þ�I14�1

min
m0

n
W 0ðF,cÞþð1�cÞmax

I1

CðI1Þ�
m0

2
½I1�3�

h io
if CðI1Þ�I1o1

if J ¼ 1

þ1 otherwise

8>>>>><
>>>>>:

ð46Þ

in the limit as m0-þ1, where the macroscopic incompressibility constraint J ¼ 1 in (46) ensuing from the microscopic
incompressibility constraint J¼1 in (45) and the rigid behavior (3) of the particles is the expected exact constraint.
The result (46) is applicable to any distribution of rigid particles (i.e., any indicator function y). By restricting attention to
the isotropic distributions of rigid particles of polydisperse sizes of interest here and invoking the notation introduced in
(10) together with the result (23) for filled Neo-Hookean rubber, the finite branch of the energy (46) specializes to

CðI1,I2,cÞ ¼

max
m0

n m0

2ð1�cÞ5=2
½I1�3�þð1�cÞmin

I1

CðI1Þ�
m0

2
½I1�3�

h io
if CðI1Þ�I14�1

min
m0

n m0

2ð1�cÞ5=2
½I1�3�þð1�cÞmax

I1

CðI1Þ�
m0

2
½I1�3�

h io
if CðI1Þ�I1o1

8>>><
>>>:

: ð47Þ

In view of the property (9)1 of the function C, it is not difficult to deduce that the max–min and the min–max problems in
(47) are solved by exactly the same stationarity conditions6

@C
@I1
ðI1Þ ¼

m0

2
and I1 ¼

I1�3

ð1�cÞ7=2
þ3 ð48Þ

irrespectively of the growth conditions of C, and hence that the energy (47) can be compactly written as

CðI1,I2,cÞ ¼ ð1�cÞC
I1�3

ð1�cÞ7=2
þ3

 !
: ð49Þ

The simple explicit effective stored-energy function (49) constitutes the main result of this paper. It characterizes the
overall nonlinear elastic response of non-Gaussian rubber with stored-energy function CðI1Þ filled with an isotropic
distribution of rigid particles of polydisperse sizes and finite concentration c. The following theoretical and practical
remarks are in order:
(i)
6

m0 Z
Owing to the properties (8) and (9)1 of the function C, the effective stored-energy function (49) is such that

Cð3,3,cÞ ¼ 0,

CðI1,I2,cÞ40 8I1,I243,

CðI1,I2,c2Þ4CðI1,I2,c1Þ 8I1,I243,c24c1Z0: ð50Þ

The first two of these conditions are direct consequences of the fact that the filled non-Gaussian rubber is stress-free
in the undeformed configuration, isotropic, and incompressible. The last condition entails physically that the addition
of rigid particles consistently leads to a stiffer material response irrespectively of the applied loading, in agreement
with experience.
(ii)
 Remarkably, the effective stored-energy function (49) is independent of the second principal invariant I2 ¼ F
�T
� F
�T

.
The origin of this independence can be traced back to the first step of the derivation, when the weak but existent
dependence on I2 of the dilute response of filled Neo-Hookean rubber (see Sections 3.2 and 5 in Part I) was neglected
in order to favor analytical tractability. Neither the iterated dilute homogenization procedure to account for finite
concentration of particles (Section 3.1), nor the comparison medium procedure to account for non-Gaussian behavior
(Section 4.1) introduced dependence on I2 thereafter. This suggests — given the different nature and generality of
these two procedures — that the response of any filled I1-based non-Gaussian elastomer is in all likelihood practically
insensitive to I2. The FE simulations presented in the next section provide further support that this is indeed the case.
(iii)
 For the common case when the stored-energy function C for the underlying non-Gaussian matrix material is convex
in I1,

dC
dI1
ðI1Þ40 and

d2C
dI2

1

ðI1ÞZ0, ð51Þ

it is a simple matter to deduce that

@C
@I1

ðI1,I2,cÞ40,
It is of practical relevance to note here that the optimal values of the variables m0 and I1 dictated by (48) are physically consistent in the sense that

0 and I1 Z3.
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@C
@I1

ðI1,I2,cÞþ2½I1�l
2

k�2l
�1

k �
@2C

@I
2

1

ðI1,I2,cÞ40 ðk¼ 1,2,3Þ, 8I1,I2Z3,cZ0, ð52Þ

and hence that the effective stored-energy function (49) is strongly elliptic (see, e.g., Section 4 in Zee and Sternberg,
1983). This stability property is consistent with recent 2D bifurcation analyses (Triantafyllidis et al., 2007; Michel
et al., 2010) which have shown that isotropic filled elastomers that are microscopically (i.e., pointwise) convex in I1

are macroscopically strongly elliptic. For the case when C is merely strongly elliptic (i.e., it satisfies the weaker
conditions (9)) but not convex in I1, the effective stored-energy function (49) can still be shown to be strongly elliptic
for small enough deformations, but it may lose strong ellipticity at sufficiently large values of I143.
(iv)
 In the limit of small deformations ðI1,I2-3Þ, the stored-energy function (49) reduces asymptotically to

CðI1,I2,cÞ ¼ m ½e2
1þe

2
2þe

2
3� with e1þe2þe3 ¼ 0 ð53Þ

to leading order in the deformation measures ek ¼ lk�1 ðk¼ 1,2,3Þ, where it is recalled that lk denote the singular
values of the macroscopic deformation gradient F and

m ¼ m
ð1�cÞ5=2

ð54Þ

stands for the initial effective shear modulus of the filled rubber. Expression (54) agrees identically with the exact
Brinkman–Roscoe result (cf. Eq. (12) in Roscoe, 1973) for the effective shear modulus of an isotropic incompressible
linearly elastic solid reinforced by an isotropic distribution of rigid spherical particles of infinitely many diverse sizes.
In the further limit of small concentration of particles as c-0, the effective shear modulus (54) reduces to

m ¼ mþ5

2
m cþOðc2Þ, ð55Þ

which agrees in turn with the classical Einstein-Smallwood result (cf. Eq. (12) in Smallwood, 1944) for the effective shear
modulus of an isotropic incompressible linearly elastic solid reinforced by a dilute distribution of rigid spherical particles.
(v)
 The connection with the effective shear modulus (54) for isotropic distributions of spherical particles is not restricted
to small deformations. Indeed, for the special case when the elastomeric matrix is Neo-Hookean rubber, C¼ m=2½I1�3�
and the effective stored-energy function (49) reduces to

CðI1,I2,cÞ ¼
m

2ð1�cÞ5=2
½I1�3�, ð56Þ

which is seen to have the same functional form as the Neo-Hookean matrix material, with the effective shear modulus
given by (54). While the effective stored-energy function (56) is not an exact realizable result for Neo-Hookean rubber
filled with an isotropic distribution of rigid spherical particles of polydisperse sizes, owing to its iterative construction
process (see Section 3.1), it is expected to provide a very accurate approximation for this class of material systems.
By the same token, the approximate effective stored-energy function (49) is expected to describe very accurately the
response of any non-Gaussian rubber filled with an isotropic distribution of rigid spherical particles of polydisperse
sizes in the small and moderate deformation regimes. For large deformations, the result (49) is likely to be relatively
less accurate for this class of material systems, as its variational construction process (see Section 4.1) entails that it
corresponds to some sort of lower (upper) bound when the underlying matrix material has stronger (weaker) growth
conditions than Neo-Hookean rubber. These expectations are supported by comparisons with the FE simulations
presented in the next section.
(vi)
 Rather interestingly, the result (49) indicates that the nonlinear elastic response of filled non-Gaussian rubber
corresponds in essence to the response of the underlying non-Gaussian rubber — as characterized by its stored-
energy function C — evaluated at the ‘‘amplified’’ measure of strain

I
Amp

1 ¼
I1�3

ð1�cÞ7=2
þ3: ð57Þ

The idea of modeling the behavior of filled elastomers as the behavior of the underlying matrix material evaluated at
some amplified measure of strain was originally proposed by Mullins and Tobin (1965) on heuristic grounds. The
homogenization result (49) derived in this work suggests that this empirical idea is roughly correct, at least for filled
I1-based non-Gaussian rubber, and that the strain measure that is amplified is the first principal invariant I1.
5. FE simulations of suspensions of rigid spherical particles in rubber under large deformations

In order to compare the above theoretical results with a separate solution, in this section we work out full 3D finite-
element (FE) simulations of the large-deformation response of Neo-Hookean and non-Gaussian rubber reinforced by
random isotropic distributions of rigid spherical particles. To simulate the randomness and isotropy of the microstructure,
we consider infinite periodic media made up of the repetition of cubic unit cells of unit volume L3

¼ 1 containing a random
distribution of a large number of particles. With the aim of gaining insight into the effect of the size dispersion of the filler
particles, we examine distributions with particles of the same (monodisperse) and of different (polydisperse) sizes.
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5.1. Monodisperse microstructures

The monodisperse microstructures are constructed by means of a random sequential adsorption algorithm (see, e.g.,
Chapter 3 in Torquato, 2002 and references therein) in which the sequential addition of particles is constrained so that the
distance between the particles with other particles and with the boundaries of the cubic unit cell take a minimum value
that guaranties adequate spatial discretization (see, e.g., Segurado and Llorca, 2002; Fritzen et al., 2012), namely:
�

Fig
diff

wit
The center-to-center distance between a new particle i in the sequential algorithm and any previously accepted particle
j¼ 1,2, . . . ,i�1 has to exceed the minimum value s1 ¼ 2Rmð1þd1Þ, where the offset distance d1 is fixed here at d1¼0.02.
This condition can be compactly written in the form

JXi
�Xj
�hJZs1, ð58Þ

where Xi (Xj) denotes the location of the center of particle i (j) and h is a vector with entries 0, L, or �L for each of its
three Cartesian components with respect to the principal axes of the cubic unit cell.7
�
 The particles should be sufficiently distant from the boundaries of the unit cell as enforced by the inequalities

9Xi
k�Rm9Zs2 and 9Xi

kþRm�L9Zs2 ðk¼ 1,2,3Þ, ð59Þ

where s2 ¼ d2Rm with d2 being fixed here at d2¼0.05.

In the above expressions,

Rm ¼ L
3c

4pN

� �1=3

ð60Þ

stands for the radius of the particles, where N has been introduced to denote the number of particles in the unit cell. For
the material systems of interest in this work, a parametric study varying the number of particles in the range N 2 ½5,35�
indicates that N¼30 is a sufficiently large number to approximate overall isotropy; more specific comments on the degree
of isotropy resulting by the use of N¼30 are deferred to Section 5.4. Fig. 1 shows representative unit cells generated by the
above-described algorithm for N¼30 with three different particle concentrations: (a) c¼0.05, (b) c¼0.15, and (c) c¼0.25.
. 1. Representative unit cells of unit volume L3
¼ 1 containing N¼30 randomly distributed spherical particles of monodisperse sizes with three

erent concentrations: (a) c¼0.05, (b) c¼0.15 and (c) c¼0.25.
5.2. Polydisperse microstructures

The polydisperse microstructures are constructed by means of a similar constrained adsorption algorithm. The focus is
on polydisperse microstructures with three different families of particle sizes. While there is no distinct rule for the
creation of such microstructures and the possibilities are many, we consider for definiteness the following procedure:
�
 Three different families of particles with radii RðIÞp and concentrations cðIÞ (I¼ 1,2,3) are utilized such that

fRð1Þp ,Rð2Þp ,Rð3Þp g ¼ Rp,
7

9
Rp,

4

9
Rp

� �
with Rp ¼ L

3cð1Þ

4pNp

� �1=3

, ð61Þ

and

fcð1Þ,cð2Þ,cð3Þg ¼ f0:5c,0:25c,0:25cg with cð1Þ þcð2Þ þcð3Þ ¼ c, ð62Þ

where Np stands for the number of particles with the largest radius Rð1Þp ¼ Rp in the unit cell.

�
 The microstructures are generated sequentially by first adding particles with the largest radius Rð1Þp until the

concentration reaches the value cð1Þ ¼ 0:5c, subsequently adding particles with radius Rð2Þp until cð1Þ þcð2ÞC0:75c, and
7 Note that condition (58) accounts for the fact that the excess of particles exceeding the spatial domain of the unit cell are appropriately relocated

hin the unit cell as dictated by the periodicity of the microstructure (see Fig. 1).



Fig. 2. Representative unit cells of unit volume L3
¼ 1 containing N¼36 randomly distributed spherical particles of three different sizes with three

different concentrations: (a) cC0:05, (b) cC0:15 and (c) cC0:25.
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finally adding particles with the smallest radius Rð3Þp until cð1Þ þcð2Þ þcð3ÞCc. In following this construction process, we
note that a target concentration c can only be achieved approximately (up to a small error that depends on the various
choices of the parameters). To guarantee adequate spatial discretization, similar to conditions (58)–(59), the randomly
generated placements of the centers of the particles are enforced to satisfy the following constraints:

JXi
�Xj
�hJZs1, s1 ¼ ðR

ðmiÞ
p þR

ðmjÞ

p Þð1þd1Þ, ð63Þ

9Xi
k�RðmiÞ

p 9Zs2, 9Xi
kþRðmiÞ

p �19Zs2, s2 ¼ d2RðmiÞ
p ðk¼ 1,2,3Þ, ð64Þ

for i,j¼ 1,2, . . . ,N with N again denoting the total number of particles in the unit cell. Here, the offset parameters are set
at d1¼0.02 and d2¼0.05 as in the monodisperse case, and the superscript mi ¼ 1,2,3 has been introduced to denote the
size of the sphere that should be added at step i in the sequential construction process, namely, mi¼1 if cðmiÞrcð1Þ,
mi¼2 if cð1ÞocðmiÞrcð1Þ þcð2Þ, and mi¼3 if cð1Þ þcð2ÞocðmiÞ.

Guided by a parametric study, in this work we utilize Np¼10 which results into unit cells containing a total of N¼36
particles. As discussed in Section 5.4, such unit cells are sufficiently large to be representative of isotropic microstructures.
Fig. 2 displays sample unit cells generated by the above-described algorithm for N¼36 with three different particle
concentrations: (a) cC0:05, (b) cC0:15 and (c) cC0:25.

5.3. Meshing, material properties, and computation of the overall nonlinear elastic response

Having identified the monodisperse and polydisperse microstructures of interest, we now turn to their discretization.
We make use of the mesh generator code Netgen (Schöberl, 1997), which has the capability to create periodic meshes as
required here. Ten-node tetrahedral hybrid elements are utilized in order to handle exactly (in a numerical sense) the
incompressible behavior of the elastomeric matrix and of the rigid particles. Since the computations are carried out using
the FE package ABAQUS, we make use in particular of the C3D10H hybrid elements available in this code (see ABAQUS
Version 6.11 Documentation, 2011). Fig. 3 shows three meshes of increasing refinement for a distribution of monodisperse
particles with concentration c¼0.25. Mesh sensitivity studies reveal that meshes with approximately 75,000 elements
(such as the fine mesh shown in Fig. 3(b)) produce sufficiently accurate results.

Within the present formulation, the behavior of the matrix phase can be modeled exactly by any incompressible stored-
energy function (7) of choice. On the other hand, the perfectly rigid behavior (3) of the particles can only be modeled
approximately by means of a very (but not infinitely) stiff material. Here, for definiteness, we model the particles as
incompressible Neo-Hookean solids with stored-energy function

WFE
p ðFÞ ¼

mFE
p

2
½I1�3� if J¼ 1,

þ1 otherwise,

8><
>: ð65Þ

where the parameter mFE
p is set to be three orders of magnitude larger than the initial shear modulus of the underlying

matrix material, i.e., mFE
p ¼ 103

� m.

By virtue of their periodicity, the overall nonlinear elastic response of any of the above-defined classes of filled
elastomers amounts to subjecting their defining cubic unit cells to the periodic boundary conditions

ukðL,X2,X3Þ�ukð0,X2,X3Þ ¼ ðF k1�dk1ÞL,

ukðX1,L,X3Þ�ukðX1,0,X3Þ ¼ ðF k2�dk2ÞL,

ukðX1,X2,LÞ�ukðX1,X2,0Þ ¼ ðF k3�dk3ÞL ð66Þ

ðk¼ 1,2,3Þ, and computing the resulting total elastic energy W , from which the macroscopic first Piola–Kirchhoff stress S
can then be determined; alternatively, S can be computed directly by averaging the resulting local stresses SðXÞ over the



Fig. 3. Three representative meshes in the undeformed configuration for a distribution of monodisperse particles with concentration c¼0.25: (a) coarse

mesh with 34,629 elements, (b) fine mesh with 69,556 elements, and (c) very fine mesh with 170,203 elements.
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undeformed unit cell. In expression (66), the components uk and Xk (k¼ 1,2,3) refer to a Cartesian frame of reference with
origin placed at a corner of the cubic unit cell whose axes fekg are aligned with the principal axes of the cubic unit cell (see
Fig. 3), dkl denotes the Kronecker delta, and F is the prescribed average deformation gradient. As a practical remark, we
note that the periodic boundary conditions (66) can be expediently implemented in ABAQUS by using the ‘‘Equation’’
option to couple the nodes of opposite sides of the cubic unit cells.
5.4. Assessment of the simulated microstructures

Because of the finite number of particles — N¼30 for the monodisperse and N¼36 for the polydisperse microstructures
— included per unit cell, the microstructures simulated here are (not exactly but) only approximately isotropic. In order to
assess their isotropy, we have constructed and compared three different realizations for each concentration of particles
that is simulated. For all matrix materials, loading conditions, and particle concentrations considered, the maximum
difference in the total elastic energy between any two corresponding realizations has been computed to be less than 0.5%.

Further, for each realization, we have examined the co-axiallity between the average Cauchy stress tensor T6SF
T

and
the average left Green-Cauchy strain tensor B6FF

T
under three types of loading conditions: (i) axisymmetric tension

where F ¼ le1 � e1þl
�1=2
ðe2 � e2þe3 � e3Þ with lZ1, (ii) axisymmetric compression where F ¼ le1 � e1þl

�1=2
ðe2 �

e2þe3 � e3Þ with lr1, and (iii) simple shear where F ¼ Iþge1 � e2 with gZ0. For all matrix materials, loading
conditions, and particle concentrations considered, the maximum difference between any two corresponding principal
axes of T and B has been computed to be less than 0.05 radians.

The above two sets of checks indicate that the monodisperse (polydisperse) microstructures with N¼30 (N¼36)
particles per unit cell utilized in this work are indeed good approximations of isotropic distributions of spherical particles.

In the comparisons with the analytical solution (49) that follow in the next section, all presented FE results correspond
to the average of three realizations. Moreover, all FE results are computed by following an incremental loading path, at
each step of which the incremental equilibrium equations are solved directly in ABAQUS. We utilize the default dual
convergence criterion in this code (see ABAQUS Version 6.11 Documentation, 2011), namely, the permissible ratio of the
largest solution correction to the largest corresponding incremental solution is set at 9Du9=9umax9¼ 10�2, while the
permissible ratio of the largest residual to the corresponding average force norm is set at Rtol ¼ 5� 10�3. Whenever one of
these criteria is not satisfied the computations are stopped. This typically happens whenever the elements in between two
particles become exceedingly distorted because of the locally large deformations involved.

Fig. 4 presents an example of large local deformations in between particles for the case of a monodisperse realization
with c¼0.25 and Neo-Hookean matrix under simple shear. Part (a) shows contour plots of the maximum principal
Fig. 4. (a) Contour plots of the maximum principal logarithmic strain for a monodisperse realization with c¼0.25 and Neo-Hookean matrix subjected to

an overall simple shear strain of g ¼ 0:64; the undeformed configuration is also depicted for comparison purposes. Part (b) shows an inside view of three

pairs of particles in between which the matrix material is highly deformed.
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logarithmic strain at an overall shear strain level of g ¼ 0:64; the initial undeformed geometry is also depicted for
comparison purposes. The deformation contours are seen to be highly heterogeneous with principal logarithmic strains as
large as 2.77 within regions between particles. In part (b), an inside view is shown of three regions of strong particle
interaction and high local strains that lead to significant mesh distortion and therefore problems with the numerical
convergence of the FE calculations. In principle, re-meshing of these regions should allow to reach further overall
deformations (see, e.g., Moraleda et al., 2009 for the analogous problem in 2D), but this is beyond the scope of this work
and hence not pursued here.

6. Sample results and discussion

A range of specific results are presented next for the overall nonlinear elastic response of filled rubber as described by
the analytical approximation (49) and the FE simulations of Section 5. Results for the linear elastic response in the small-
deformation regime are presented first followed by results for the large-deformation response of filled Neo-Hookean
rubber under various loading conditions. The third set of results pertains to the response of a filled rubber wherein the
underlying elastomeric matrix is characterized by the non-Gaussian stored-energy function (Lopez-Pamies, 2010b)

CðI1Þ ¼
31�a1

2a1
m1½I

a1

1 �3a1 �þ
31�a2

2a2
m2½I

a2

1 �3a2 � ð67Þ

with m1 ¼ 0:032 MPa, m2 ¼ 0:3 MPa, a1 ¼ 3:837, a2 ¼ 0:559, corresponding to a model that has been shown to accurately
describe the nonlinear elastic response of typical silicone rubber over large ranges of deformations (see Section 2.3 in
Lopez-Pamies, 2010b).

The selection of results presented here aims at providing further insight into the constructed analytical solution (49)
and at assessing its accuracy for a wide range of particle concentrations, elastomeric matrix materials, and loading
conditions. The results also aim at shedding light on the effect of the size dispersion of fillers in the overall nonlinear
elastic response of filled elastomers.

6.1. Linear elastic results

In the limit of small deformations (see remark (iv) in Section 4.2), the analytical approximation (49) reduces to the exact
effective stored-energy function (53) with (54) for an isotropic incompressible linearly elastic solid reinforced by an isotropic
distribution of rigid spherical particles of infinitely many diverse sizes. Fig. 5 presents plots for the initial effective shear modulus
(54), normalized by the initial shear modulus m of the underlying elastomeric matrix, as a function of the concentration of
particles c. Results are also presented for the FE simulations of Section 5 for isotropic distributions of spherical particles with the
same size (monodisperse) and with three different sizes (polydisperse). To gain further insight, the corresponding Hashin–
Shtrikman lower bound for the effective shear modulus of rigidly reinforced, isotropic, incompressible, linearly elastic materials
(Hashin and Shtrikman, 1961) is included in the figure. As expected, all four results stiffen monotonically with increasing values of
c. Although exact for infinitely polydisperse particles, the analytical response is seen to be in good agreement with the FE results
Fig. 5. The normalized initial effective shear modulus m=m of isotropic incompressible elastomers filled with random isotropic distributions of rigid

particles. Plots are shown for: (i) the analytical result (54), (ii) FE simulations for distributions of spherical particles with the same (monodisperse) and

with three different (polydisperse) sizes, and (iii) the corresponding Hashin–Shtrikman lower bound m=m¼ ð2þ3cÞ=ð2�2cÞ, as functions of the

concentration of particles c.
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for polydisperse particles with only three families of particle sizes for the entire range of concentrations considered c 2 ½0,0:4�.
More remarkably, the analytical solution exhibits good agreement with the FE results for monodisperse particles up to the
relatively high concentration of c¼0.3. These favorable comparisons are consistent with earlier 2D results (Moraleda et al., 2009;
Lopez-Pamies, 2010a) suggesting that polydispersity does not play a role in the response of particle-reinforced materials for
particle concentrations sufficiently below the percolation limit. A further relevant observation from Fig. 5 is that all three
particulate results (analytical, FE monodisperse, FE polydisperse) are very close to the Hashin–Shtrikman lower bound up to a
concentration of particles of about c¼0.1, after which they become significantly stiffer.

6.2. Results for filled Neo-Hookean rubber

For the case when the underlying matrix material is Neo-Hookean rubber (see remark v in Section 4.2), the analytical
approximation (49) takes the form (56). Fig. 6 presents results for the large-deformation response of filled Neo-Hookean
rubber, as characterized by the effective stored-energy function (56), for three values of particle concentration c¼ 0:05,
0.15, and 0.25 under: (a) uniaxial compression, (b) uniaxial tension, (c) pure shear, and (d) simple shear. The constitutive
stress-deformation relations for these loading conditions read explicitly as
�

Fig
(b)

and
Uniaxial loading (l1 ¼ l, l2 ¼ l3 ¼ l
�1=2

with t2 ¼ t3 ¼ 0Þ:

Sun ¼ l
�1

t1 ¼
dC
dl
¼

m
ð1�cÞ5=2

½l�l
�2
� ð68Þ
. 6. Macroscopic response of filled Neo-Hookean rubber with various values of concentration of particles c under: (a) uniaxial compressive,

uniaxial tensile, (c) pure shear, and (d) simple shear loading conditions. Plots are shown for the analytical stress-deformation results (68)–(70),

corresponding FE simulations for isotropic distributions of spherical particles.
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Pure shear (l1 ¼ l, l2 ¼ l
�1

, l3 ¼ 1 with t2 ¼ 0Þ:
�
Sps ¼ l
�1

t1 ¼
dC
dl
¼

m
ð1�cÞ5=2

½l�l
�3
� ð69Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiq

�
 Simple shear (l1 ¼ ðgþ g2

þ4Þ=2, l2 ¼ l
�1

1 , l3 ¼ 1Þ:

Sss ¼
dC
dg
¼

m
ð1�cÞ5=2

g, ð70Þ
where Sun, Sps, Sss denote first Piola–Kirchhoff stress measures, while t1, t2, t3 have been introduced to denote the
macroscopic principal Cauchy stresses. Fig. 6 includes corresponding FE results for isotropic distributions of rigid spherical
particles. No distinction is made here of whether the particles are of the same or of different sizes since, somewhat
remarkably, both classes of microstructures exhibit essentially the same large-deformation response. This is consistent
with the linear elastic results of Fig. 5, where the monodisperse and polydisperse FE simulations render practically
identical effective shear moduli for concentrations below c¼0.3.

As anticipated by remark i in Section 4.2, Fig. 6 shows that the overall stiffness of filled Neo-Hookean rubber increases
monotonically with increasing concentration of particles for all loading conditions. Another immediate observation is that
the analytical and FE results are in good qualitative and quantitative agreement, with the FE results exhibiting a slightly
stiffer behavior at large deformations. This trend appears to be independent of the concentration of particles.

To further probe the connections between the analytical approximation and the FE simulations, Fig. 7 compares their
elastic energies C=m, normalized by the initial shear modulus m of the underlying Neo-Hookean matrix, as functions of the
principal invariants I1 and I2. Part (a) of the figure shows C=m for fixed values of the second invariant I2 ¼ 3:90 for c¼0.15
and I2 ¼ 4:70 for c¼0.05 as functions of I1, while part (b) shows results for fixed values of the first invariant I1 ¼ 3:65,3:97
for c¼0.15 and I1 ¼ 4:82,5:13 for c¼0.05 as functions of I2. It is recalled that the constraint of incompressibility J ¼ 1
imposes a restriction on the physically allowable values of I1 and I2. Thus, for fixed I2 ¼ 3:90 and 4.70 the first invariant is
restricted to take values in the ranges I1 2 ½3:65,4:34� and I1 2 ½4:10,5:96�, respectively. For fixed I1 ¼ 3:65,3:97,4:82, and
5.13, the corresponding allowable values of the second invariant are I2 2 ½3:49,3:91�, I2 2 ½3:69,4:46�, I2 2 ½4:16,6:23�, and
I2 2 ½4:31,6:98�. These are the ranges of values utilized in the figure.

The main observation from Fig. 7 is that the FE results are approximately linear in the first invariant I1 and independent
of the second invariant I2. This behavior is in accordance with that of the analytical approximation, corroborating that both
results are very much identical in their functional form. The fact that the macroscopic behavior of filled Neo-Hookean
rubber is functionally the same — i.e., linear in I1 and independent of I2 — as that of its underlying Neo-Hookean matrix is
of note. Indeed, the functional character of the average behavior of nonlinear material systems is in general substantially
different from that of its constituents, but that is not the case here.

6.3. Results for a filled silicone rubber

Finally, Fig. 8 presents various results for the large-deformation response of a filled non-Gaussian rubber, wherein
the underlying matrix material is a typical silicone rubber characterized here by the stored-energy function (67) with
7. Comparison of the analytical stored-energy function (56) for filled Neo-Hookean rubber with corresponding FE simulations for isotropic

ributions of spherical particles. The results are shown in terms of the principal invariants I1 and I2 for two values of concentration of particles. Part (a)

ws results for fixed values of I2 as functions of I1, while part (b) shows results for fixed values of I1 as functions of I2.



Fig. 8. Macroscopic response of filled silicone rubber with various values of concentration of particles c under: (a) uniaxial compressive, (b) uniaxial

tensile, and (c) simple shear loading conditions. Plots are shown for the analytical stress-deformation results (72) and (73), and corresponding FE

simulations for isotropic distributions of spherical particles. Part (d) of the figure shows comparisons between the analytical stored-energy function (71)

and corresponding FE results for two fixed values of the first principal invariant I1 and c, in terms of the second invariant I2.
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material parameters m1 ¼ 0:032 MPa, m2 ¼ 0:3 MPa, a1 ¼ 3:837, a2 ¼ 0:559. The analytical approximation (49) specializes in
this case to

CðI1,I2,cÞ ¼ ð1�cÞ
X2

r ¼ 1

31�ar

2ar
mr

I1�3

ð1�cÞ7=2
þ3

 !ar

�3ar

" #
: ð71Þ

Parts (a), (b), and (c) of the figure show stress-deformation results for uniaxial compression, uniaxial tension, and simple
shear for particle concentrations c¼ 0:05,0:15, and 0.25. The constitutive stress-deformation relations for these loading
conditions are given explicitly by
�
 Uniaxial loading (l1 ¼ l, l2 ¼ l3 ¼ l
�1=2

with t2 ¼ t3 ¼ 0):

Sun ¼ l
�1

t1 ¼
dC
dl
¼

l�l
�2
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X2
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again, Sun, Sss denote first Piola–Kirchhoff stress measures and t1, t2, t3 stand for the macroscopic principal Cauchy
where,
stresses. Part (d) displays results for the effective stored-energy function (71) for fixed values of the first principal invariant
I1 ¼ 3:76 for c¼0.15 and I1 ¼ 4:75 for c¼0.05, in terms of the second invariant I2. All four parts of the figure include
corresponding FE results for isotropic distributions of spherical particles. Akin to the preceding Neo-Hookean case, we
make no distinction here of whether the particles are of the same or of different sizes since, again, the simulated
monodisperse and polydisperse microstructures turn out to exhibit practically the same response for particle concentra-
tions below c¼0.3.

In addition to the monotonic stiffening of the response for increasing values of particle concentration, it is immediate
from parts (a) through (c) of Fig. 8 that the analytical and FE results are in fairly good qualitative and quantitative
agreement for all loading conditions, especially for small and moderate deformations. For large enough deformations at
which the limiting chain extensibility of the silicone rubber comes into effect, the analytical results are consistently softer—

as expected from their variational construction process (see remark v in Section 4.2)—than their FE counterparts. Part (d) of the
figure shows that the FE results for filled silicone rubber, much like those for filled Neo-Hookean rubber, are approximately
independent of the second macroscopic invariant I2, in functional accord with the analytical approximation (71).

The above three sets of sample results indicate that the analytical approximation (49) provides a mathematically
simple, functionally sound, and quantitatively fairly accurate result for the overall nonlinear elastic response of non-
Gaussian elastomers reinforced by isotropic distributions of rigid spherical particles of polydisperse sizes. The results have
also served to reveal that size dispersion of the underlying reinforcing particles is inconsequential, in that it does not affect
the overall response of the material, for particle concentrations up to the relatively high value of about c¼0.3. Accordingly,
the analytical approximation (49) can additionally be utilized to describe the response of non-Gaussian elastomers filled
with isotropic distributions of spherical particles of the same size with small-to-moderate concentrations.

7. Final comments

In addition to the ‘‘hydrodynamic’’ reinforcement investigated in this work, it is by now well established that the
presence of bound and occluded rubber contributes significantly to the overall stiffness of filled elastomers (see, e.g.,
Leblanc, 2010). As schematically depicted in Fig. 9(a), bound rubber refers to the interphasial material surrounding the
fillers. It is typically several tens of nanometers in width, constitutively heterogeneous, and markedly stiffer than
the elastomeric matrix in the bulk (see, e.g., Ramier, 2004; Qu et al., 2011). On the other hand, occluded rubber refers to
the regions of matrix material that are entrapped by the agglomeration of filler particles (see Fig. 9(a)). Because of their
shielding from the continuous part of the matrix, regions of occluded rubber are suspected to behave as though they were
fillers (see, e.g., Heinrich et al., 2002; Leblanc, 2010). Very little attention has been paid to the incorporation of these two
mechanisms into the microscopic modeling of filled elastomers, especially at large deformations. It would therefore be
of great theoretical and practical value to extend the framework presented in this paper to account for such effects.
The recent work of Bertoldi and Lopez-Pamies (2012) may be relevant here.

Recent experimental studies have revealed (see, e.g., Chapter 6 in Carpi et al., 2008; Danas et al., 2012) that anisotropic
distributions of fillers — such as for instance the chain-like distributions shown in Fig. 9(b) — may serve to enhance
certain multifunctional properties of filled elastomers, including their electro- and magneto-striction capabilities. A further
practical extension of the formulation presented in this work would be to account for such anisotropic microstructures.
Schematic of bound and occluded rubber in a filled elastomer. (b) Electron micrograph of a magnetorheological elastomer with iron particles

d anisotropically in chain-like structures (Danas et al., 2012).
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