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ABSTRACT

This work provides a family of explicit phenomenological models both in the F—H and F —B variable space. These models are derived directly from an analytical
implicit homogenization model for isotropic magnetorheological elastomers (MREs), which, in turn, is assessed via full-field numerical simulations. The proposed
phenomenological models are constructed so that they recover the same purely mechanical, initial and saturation magnetization and initial magnetostriction
response of the analytical homogenization model for all sets of material parameters, such as the particle volume fraction and the material properties of the
constituents (e.g., the matrix shear modulus, the magnetic susceptibility and magnetization saturation of the particles). The functional form of the proposed
phenomenological models is based on simple energy functions with small number of calibration parameters thus allowing for the description of magnetoelastic
solids more generally such as anisotropic (with particle-chains) ones, polymers comprising ferrofluid particles or particle clusters. This, in turn, makes them
suitable to probe a large set of experimental or numerical results. The models of the present study show that in isotropic MREs, the entire magnetization response
is insensitive to the shear modulus of the matrix material even when the latter ranges between 0.003-0.3 MPa, while the magnetostriction response is extremely

sensitive to the mechanical properties of the matrix material.

1. Introduction

In recent years, there has been an increasing interest in the ex-
perimental, theoretical and numerical study of magnetoelastic and
electroelastic materials that can achieve large strains under applica-
tion of magnetic or electric fields, respectively. Specifically, in the
context of magnetoelasticity, this has been possible by the fabrication
of composite materials made of a soft matrix (such as gels, polymers
and elastomers) and magnetically soft or hard but mechanically stiff
particles. This class of materials has been termed magnetorheological
elastomers (MREs) [1-8] or h-MREs [9-11]. The MREs comprise mag-
netically soft iron particles with negligible magnetic hysteresis and the
h-MREs consist of magnetically hard particles (such as NdFeB ones),
which, in turn, lead to a strong magnetic hysteresis.

For this reason, numerous studies have been devoted to construct
analytical continuum models capable of describing the magnetoelastic
response of MREs materials under finite deformations and magnetic
fields. These studies can be roughly classified into two categories: (i)
top-down or phenomenological approaches in which macroscopic free
energies are postulated based on macroscopic experimental observa-
tions [6,12-15] and (ii) bottom-up or homogenization approaches in
which macroscopic free energies are derived based on the underly-
ing microscopic behavior [16-19]. While the practical challenges of
carrying out experiments that test the material (and not the struc-
tural) response of specimens have led to the development of numerous
phenomenological models, the intrinsic mathematical challenges of
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carrying out the homogenization limit of the equations of magnetoelas-
tostatics has only provided a handful of available results. Furthermore,
the proposed phenomenological models have only been calibrated and
assessed for the given experimental setup that have been proposed and
a zoo of different expressions is now available. Yet none of these models
has universal characteristics in the sense that none of these models has
been used to study a wide range of materials parameters.

In parallel, numerical homogenization studies of various microstruc-
tures have been carried out in two- and three-dimensional unit
cells [20-22]. In those studies, the results were obtained by using a
scalar potential formulation which was presented in the context of
electromechanical problems by [23] (but see also recent numerical
work by [24]). In more recent studies, Késtner and co-workers [25-27]
and [28] have used the vector potential to analyze two-dimensional
MREs. Moreover, in an effort to resolve some of the surrounding air
and specimen effects, [29] have modeled directly the specimen, the
surrounding air and the microstructure at the same scale. While this
study has led to satisfactory qualitative agreement with experiments, it
did not resolve the different length scales as one goes from specimen
to microstructure, since that would require an untractable mesh size.
Along this effort, [30] proposed a two-scale finite element approach in
order to solve simultaneously the magneto-mechanical boundary value
problem and the microstructural problem by properly resolving the
separation of the very different length scales. While this last approach
is the more complete one, it still remains numerically demanding,
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especially if complex unit cells with large number of particles are
considered. Moreover, in all these approaches, it is very hard to de-
couple from the estimated response the relative effect of the specimen
geometry and that of the microstructure.

In this regard, the recent study of [19] proposes an alternative view
to the problem by first solving the homogenization problem at the RVE
scale analytically and then using these estimates at the macroscopic
scale to analyze the specimen shape effects. In that effort, the authors
obtained a very useful analytical model for incompressible isotropic
MREs in the space of the deformation gradient F and the Lagrangian
h—field H. This model, however, is implicit and requires the solution
of a highly nonlinear algebraic equation simultaneously with the esti-
mation of the effective energy function. In a companion paper [31],
the same authors proposed an approximate explicit model obtained
directly by fitting the implicit variable of the original homogenization
model, thus making it extremely simple for numerical implementation
keeping extremely good accuracy. In turn, due to the very strong
nonlinearities involved in those models, it is almost impossible to carry
out an analytical partial Legendre-Fenchel transform with respect to
the H field in order to obtain the complementary energy in terms of
the deformation gradient F and the Lagrangian magnetic field B. This
latter F — B version is extremely useful in numerous boundary value
problems (e.g., instability problems or device-based ones where the
magnetic poles and the coils are modeled directly), that are naturally
written in terms of the magnetic vector potential and not the scalar
potential.

Motivated by these observations, the objective of this work is to
put forth a family of homogenization-guided phenomenological models
for isotropic MREs in both the F — H and F — B space that are en-
tirely calibrated by using the analytical implicit homogenization model
of [19]. These phenomenological models are “explicit” in both F — H
and F — B space and thus are very simple to be implemented in any
finite element user material/element code. They are constructed by
a proper choice of energy functions and in such a way that recover
three main features of the homogenization model: (i) they recover
the exact (in the sense of homogenization) effective magnetization
response at small and very large (i.e. at magnetization saturation)
magnetic fields, (ii) they predict the exact magnetostriction response at
small-to-moderate magnetic fields for all mechanical pre-loads and (iii)
their purely mechanical response is exactly that of the homogenization
model, which has been originally obtained in [32]. In addition, the
proposed phenomenological models are assessed for a very large range
of material responses, such as a large range of shear moduli of the
matrix material and particle volume fractions. This allows to study var-
ious boundary value problems in a more predictive fashion that aids in
material selection for given applications. The form of the phenomeno-
logical functions that are proposed for the coupled magneto-mechanical
response is universal in the sense that they can be used to describe
the magnetoelastic response of MREs from available experimental or
other numerical results for anisotropic microstructures (e.g. particle-
chains), or describe the response of polymer composites comprising
other type of magnetoactive particles such as ferrofluids [19]. Also,
the present phenomenological models can be used mutatis mutandis to
describe the response of electroactive polymers with [33,34] or without
dielectric particles [35]. Finally, an ad-hoc extension of these models
in the context of nearly incompressible MREs is proposed allowing for
an even more simplified implementation in numerical codes.

The presentation of the work is organized as follows. Section 2
discusses basic definitions in the context of coupled magneto-elasticity.
In Section 3, we formulate the homogenization problem in the F — H
space, we recall the definitions of the effective energy and propose,
following the recent work of Danas [28], an augmented variational
framework that allows for the proper definition of an RVE and the
corresponding effective magnetization and magnetostriction free from
specimen shape effects. We then devote Section 4 to the presentation
of the analytical homogenization and phenomenological models in the
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F —H and F — B space. Therein, we discuss in detail the construction of
the phenomenological models and the calibration of their coefficients
by proper expansions at small mechanical and magnetic fields. This
section finishes with the discussion of the numerical finite element RVE
problem. The assessment of all the models is done in Section 5, where
we study a wide range of material parameters, while we also explore
the response of the phenomenological models beyond the regime of
calibration by analyzing the effect of mechanical pre-stress upon the
magnetization and magnetostriction response of the MRE. Finally, in
Section 6, we record some concluding remarks.

2. Preliminary definitions

We consider a deformable solid occupying a volume ¥, € R® with
boundary 9V, € R? in its reference configuration. The deformation of
the solid from its reference configuration V, to the current configura-
tion V is defined in terms of a continuous and one-to-one mapping y(X).
We assume y to be continuous and twice differentiable in V), except at
the material interfaces. Thus, the position vector of a material point
in the current configuration is given by x = y(X). The deformation
gradient is therefore defined as F(X) = Grady' with J = detF >
0, where Grad denotes the gradient operator with respect to X. We
consider no time dependence.

The purely magnetic problem may be described in terms of the
Eulerian magnetic field b, whose work conjugate is referred to as the
magnetic h-field h. The current magnetization i is then defined by the
constitutive relation

b = po(h + 1), )

where u, is the magnetic permeability of free space to be defined
later. In case of a non-magnetic medium, e.g., air, the magnetization
1 vanishes reducing (1) to b = ;4011. In principle, the magnetic problem
can be expressed in terms of b, h or m as the independent variable, see
for instance [12]. In fact, in a coupled magneto-mechanical problem,
one can retrieve the h-based formulation from the b form by performing
a partial Legendre-Frechel transform of the total energy functional with
respect to b and vice-versa [28]. Both b and h are Eulerian quantities
and are subjected to well-defined differential and boundary constrains
arising directly from the magnetic balance laws. The magnetization
is also an Eulerian quantity on which, in turn, no differential and/or
boundary constraints are imposed.

The Lagrangian counterparts of the divergence-free b and the curl-
free h are obtained by a pull-back operation on the global balance
equations [36], such that

B=JF'"b and H=Fh, @)

respectively. Given the Lagrangian B and H as in (2), it is evident that
(1) is non-unique under pull-back transformations, also implying the
non-uniqueness of the Lagrangian form of m [12,13,36]. Therefore, no
attempt is made to provide a Lagrangian form of m. The Lagrangian
B and H fields also satisfy the divergence and curl free conditions,
respectively, so that [12,13]

DivB=0 in ¥, with

M.[[fs”:o on 0V, 3)

CurlH=0 in V, with

N x [[I:I]] =0 on 9V, (€)]

where [-] denotes the jump across the boundary 0V, whose nor-
mal is denoted with N'. The former allows us to express B as the
curl of a vector potential A, i.e., B = CurlA, whereas the latter
leads to an expression of H in terms of the gradient of a scalar
potential, such that, H = —Grade. Such vector/scalar potential-based
formulations are used extensively in the numerical realization of cou-
pled magneto-mechanical boundary value problems [19,28,37]. In fact,

1 Henceforth, the notation (7) is used to denote local microscopic quantities,
whereas plain symbols refer to the macroscopic scale.
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from a purely computational point of view, the scalar potential-based
formulation is simpler to implement due to the use of a single additional
scalar degree of freedom, i.e., the scalar potential. For the purposes
of the present work, this is sufficient since we are interested in the
constitutive response of MREs. The reader is referred to [28] for an
equivalent vector potential-based formulation.

An equivalent set of the magnetostatic balance laws in terms of the
Eulerian b and h fields can be obtained by substituting (2) into (3) and
(4). The resulting counterparts of (3) and (4) that hold in the current
configuration are then given by [12,13]

divb=0 in v  with n~[[i)]]=0 on oV, ©)

curlh=0 in V with nx [[il]] =0 on dV, 6)

where “div”’ and “curl” represent, respectively, the divergence and curl
operations in the current configuration and n is the unit normal on the
current boundary oVv.

Finally, the energy per unit volume of an isotropic, magneto-
hyperelastic solid in its reference configuration may be given in terms
of the deformation gradient F and the Lagrangian h—field H by

WX, F, H) = &(X, F, H) - %fF’TH FTH. %)

In this expression, &(X, I, H) is the specific free energy of the system,
while the second term is used to describe the magnetic energy of
the surroundings (ether) and is present always irrespective of whether
the medium is magnetic or not [13,28]. No effect of magnetic/elastic
dissipation is considered. Furthermore, in the above description, we use
H as an independent variable. An equivalent description and analysis
using B as an independent variable has been discussed extensively
in [28] for the homogenization problem and is not repeated here.

Hence, by standard thermodynamic arguments, one can obtain the
constitutive relations [12,13,19,38]

§=YxFim ad B=-2Yxin ®)
oF oH

for the local first Piola-Kirchhoff stress and the local magnetic field,
respectively. Several phenomenological energy functions have been
proposed for both isotropic [39] and transversely isotropic [6] MREs.
In the following sections, we first consider fully decoupled energy
functions for each constituent, i.e., the polymer matrix phase and the
particle magnetic phase to obtain an effective macroscopic response of
the composite via analytical and numerical homogenization.

Finally, it is worth noting that the local Piola—Kirchhoff and Cauchy
stresses may be written as a sum of the local mechanical and Maxwell
stresses [12,13,38]. For the case of an energy function that depends on
I and H, one can show that [12]

S§S=JsF T, s=8 with & =LB-%|B|2L ©

mech + Onaxw> maxw

where | - | represents the standard Euclidean norm and I is the second
order identity tensor. In the absence of mechanical body forces, the
stress measures, S and &, are divergence-free leading to the balance
laws

Dive=0 in ¥, with N-[[é]]:T on oV, 10)

dive=0 in PV with n-[6]=t on 0V, 11

in the reference and current configuration, respectively. The Lagrangian
(Eulerian) boundary traction on 0V, (0V) is denoted by T () in (10)
((11)).

2 Note that the expression for the Maxwell stress depends on the choice of
the independent magnetic variables as discussed in [12].
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3. Micro-magneto-mechanical modeling of MREs

This section describes the general steps towards the numerical
and theoretical modeling of particle-filled MREs. We first define the
constitutive models for the individual phases of the composite. This
is followed by laying out the periodic homogenization framework in
order to obtain the effective (macroscopic) response of the composite. It
should be noted that the following expressions are presented in the gen-
eral compressible case, while both the incompressible and compressible
cases are studied in the following sections. Whenever necessary, special
care is taken to clarify the differences between these two descriptions.

3.1. Local constitutive models for the constituents

We consider a composite material consisting of a matrix phase,
denoted with i = m and a particle phase, denoted with i = p. For
the sake of presentation, we assume both phases to be magnetoelastic,
whereas the special case of a polymeric non-magnetic matrix or rigid
mechanically particle can be easily obtained later. Each phase occupies
a sub-domain V! and Vg , respectively, in the reference configuration.

0
The local energy associated with such a composite is then given by

W (X, F,H) = 0X)W,(F, H) + (1 — 6(X)W,(F, H),

where the function ©(X) is the characteristic function and takes the
value ©X)=1if X € 123 and @X)=0if X € Vg . These characteristic
functions must comply with the hypothesis of the separation of length
scales, i.e., ® must vary in a length scale that is much smaller than
the length scale of the representative volume element (RVE) under
study. The energy associated with an individual phase is then given
by W, (I, H) = w, (F,h) with i =m or i = p, and reads

m@E:@@E—%ﬁ4ﬁﬁm=@m®—%ﬁh=%$m
a2

Here, we used the transformation relation (2), to obtain the equivalent
energy w;(F,h) in terms of the Eulerian h-field h. The specific free
energy @; (F, H) is typically decomposed into a purely mechanical and
a magneto-mechanical part [6,19,20,28]

@, (F,H) = ®7°"(F) + &[5 (F. H), (13)

where the subscript “mech” denotes the purely mechanical part and
the subscript “mag” represents the magneto-mechanical part of the
total @, (F, H). Such a decomposition is fairly general but is more than
sufficient for phases that are not magnetic or exhibit a very minor
magneto-mechanical coupling, such as the iron particles which are very
stiff mechanically and thus attain very small magnetostrictive strains
(e.g. in the order of 10~ — 10~>). Furthermore, material objectivity is
readily satisfied by expressing @, (F,H) in terms of six invariants as
listed in Table 1.

In this table, the first three invariants are purely mechanical. In
turn, invariants I, — I, should be discussed with caution. Following the
discussion in [28], if one applies the Eulerian magnetic field h, then I
is a purely magnetic invariant leading to no coupling. Instead, if one
applies the Lagrangian H field,® the uncoupled magnetic invariant is
I,. This subtle point is a source of discrepancies in the literature of
magneto-elastic and electro-active solids and caution should be taken
when one proposes constitutive laws. This distinction will be discussed
in more detail in the subsequent sections when selecting the invariants
for the coupled magneto-mechanical response.

Very often, the mechanical response of the magneto-elastic solids is
described by a simple Neo-Hookean model, such as

.Gy . .Gl
<DTe°h(F)=f(II—S—Zan)+71(J—1)2, i=m,p. (14)
3 This is the case in the context of electro-active problems where electrodes

are directly attached on the boundary of the specimen and thus the electric
field follows the deformation of the solid and is Lagrangian in nature.
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Table 1
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Invariants associated with isotropic magneto-elastic solids.

Mechanical Magneto-mechanical
Invariant Expression Invariant Lagrangian Eulerian
I = tr(F7F) ; H-H FTh-Fh
i = LHEE B —FTE - FH I FTH BT b
Iy=J= det ¥ I FF-TH.F'FTH F'h-F'h

In this expression, G is the shear modulus and G/, is the Lame constant
associated with the compressibility of each phase i = m,p. In the
subsequent proposed homogenization and phenomenological models
the use of Neo-Hookean model is not at all a prerequisite. Instead, the
mechanical part of the proposed models in the present study is directly
based on the work of Lopez-Pamies et al. [32] and are valid for any
matrix that is described by a I, —based mechanical energy density.

For the magnetic part, a Langevin-type saturation function is used
in the present study [19]

o T ppm)? 35 [ 34 [3
&P 1) = - 2 Ly fginh (222 100} | | 222
3x mj V'3 mi V3

i

T uo(ms)? 37: 34i
:—Mo—l{ln[sinh< L8 |h|>] —ln[ L8 |h|]}
31 m; m;

= ¢ "8 (J . h. @s)

Here, fs” is defined in Table 1, whereas y; and m are the magnetic
susceptibility and the saturation magnetization of each phase i = m, p.
Again, the proposed models in the following section can deal with any
type of saturation functions such as the hyperbolic tangent (see [28]).
We further note that as a consequence of the definition of I/, ¢7*
depends on ¥ only via J if the Eulerian field h is prescribed. Even
more, in the incompressible limit, where J = 1, the ¢} depends
only on h thus leading to no magneto-mechanical coupling in this last
case. The situation is of course different if the Lagrangian field H is
prescribed. This point has been raised recently by Danas [28] in order
to distinguish the case of MREs and electroactive polymers.
Using next the energy (15) and the Langevin function

1

L(x) =cothx —x7", x €R, ae)

one obtains by applying relation (8),

oW, . mo B
Bl H)=-——2 =;40J[1+—1£ - ]F" FTH, a7
oH iH my
5
which becomes by use of relation (2)
. y 37,00\ ¥
b = o |4 mic (2200) B 18)
my [h|

The magnetization is then simply given by matching definition (1) with
the last Eq. (18), such that

m(h) =m§£<3115|h|> h 19)

m; ) b
In the limit of [H| — 0, definition (15) becomes quadratic in H (or h),
such that

R LN BT EA

5 i=mp. (20)

By applying again (8), and (2), the last relation (20) leads readily to a
linear magnetic response, which can be written in terms of the magnetic
permeability of phase r as

b=puh  p=(1+x) . i=mnp (21

3.2. Periodic homogenization framework

In this section, we describe briefly the periodic homogenization
framework in the context of a magnetoelastic composite. Specifically,
the typical size of the iron particle-filled MRE samples, that are used
in the experiments, ranges from 2 — 100 mm, whereas the average size
of the iron particles is in the order ~ 5 pm [6,8,40]. This implies that
the local interactions between the magnetized iron particles take place
at a scale that is substantially smaller than the specimen itself and
the variation of the loading conditions. Hence, the assumption of the
separation of length scales, which is necessary for the homogenization
theory, turns out to be valid for such materials to a large extent (at
least up to the point where macroscopic instabilities occur). Moreover,
a slow variation of the microstructure of the MRE sample is further
assumed, allowing to define a representative material volume Vg €.
The smallest volume Vg that describes on average the response of the
MRE is the representative volume element (RVE). A more complete
discussion of the various scales and assumption is presented in [28]
and is omitted in the present work for brevity and conciseness.

Given the aforementioned assumptions for V¥, the average F and H
are then obtained from the local ¥ and H of vg in terms of their volume
average

F=-_L / FX)dv  and H= L / HX)dv, (22)
Vo v Vo v

respectively. The periodicity condition in Vg leads to a representation
of the local displacement @(X) and the scalar potential @(X) fields in
terms of their zero-average periodic fields u(X) and (X) as well as the
average fields u = (F—1I) - X and ¢ = —H - X, respectively, such that

WX)=(F-D-X+uX) and ¢X)=-H-X+3X), vXeV. (23)

Eq. (22) may be directly obtained by (23) and use of the zero average
of the perturbation fields U and ¢. Moreover, use of the push-forward
transformation (2), for H together with the Hill-Mandel lemma and
(23), one obtains (see Appendix A for details)

=L i — T
h=—2 g h(x)dv = FTH. (24)
Furthermore, the periodicity conditions (23) also imply that the
magnetic fields can be decomposed into an average magnetic field h
and a perturbation magnetic field (with zero average) h, such that the

true magnetic field h becomes

h=h+h, or H=H+H, (25)

with H = —Gradg.

The Hill-Mandel lemma and the periodicity conditions (23) allow
to state the homogenization problem as the following optimization
problem [17,19,41]

wH@E H)= inf sup WX, F,Hydv. (26)

eKF) pecH) Vg v
Here, K and ¢ denotes the admissible sets for @t and ¢ given by

K(F) ={ F:3x=yX) with F = 1+ Gradii, J > 0,
(27)
it = (F - DX +1, U periodic in V} }
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and

C(H) :{ f : 3 x = y(X) with H = —Grada,
(28)
¢ =-H-X+g, ¢ periodic in V} }

respectively.
It can be shown [17,19,20,41] that the effective (macroscopic) stress
S and magnetic field B satisfy the homogenized constitutive relations

1
7
where o is the effective Cauchy stress, b is the effective Eulerian
magnetic field and J = detF. Note that the effective first Piola—
Kirchhoff stress S and the effective Cauchy stress ¢ are total stresses
containing both mechanical and Maxwell stresses.

The developed magnetoelastic homogenization framework (26) is so
far identical to the electro-active homogenization problem [33,34,41].
However, the boundary conditions, to which a magneto-active elas-
tomer is subjected to, is usually very different from the electro-active
experiments. A MRE is typically placed far from the fixed magnetic
poles, which essentially creates a Eulerian background magnetic field
in between them [8,37]. On the other hand, electrodes are typically
sprayed on an electro-active soft composite to apply an electric field
directly on the boundary of the composite. This fundamental difference
between the magneto- and electro-active problems necessitates a cor-
rection to (26), which is, in its present form, the complete variational
problem for electro-active composites [28].

We note that in a magnetoelastic RVE, the mechanical stress, Sy,
is a direct consequence of the rearrangement of the iron particles,
which move due to the applied background Eulerian magnetic field as
well as due to inter-particle interactions. In turn, the average Maxwell
stress, Sp..» 1S present in an RVE and its neighboring RVEs because of
the average magnetostatic energy. Owing to the fact that in a slowly
changing microstructure, the neighboring RVEs have the same average
magnetization m and thus average magnetostatic energy, we can com-
pletely disregard the effect of S, in the mechanical deformation of a
magnetoelastic RVE (see [28] for more details).

But first, one needs to identify S, . . from (26). For this, we recast
W H(F,H) explicitly in terms of the effective free energy @* (F, H) and
the energy contribution due to the background magnetic field, such that

H H
s="" gm=soF", B=-Y"_FH=1Lr", (29)
oF oH

WH(F,H) = &' (F, H)—%JF‘TH-F‘TH = $M(F, h)—%m-h = wh(F, h).
(30)

The total effective stress S can then be obtained via (29),. However, as
it was shown in [28], it is difficult to identify the complete Lagrangian
average Maxwell stress given a prescribed Eulerian field h. Instead, it
is easier to work with the effective Cauchy stress, that is obtained from
the energy W"(F, H) by

—a <awh oh

. + 7\ ﬁ)FT = Opech + Opaxu- (31)

1 ow"

T J oF

Here, the first term is the purely mechanical stress, while the second
part is the total average Maxwell Cauchy stress. Using next the second
part of Eq. (30) and after some straightforward algebra and the chain
rule (i.e. the fact that h depends on H and F), we obtain

1{ow" oh\_r
=—(—=— .= |F
Tnaxy = < oh aF>

h o(h-h
_L[(9¢" on\ _mo OB on o o]
7(\on oF) " 27 "on oF 2" "oF
= yiohm + yighh — %|h|21
—hb- %|h|21. (32)

The mechanical and the Maxwell parts of the effective first Piola—
Kirchhoff stress are then obtained via S, = Jo,.,F~7 and S, =
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J6 .., F T, respectively. Finally, the average mechanical traction at the
boundary of the RVE in the reference configuration is given by [28]

T=[S—Sp| N =Spcn- N on Vi (33

3.2.1. An augmented variational principle

This last boundary term allows us to analyze the pure microstruc-
turally induced magneto-mechanical coupling in the RVE remaining
free from any geometry/shape effects. Therefore, (33) is crucial in a
coupled magneto-mechanical homogenization problem. The applica-
tion of (33) in the homogenization problem (26) is, in turn, a non-trivial
operation. Such operation necessitates the evaluation of F, S, h, b and m
from (26) followed by the application of (33). To avoid such iterations,
an augmented variational principal [28], that is capable of applying the
condition (33) directly to the homogenization problem, is employed.

Specifically, in order to apply the purely mechanical traction (33)
on the boundaries of the RVE and also to ensure the continuity of the
Maxwell stress S, .., across the neighboring RVEs, one needs to deduct
the average Maxwell energy, WX of the RVE from the homogenized

maxw’

energy (26). The latter is defined as

W (F,H)=— % JFTH.FTH, (34

maxw

and alone gives rise to a deformation gradient F under the application
of H across the RVE. Thus, if it is not deducted from (26), one obtains a
fictitious F in the RVE, even when non-magnetic phases (such as a sim-
ple polymer) are analyzed [28]. In other words, the deduction of W5
from WH upholds the practical condition of fixed, far-away magnets
from the sample by not allowing the poles to move towards each other
under an applied h-field H. The energy W in its original form (26),
in turn, represents the electro-active homogenization problem, where
the electrodes are attached directly on the sample.

As noted earlier, the magnetic poles create a uniform background
magnetic field, which is indeed perturbed by the presence of the MRE
sample by creating a self field around itself. Thus, a material point in
the MRE sees a Eulerian h-field and not a Lagrangian which is the case
in electroactive problems. The application of such an average Eulerian
field as the loading in our homogenization problem can be achieved
in various manners. The simplest and more practical way we follow in
this work consists in constraining the product F~"H = h to be equal to
an applied average background h-field, denoted as h,.

The deduction of the average Maxwell energy, W7 . defined in
(34) together with the last constraint F"H = h, are employed by the
augmented variational principle [28]

PH(F, H)
=WHFE H) + %JF*TH -FTH+ ’2‘—21|F*TH —h,|? = Specn - (F=1).

(35)

Here, W H (F,H) is given by (30), ¢ is a non-dimensional penalty factor
serving to enforce the application of a Eulerian background A—field. In
practice, it suffices to set it equal to a very small number left to be
defined in Section 5.1. Also note that the last term in (35) should be
dropped unless a non-zero average mechanical traction is applied.

It should be noted that the mathematical homogenization problem
(26) is well posed and the additional terms in (35) are employed after
solving for W in (26). This is because the analytical estimates for W
are independent of the boundary conditions [17,33,34,41]. However,
the boundary condition (33) is crucial for the proper interpretation of
the effective F, S, h, b and m fields for a given RVE. For this reason, in
the case of analytical homogenization or phenomenological modeling
of an MRE, the function W (F,H) is obtained explicitly or implicitly
first, while the subtraction of WX _ together with the application of the
constraint F~TH = h, is be carried out a posteriori to extract the relevant
estimates for F, S, h, b and m of the MRE. In turn, in a numerical
simulation of an RVE, that would require extremely long computation
times since one has to obtain numerically the energy W (F,H) and
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its derivatives. The augmented potential energy (35) offers a direct
alternative allowing the direct evaluation of the desired estimates for
F, S, h, b and m under given loading conditions h, and T.

4. Exact and approximate solutions for the effective energy

In this section, we present two distinct families of theoretical mod-
els; an “implicit” one obtained by a rigorous homogenization anal-
ysis [19,33] and “explicit” homogenization-guided phenomenological
models, which are calibrated to recover the implicit homogenization
estimates for a very large range of material parameters. In partic-
ular, motivated by microscopic images of standard MREs [40], we
consider in this study only the case of spherical mechanically stiff
but magnetically soft inclusions that are isotropically and uniformly
distributed in a non-magnetic matrix phase. Nevertheless, the same
ideas may apply to other composites such as polymers comprising
ferrofluid inclusions [19].

Specifically, in the original work of Lefevre et al. [19] estimates
for both WH(F,H) and W B(F,B) were proposed. In the first case,
an explicit estimate has been proposed for linear magnetic particles
(i.e. linear local magnetic response of the particles such as the one given
in Eq. (21)) and an implicit one for nonlinearly saturating ones. In turn,
only an explicit model for linear magnetic particles has been proposed
for W B(F,B), which resulted by a partial Legendre-Fenchel transform
of the corresponding W (F, H) model.

To fill this gap and simplify possible numerical implementations of
such models in general purpose finite element codes, we propose next
simple explicit energy densities W (F, H) and W 2(F, B) for nonlinearly
saturating magnetic particles that are calibrated by using the analytical
explicit and implicit homogenization models. Note, however, that the
free parameters in the phenomenological models can be calibrated in-
dependently by available experiments or other numerical calculations,
thus offering a well-designed yet simple energy description for MREs.

Finally, we discuss at the end of this section the finite element-based
numerical simulations used to estimate the effective response of three-
dimensional periodic RVEs. Those calculations, which are limited in
the present study to fairly large matrix shear moduli due to the sig-
nificant amount of computational time and sensitivity of calculations,
are mainly used to assess the homogenization models.

Specifically, the analytical solutions of Lefévre et al. [19] con-
sider an incompressible 7, —dependent matrix phase and mechanically
rigid but magnetically soft particles without magnetic hysteresis. Thus,
for the incompressible matrix phase, which is also magnetically inert
(i.e., y, =0), (12) along with (14) and (15) reduce to [19]

o emedy-RopE gf o,
W, (F, H) = 2 (36)
+o0 otherwise.
In the special case of an incompressible Neo-Hookean material,
(15;1“1‘(1' D = Gm(fl — 3)/2, with G, denoting the shear modulus of
the matrix. In turn, the energy associated with the magneto-active
mechanically rigid particles (i.e., with shear modulus G;, = +c0) is given
by

. =-S,(IM if J=1,
WG ) - { 5051

. (37)
+o0 otherwise.

where ISH is the local invariant and has been defined in Table 1,
while the function S(ISH ) is any nonlinear saturation function. In
the present study, we report results for the Langevin-type saturation
function defined in (15) for J = 1, such that

. L Ho(my)? 36 I3 36 [
Sy = %ISH + = {m[sinh(—f’ 15H>] -1n[—f\/15H] }
Zp mP mP

(38)

Here, y, and m$ are the magnetic susceptibility and magnetization
saturation of the particles, respectively.

International Journal of Non-Linear Mechanics 120 (2020) 103380

4.1. Analytical homogenization solutions

Given the above-described local energies for the matrix and the
particle phase by (36) and (37), respectively, the homogenized energy
reads [19]

Dpecn(F) — ¢ S,(TH) + %1;’
whE.H) = +% W@ -zE I - ?ISH if J=1 (39)
+00 otherwise.

In this expression, the purely mechanical effective energy is given
by [32]

(pmech(F) = (1 - c)djﬁeCh(Il ) (40)

where ¢$€Ch is defined in (14) for a Neo-Hookean material, ¢ denotes
the particle volume fraction,

L =t(@®F), I=HH=FhFh [f=F"HF H=hh
(41)
and
I, -3 54c(l = o)(& = Holuy
I =—— — +3, = 0 ng
1= S+ ug + (1 = e)e] 42)

(10 = ¢ +6¢M)pg + (5 +c = 6eMElug
S5[2+ o + (1 - e)eP >

The effective coefficients v(¢) and z(¢) are given by

3¢(10+2¢ +3¢2)E — Ho)iZ  3e(1 — e)(5 + 3¢)(E — pp)pol

=y +
Y S ouy r (1 —efP | S+ oy + (1 — )P
43)
and
26 = g + 3cpo(€ = o) (44)

[2+ g + (1 = c)é)’
respectively. The variables v and z depend also on ¢ and implicitly via &
on F and H but for the sake of clarity in the notation, we have omitted
this dependence in the last two equations.

Then, the variable ¢ is defined implicitly as solution of the nonlinear
algebraic equation’

251 - ¢=0. (45)

This last equation cannot be solved analytically for any standard non-
linear saturation function and thus implies that the term ¢ has no
explicit expression in terms of the model parameters, rather, it has an
implicit dependence on the F and H fields as well as on the volume
fraction ¢ and the magnetic constants y, and ms. Therefore, WH in
(39) is an implicit function of F and H.

For practical purposes, we recall the expressions used to evaluate
the total stress S and Lagrangian magnetic field B, i.e.,

S =2(1-¢) 2@/ (I)F + v OF "THRF'FTH - pF ", (46)

with p indicating an arbitrary hydrostatic pressure arising from the
incompressibility constraint J =1 and

B = (2(8) — v(@)H + v(&F 'FTH. (47)

Those expressions can be used appropriately to impose a Eulerian field
h, together with a purely mechanical traction as described in Eq. (33).
In the following, it is necessary to remark two important limiting cases
for Eq. (45).

4 Throughout, we make use of the standard convention g’(x) = dg(x)/dx to
denote the derivative of functions of a single scalar variable.
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Remark 1. In the limit of small s-fields and deformation gradients,
ie, Il - I and I¥ — 0 or equivalently [H| — 0 and |[FH| — 0,
5(15H ) becomes linear in ZX, which now reads S(ISH )= ”plsH /2, with
Hp = Ho(1 + ;) or equivalently & = p;,. This linearization of S together
with (45) leads to the effective magnetic permeability x of the MRE at
small magnetic fields, which reads

3¢ po(py — o)
[(2+ o + (1 — ]

u= Z(”p) = py + =1+ ){)/40, (48)

while
v = v(pp)
. 3¢(10+ 2¢ +3¢®)(pp, — o)y 3c(l = €)(5 + 3e)(pp — po)Hoty -
= g

512+ po + (1 = pp 1 5[2+po + (1 = up

(49)

Both u and v° are of course independent of F and H. In this last expres-
sion and for later use, we have also defined the effective susceptibility
x = u/uy — 1 of the MRE. It is also noted that (48) corresponds to
the well-known Maxwell-Garnett (or equivalently Hashin-Shtrikman)
estimate for purely magnetic composites [37]. As a consequence, (39)
may be expressed explicitly as

Do n(F) + %If - %ISH if J=1 50)
+o00 otherwise.

Wy (F.H) = {

Here, the superscript 0 is used to denote the limiting case of |H| — 0,
while the coefficient v(pp) is given by (49).

Remark 2. In the limit of very large magnetic fields, i.e., |[H| — o,
S(ISH )= ;4015” /2 and hence z = & = . In that same limit, the effective
magnetization may be found to be simply

m=mslﬂ—|, m’ =cm;, (51)
which readily defines the effective saturation magnetization m*® of the
MRE. This result has also been confirmed numerically by [28] in the
context of MREs, where the magnetization saturation of the MRE was
shown to be independent of the microstructure itself but only function
of the volume fraction of the particles.

These last two remarks are extremely important for proposing sim-
ple and consistent phenomenological models in the following sections.

4.1.1. Explicit homogenization estimates for linear magnetic particles: F-B
version

Owing to the linearity of W()H defined in (50) in the magneto-
mechanical invariants I f and ISH , one can obtain the corresponding
complimentary energy density WOB(F ,B) by application of the partial

Legendre—Fenchel transform with respect to H [42]
WEF,B) = sup[B-H+ WH(F,H), (52)
H

such that [19]

B ,27B B B
® (F)+L l5 +7 l4 +11(]115—16) i 7e1
WBE B)={ "= 20 L+ + 120 +nl B
0\ 2T hl
+00 otherwise,
(53)

where the coefficient # = (4 — v)/v is introduced for convenience in the
notation. In turn, I f, I 53 and I f are the standard magneto-mechanical
invariants in terms of B and in the incompressible limit J = 1° are given

5 Henceforth, it is implied v = v(py)-
6 The invariants I}, I? and I? are all multiplied with J? in the case of
compressible materials.
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by
I1P=B-B=F'b-F'b,
12 =F"FB-¥"FB = Fb - Fb,

IZ=FB-FB=b-b
(54

respectively.

As it is evident from relation (53), WOB exhibits a non-trivial cou-
pling between purely mechanical and magneto-mechanical invariants.
Nevertheless, by a closer inspection of the expression (53), we observe
that the parameter # is proportional to u — v, which is shown in
Fig. la to be significantly smaller than unity for volume fractions
¢ < 03 and magnetic permeabilities of particles u,/u, < 50. This
observation allows us to approximate WOB even further, an operation
that will prove very useful in the next section where we propose explicit
phenomenological models.

Thus, by neglecting higher order terms in O(s?) in (53), and keeping
only the zero order term in I, = 3 + O(|F —1|%), we obtain the
approximate energy density

B B_ B

| [eIB+nGIE—15)]

D, F —_— f J=1
necn(F) + 2U|: 1+3n !

B
F,B) =

"o \n|<<1(’ )
+00 otherwise.

(55)

Here, the coefficient r is introduced to ensure that the second term of
(55) consistently leads to 7 SB /2u in the limiting case of |b| — 0 and is
consequently evaluated to be
. Sop —20% — 242

= o
after considering the limit |b| — 0 in (55). Finally, substitution of (56)
into (55) leads to

(56)

(v—u) B B 1 g .
G+ oW B g8y Ly iy
meen ) S a5 Tl gl

+o0 otherwise,

WE (F,B) =

(57)

The approximate linearized energy (57) is compared with the original
homogenized energy (53) in Fig. 1b. As is easily observed, the differ-
ence between those two estimates is very small and thus allows us to
use expression (57) to obtain the initial response of the subsequent phe-
nomenological model in the F—B space in a straightforward manner. It
is finally noted that all energies discussed in this section comprise the
same purely mechanical part which is explicit and has been originally
proposed in the work of Lopez-Pamies et al. [32].

4.2. Microstructurally-guided explicit phenomenological models

In this section, we propose fully explicit, homogenization-guided
phenomenological models for the MRE using both F — H and F —
B variables. The phenomenological models are proposed in terms of
two additional modeling parameters, which are subsequently obtained
via consistent linearization and fitting with the homogenized models.
First, we propose models for incompressible MREs and then extend
in an ad-hoc manner those models for nearly incompressible ones.
This extension serves only practical purposes since it allows for a
simpler numerical implementation. For consistency, we impose on the
phenomenological model certain important properties, which are:

1. the phenomenological models shall have the same purely me-
chanical part with the homogenized models, i.e., @ ., (F) =
(1 - 0)®2<™(I,) with I, given by (42).

2. for H = 0 and arbitrary F, both phenomenological models shall
recover exactly the analytical homogenization solutions (50) and
(57) for the F — H and F — B versions, respectively. This condi-
tion implies first that the phenomenological and homogenized
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Fig. 1. (a) Contour plot of the coefficient # as a function of the particle volume fraction ¢ and the normalized magnetic permeability of the particles u,/u,. (b) Difference between
the exact and approximate homogenization energy functions for a representative case of ¢ = 0.15 and u,/u, = 31 indicated by a red point in part (a).

models shall deliver the same initial magnetization response or
equivalently give the same slope in the b — h space, i.e., u
as defined from relation (48). And second, they both result in
the same magnetostrictive response as H — 0 or whenever
the magnetic particles are modeled as linear magnetic materials
without saturation.

3. for |H| —» oo, both phenomenological and homogenized mod-
els shall lead to the same saturation magnetization response,
i.e., |m| = m* obtained in (51).

4.2.1. Explicit F-H phenomenological model

Given the above requirements, we propose a phenomenological
energy function for incompressible MREs in terms of three distinct en-
ergy contributions, namely, a fully decoupled mechanical and magnetic
energy and an additional coupling energy, which reads

wH(F, H)

H .
Ppecn®) + @1 (A + 0l (1111 - 7015” if J=1 (58)
+00 otherwise,

where the effective mechanical energy @, is given by (40), and I f
and 1, 5” by (41). Instead, the purely magnetic part @, is given in terms
of a Gaussian Hypergeometric function, denoted by ,F;, as
kH
H
12 2 !

H qgHy_ _Ho - H 12 2
D Us) = 2115 2F kH’kH’1+kH’ poe ,

kH
Ho 2 1 2 2 x |h| h
=-75 zhI%F [k_H’k_H’1+k_”’_ por = Ppag(h)-
(59)

In this expression, k¥ is a positive integer, m* = c¢m?® denotes the
effective saturation magnetization and y = (u/uy — 1) is the effective
magnetic susceptibility, which is given by (48). The function ,F; is
typically expressed in terms of a series given by,

o (@B, 2"

zf’l[a,b,c;z]=§o o’ (60)

with

x)g=1 and x), =x(x+ 1) (x+n-1).

It can be shown via rigorous convergence tests that the infinite series in
(60) converge for all z < 0 and non-negative a, b and ¢ [43, p. 81-86].
Hence, (60) can be evaluated numerically in a straightforward man-
ner [44,45]. Of interest, however, are the first and second derivatives

of ¢;‘ag(h) with respect to h, which, as shown in the following, take very
simple algebraic forms.

Subsequently, motivated by the corresponding homogenized model
in Eq. (39), we express the coupled magneto-mechanical energy as a
function of the two invariants 1 f and I sH , thus taking the form

ol U I = ol (a1 - ol U, (61)
with
oM
ﬂH :uO(mS)z i l 4 a+l < q \/ IiH 2 i—4s
= X % — , =4,5.
(62)

In the above expressions, we have introduced three free parameters,
namely, k", g and pJ’. The evaluation and selection of these param-
eters using the analytical homogenization model in (39) is described in
detail in the following.

The selection of the parameter k*. We start by noting that the
derivative of the Gaussian Hypergeometric function ,F, with respect
to its argument has a very simple form, which reads
m=_L 085 _ zh — 63)

Ho O {1 G (g fms) ]

Here, the initial susceptibility is always y irrespective of the value
of kH thus leading to the correct (in the sense of homogenization)
initial effective magnetization response of the MRE. The same is true
for the saturation response, which gives |m| = m* as required by the
homogenization process. On the other hand, the rate of magnetization
depends on the power coefficient k¥, which may be calibrated to follow
closely the homogenized response. Specifically, by direct calibration,
we find in Section 5 that a value

KM =4 (64)

leads to a good fit for the magnetization response for all volume frac-
tions ¢ € [0, 0.3] and matrix shear moduli analyzed in the present study.
Of course, given any experimental data, a different value for k¥ may be
used. For illustration purposes, we show in Fig. 2 representative curves
of the hypergeometric function and its derivative, which gives the m—h
response as evaluated from Eq. (63). For comparison, magnetization
curves obtained by the Langevin (based on definition (16)) and the
hyperbolic tangent functions (see Eqs. (2.12) and (2.14) in [28]) are
also shown. The use of a hypergeometric function is done in order to
allow for flexibility in the calibration process since the homogenized
response of an MRE comprising magnetic particles with Langevin-
type magnetization saturation response does not lead to an effective
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Fig. 2. Comparison of (a) the magnetic energy functions and of (b) their derivatives obtained from and hypergeometric tbr‘;ag saturation function given in Eq. (63) for various
exponents k!, the Langevin function (based on definition (15)) and the hyperbolic tangent function (see Egs. (2.12) and (2.14) in [28]).

magnetization response of a Langevin-type, as is discussed in Section 5.
Before proceeding to the coupled energy part, we note further that the
decoupled mechanical and magnetic energies are expressed in terms of
the homogenized material parameters, which can be evaluated directly
in terms of the constituents’ properties and the particle volume fraction
C.

The evaluation of the parameter ﬁlH . To facilitate the relevant discus-
sion, we show in Fig. 3 the response of @/ as a function of the invariant

I,.H . First, we observe that cDIH is non-convex with respect to \/I,_H since
its derivative increases rapidly from zero to a maximum and then grad-
ually decreases to zero (see Fig. 3b). As we will see in the following,
such a function allows to obtain a material magnetostriction response
that is initially quadratic, subsequently increases in a non-quadratic
manner until finally reaching a saturating state.

Another important comment is related to the specific form of
<ngple, i.e., the subtraction term q)f(lf) - <Df(15H). This is done for
two reasons. First, the derivation of ®* uple with respect to h leaves the
magnetization response completely unatfected at small and very large
applied magnetic fields h,, thus allowing the hypergeometric function
in Eq. (59) to completely control the m — h response at the initial
regime and the saturation regime. The second reason is that only the
If' = FTh-F7 h part of the function contributes to the magnetostriction
whenever a Eulerian field h, is applied, while the corresponding I 5” =
h - h part induces no magnetostriction.

In view of the above observations, the evaluation of ﬁlH is readily
obtained by enforcing an exact equivalence between the phenomeno-
logical model (58) and the linearized homogenized model (39) in the
limit of |h| — 0. To achieve that, we expand W# in Eq. (58) around
If' = ISH = 0, to obtain

Wi (8, H)

H
(M=) P
_JPuean@n + 16T?

(lf—lSH)—%ISH if J=1 (65)

+00 otherwise.

By direct matching of the individual coefficients of I f and I 5” in (65)
with those in (50), one gets

H _ E (w—u) .y
V16 (u—pp) 2
The above definition of ﬂ{" ensures that the initial (quadratic) mag-
netostriction obtained from the homogenization model (39) and the
phenomenological model (58) is exactly the same. Evidently, (65)
becomes independent of ﬁz” after substitution of (66) for ﬁ1H .

The selection of the parameter ﬂf . The parameter ﬂZH affects the mag-
netostriction response at larger h-fields as a result of the nonlinearity
of the coupled function cbéi uple in (61) but not the initial magnetostric-
tion. Therefore, the parameter ﬂzH needs to be calibrated numerically by
fitting the magnetostriction response of the phenomenological model
with that of the homogenized model (39) at large h. It is worth noting

B (66)

here that the numerical fitting process is carried out by considering a
zero applied mechanical traction (see Eq. (33)) and a Eulerian applied
h-field h,, as discussed in Section 3.2. To achieve that, we employ the
least square-based curve fitting algorithm 1squrvefit of MATLAB.

More specifically, the coupling coefficient ﬁf essentially depends
on four material parameters: the shear modulus G, of the matrix, the
initial susceptibility y,, the saturation magnetization m; of the particles
and the particle volume fraction c. In practice, most of the MREs are
fabricated by curing the commercially available carbonyl iron parti-
cles along with various elastomers in different proportions [6,8,37].
Therefore, G, and c are the two key parameters’ that vary for different
MRE samples, while we set y, = 30 and Hom;, = 2.5T, as obtained
experimentally in [37].

First, we observe that ﬂZH becomes almost independent of G, and ¢
for G, > 1 MPa. Hence, we introduce a non-dimensional shear modulus,
G* = G,/G**, where G**f = | MPa. The fitting process then involves
scanning for the optimum g}’ in the 0.001 < G} < 1.5 and 0 < ¢ <03
range, as shown in Fig. 4a.

The fitting of the contour in that figure gives

By (G2 o) = afl (GE) — ) (GE)L[c 2 (G2 (67)

with
af! (G%) = exp[-0.29tanh{0.27(In G + 7)} — 1.575],
ol (G¥) = exp[4.4£(-0.781n GZ) - 5.2],

0.1

H *
G = —
% () = G 0.0007

~54G: +6.75.
Here, £(.) is the Langevin function given by (16). Specifically, the evo-
lution of ﬁz” with respect to G is mainly controlled by the coefficients

af and off. In turn, the third coefficient a3H is used to model the

v:ilriation (2)f ﬁZH with respect to ¢ for a given G. The dependence of
the functions af and !’ on G is shown in Fig. 4b, where we observe
that a;’ = 0 for G; > 1, i.e, for all G, > G;. Hence, beyond G} > 1
a constant ﬂZH ~ 0.155 is sufficient. On the other hand, for very soft,
gel-like MREs, i.e., in the range of 0.01 < G; < 0.001, the coupling
coefficient ﬁZH becomes highly sensitive to G} and ¢, resulting in a

significant variation of ﬁz” in this particular range (see Fig. 4a).

Remark 3. In spite of the fact that the assumption of an incom-
pressible matrix and rigid particles leads to very efficient analytical
estimates of the effective response, compressible models for the MREs
are employed in most of the computational investigations due to their
simplicity to incorporate them in a finite-element solver. Unfortunately,
carrying out the homogenization problem for a compressible matrix is

7 Different values of y, and m; are expected to change the functions
obtained below but only weakly, whereas one can always find the optimal
coefficient /32” by simply fitting the homogenized model for the given set of
material properties of interest.
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Fig. 4. (a) Calibrated g (G?,c¢) in the G — ¢ space with the smooth surface showing the profile of the function (67) for g}'(G:,c) and the black dots representing the optimized
Py’ as obtained via fitting the magnetostriction response with the analytical homogenization model. (b) Evolution of the functions «/"(G%) and ;' (G?) in (67) with G.

extremely difficult and no rigorous model is available up to date neither
for the purely mechanical part nor for the magneto-mechanical part.
In this regard, we propose an ad-hoc extension of the incompressible
phenomenological model (58) that essentially relaxes the assumption
of incompressibility without affecting the aforementioned key features
of the model at least in the case of high bulk modulus (i.e. nearly
incompressible materials). The proposed compressible model reads

Wclgmp(F H) = ;Z[cﬂi(ll ) +d§u}1§xg(IH) +¢couple( ’ IH) T TH . (68)
where
/
HP _ m
mech(ll"’) mech(I]) (1 _ 0)5/2 nJ + 21 — )6 - ) (69)

where @, and I, have been defined in (40) and (42), respectively,
whereas G is the Lamé constant associated with the compressibility
modulus of the matrix. A nearly incompressible response is obtained
for values G/ > 100G,, which is the key assumption in most of the nu-
merical computations associated with MREs. In that range, we observe
no visible difference between the incompressible and the nearly incom-
pressible versions for both the magnetostriction and the magnetization
response.

4.2.2. Explicit F-B phenomenological model

In principle, one can obtain an equivalent F-B model via the partial
Legendre-Fenchel transformation (52) of (58) with respect to H. How-
ever, due to the severe nonlinearity of the functions associated with the
proposed F-H model (58), one cannot obtain its complementary energy
in an explicit form. Instead, a complementary energy W £, which has
the exact same form as that of W# in (58), is proposed directly as

wEB(F,B)

@B (IB)+<I> 1 IB

mag

¢mech (F) +

+00

(1_5,13)+ if J=1 (70)

couple

otherwise,
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where the magneto-mechanical invariants /2 and 1 have been defined
in (54). Evidently, the first term of (70) that represents the purely
mechanical component of W 2 is identical to that in (39) and (58), and
is given by (40). Also, the last term of (70) represents the F-B version
of the magnetostatic energy of free space [36].

It remains then to prescribe the two free energies, namely, the mag-
netic and the coupled free energy. Due to their intrinsic properties, tbmag
and tDC‘i uple retain the same functional form to their F-H counterparts
(59) and (61), respectively. Note that, as shown in Figs. 2 and 3, the
hypergeometric ,7, and the @/ functions are rich enough to model a
wide variety of constitutive responses.

. . B
In this regard, the purely magnetic part D, i chosen as

kB
IB
o8B ([B)—_LB 1 2 2 |2V
mag 2 (L) 5 2 kB kBT kBT | (L4 popgm?
1 2 2 b\
X 2 X
=——2% e |—= = 1+=, (22
PNTESTE l[kB KB kB <(1+;{)u0m3> ]
= ). (), (71)

while, the coupling energy is defined by

U2 ipy=oful)y-olud,

couple
with
B 1B
D7(17)
B
_ g Do H_il(g X )‘f“(i)q(\/h >2q
1 2y 5 414y ﬂf Hom?®

where i = 5,6 and again m* = ¢ m;.
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Remark 4. As stated earlier, (72) retains an identical functional form
as its F-H counterpart in (61) except that the magneto-mechanical
coupling is now modeled in terms of the invariant / (?. This choice of
the coupling invariant is not arbitrary, rather, is directly equivalent to
the F-H model. The invariant I f in the F-H model can be expressed
in terms of the Eulerian h as I = F'h - F"h. The Legendre-Fenchel
transform of that invariant leads to the invariant 72 = F7b - F'b. In
addition, and perhaps more importantly, we have shown that in the
linearized regime, the corresponding homogenized model (53) can be
approximated accurately by the model in (57), which in turn depends
on I8 and 12.

In expressions (71) and (72), we have introduced three free param-
eters, namely, k5, ﬂlB and ﬁf . The evaluation and selection of these
parameters using the analytical homogenization model defined in (39)
as well as the approximate linearized one in (57) is described in detail
in the following.

The selection of the parameter k2. Similar to the F-H version, a single
exponent

k¥ =6 (73)

provides a good fit to the magnetization response for all particle volume
fractions and matrix shear moduli considered in this study. Note that
the purely magnetic energy (71) in the F-B model is not an exact
Legendre transform of the corresponding magnetic energy (59) of the
F-H model. Thus, no direct correlation can be drawn between the
model parameters k? and k* and their calibration values.

The evaluation of the parameter ﬁlB. The evaluation of the coefficient
ﬁf’ is carried out in a similar fashion (i.e., via consistent linearization
and fitting with the homogenized response) to the F-B homogenization
model. In the limit of small |b| — 0, (70) can be expanded in terms of
the invariants around IiB = 0 (with i = 5,6). Thus, retaining only the
leading order terms in II.B, one can express (70) as

B
25 ﬁ| (M—=to) , p B 1 g .
D, F — U7 -1 —1 f J=1
VVOB(F,B) _ necn (F) + 2 ﬂZB e ( 6 5 )+ s i
+o0 otherwise.
74

By direct matching of this last free energy function with the approxi-
mate linearized one defined in Eq. (57), we obtain

p_ 16  pop(w—p) B
=2 ol — u)Bu —2v) 2" %)
The above relation for ﬂlB ensures that the initial (quadratic) mag-
netostriction obtained from the homogenization model (57) and the
phenomenological model (70) is exactly the same. Evidently, (74)
becomes independent of ﬁf after substitution of (75) for ﬂlB.

The selection of the parameter ﬁ,f. The parameter ﬁ,f affects the mag-
netostriction response at larger h-fields as a result of the nonlinearity
of the coupled function (Dfouple in (72). Thus, the F-B phenomenolog-
ical model is also reduced to a single modeling parameter, ﬂZB. This
parameter is then obtained by fitting the material magnetostriction
obtained from the phenomenological model (70) with that from the
homogenization model (39). The optimal ﬂzB for a given G} and c is
shown by black squares in Fig. 5, which is qualitatively similar to
Fig. 4a. For convenience in the notation, here we use the same non-
dimensional shear modulus G as defined in Section 4.2.1. Specifically,
we use two piecewise continuous functions of G and ¢ to model the
variation of ﬂZB in the G — ¢ space, which reads

(76)

§3Gt0) = {af(G;)—ag(G;)c[c aB(GH)]. if Gr<ol

0.4055 — 0.5¢ [1 — 0.67L£(15G?)]  otherwise
with

af(G%) = exp[-0.029In G — 0.982],
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Fig. 5. Calibrated ﬂZB(G;,c) in the G} — ¢ space with the smooth surface showing
the profile of the function (76) for ﬂz"(G;,c) and the black dots representing the
optimized i as obtained via fitting the magnetostriction response with the analytical
homogenization model.

aP(G2) = exp[1.78£(-0.32In G%) — 1.78],
@ (G%) = exp[0.14 = 0.54In GZ].

Here, £(.) is again the Langevin function defined in (16). The first
function is similar to ﬂZH with three coefficients a?, af and a3B , which
are functions of G}, whereas, the second function, which models ﬁZB
for all G} > 0.1, is rather a simple function of G} and c. We observe
in Fig. 5 that the two fitting functions for ﬂzB have approximately the
same magnitude near G = 0.1. Thus, the particular choice of piecewise
continuous ﬂzB ensures a constant transition from the Langevin decay to

the linear decrease regime.

Remark 5. A compressible version of (70) is given by

B comp B ISB B ISB I()B 1 B
I/Vcomp(F’ B) = ¢mech(11’ J) +d)mag ﬁ + ¢coz¢p/e ﬁ’ F + 2”0.[15 >

77)

comp

where D

is given by (69).
4.3. Numerical computations of the effective response

The effective response and specifically the average magnetostriction
and magnetization of the MRE is also evaluated numerically by employ-
ing the augmented variational principle (35) similar to the study of [28]
and [46]. To accomplish this, we employ a standard nonlinear finite-
element framework to numerically evaluate the local F and H fields in
a periodic RVE. The finite-element framework requires a well-defined
geometry with a suitable mesh. For the magnetostrictive two-phase
composites at hand, we consider a three dimensional cubic periodic
RVE, which occupies a reference volume of Vg = L3. We then gen-
erate a random distribution of non-overlapping spherical particles of
different size in the RVE using the random sequential adsorption (RSA)
algorithm [47-50]. For efficient meshing and to avoid excessive mesh
distortions, the minimum distance between two particles is considered
to be 1.05 times the average diameter of the two particles. Moreover,
a particle position is also rejected if it lies very close to the edge
of the RVE. These two conditions give a sufficiently easy-to-mesh 3D
particle-filled RVE.

Periodic boundary conditions are applied across the RVEs by con-
straining suitably the nodal displacement i(X) and scalar potential @(X)
fields at the boundary and the corner nodes of the RVE as discussed
extensively in [28] and [30]. Note from (27) and (28) that all the
admissible it and ¢ can be additively decomposed into their average
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field u and ¢ and periodic perturbations u and @, respectively. Owing
to their periodicity in space, the perturbation fields W and ¢ assume
the same value on the opposite boundary/corner nodes of the cubic
RVE. By exploiting these periodicity conditions one can constrain the
i and ¢ fields on avg . Moreover, the effective u and ¢ fields in the
RVE are set to be directly proportional to the local i and ¢ of the four
corner nodes, also termed as the master nodes. Thus, by controlling the
i and ¢ of the master nodes one can apply the boundary conditions in
terms of the effective stress, stress and/or magnetic fields. The reader is
referred to the Appendix B of [28] for more details on the application
of the periodic boundary conditions in a coupled magneto-mechanical
boundary value problem.

Once a suitable mesh and corresponding periodic boundary condi-
tions are defined over the RVE, the local & and ¢ can be computed
from the augmented variational principle (35). The solution procedure
initiates by constructing the local force vector and stiffness matrix for
each element and followed by assembling the local stiffness matrix and
applying the suitable boundary constraints (see [20] for more details
on the construction of the element matrices). After the local i and ¢
are computed at each node for a given loading, the local fields F, S,
&, H, h, B and b are readily computed by utilizing the local kinematic
and constitutive relations at the Gauss points of each element. Then,
the effective mechanical and magnetic fields can be computed by direct
application of (22) and (29) and volume averaging.

So far we lay out a fairly general computational framework, which
is utilized to compute the effective response of an active particle-filled
elastomer. Of course, the computed response depends on the specific
RVE geometry, the mesh, the properties of the constituents and finally
on the loading to which the RVE is subjected to. In order to assess
the homogenization and the proposed phenomenological models, we
compare them with the computed effective response of certain RVEs
in the following section. Therein, we provide more details on the RVE
geometry and the boundary and loading conditions.

5. Results: assessment of the theoretical models

This section provides a rigorous assessment of the proposed phe-
nomenological models by comparison with both the analytical ho-
mogenization and the numerical finite-element (FE) estimates. The
analysis is carried out in three parts. First, in Section 5.1, we as-
sess the accuracy of the homogenization models by comparing the
effective magnetization and effective magnetostriction response under
zero overall mechanical pre-stress with the corresponding FE estimates.
Upon this validation, in Section 5.2, we explore the accuracy of both
F-H and F-B phenomenological models with the F-H homogeniza-
tion model again for zero average pre-stress. Finally, in Section 5.3,
we superpose mechanical pre-stressing and investigate the accuracy
of the phenomenological models by comparison with the analytical
homogenization model.

5.1. Comparison between numerical FE and analytical homogenization re-
sults

In this section, we compare the numerical FE computations with
the analytical homogenization estimates for the effective magnetiza-
tion and magnetostriction response for zero mechanical pre-stress. As
discussed in the previous section, we work exclusively with the F-H
model for the numerical and analytical homogenization estimates. In
contrast to the analytical homogenization, we carry out the numerical
computations for the RVEs by considering nearly incompressible matrix
and particle phase having both a bulk modulus G} > G; (i = m, p).
This assumption of nearly incompressible phases simplifies the FE
computations considerably by avoiding the use of pressure Lagrange
multipliers, which lead to additional degrees-of-freedom of the system.

Specifically, for the numerical FE computations, we consider poly-
disperse spherical particles comprising three different size families with
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Table 2

Material parameters for the silicone matrix and the carbonyl-iron particles.

G, (MPa) G./G; 1 Homr;, (T) Hy (AN-A?)
0.3 500 0.0 - 47107!
300 500 30.0 2.5 471071

Matrix (i =m)
Particle (i =p)

a size ratio of 1 : 7/9 : 4/9 and whose relative proportions with
respect to the total particle volume are taken to be 0.6, 0.3 and
0.1, respectively [32,49]. We consider three distinct particle volume
fractions, ¢ = 0.1, 0.2 and 0.3. In order to define the maximum particle
radius, we consider a reference number of monodisperse particles,
denoted with N, = 60. Then, the radius of the maximum particle
size family is simply R,,./L = (3¢/47xNyo,,)'/3. This readily leads to
R,.,/L =0.074,0.093,0.106 and a total number of particles N, . ~ 130,
280 and 290 for ¢ = 0.1, 0.2 and 0.3, respectively. In Fig. 6, we show
three such representative microstructures and the corresponding mesh,
which uses standard 10-node tetrahedral quadratic elements.

In the numerical computations, we choose to work with a matrix
that resembles a moderately soft silicone and thus exhibits a shear
modulus in the order of 0.3 MPa. The particles, in turn, are made of
carbonyl iron, which exhibit a shear modulus in the order of ~ 200 GPa.
On the other hand, the silicone matrix is magnetically inert having zero
magnetic susceptibility, whereas the iron particles exhibit a Langevin
saturating m-h response. Following the recent work of Psarra et al.
[37], the initial susceptibility and saturation magnetization of the iron
particles is reported in Table 2. In the following, we have chosen the
material parameters as indicated in Table 2. It is noted here that use
of lower shear moduli for the matrix phase leads to very large local
strains, especially between two closely adjacent particles. This, in turn,
leads to an extreme distortion of the mesh in those regions rendering
the numerical simulations extremely difficult. Perhaps the use of a
meshfree method such as the one developed by Arroyo and Ortiz [51]
and recently extended to composite-type materials [52] might allow for
such computations involving very soft matrices.

In turn, due to the large actual contrast between the matrix and the
particles, it is sufficient to consider G, = 1000G;, to ensure numerical
convergence as well as a sufficiently rigid response of the particles
(see work of [32]). The bulk modulus of the matrix and the particle
phase are chosen to be 500 times their respective shear modulus. Such a
choice for G’ ensures a nearly incompressible material response leading
to J ~ 1. In order to avoid volumetric locking, the volumetric term,
i.e., the term involving the (J — 1)? term in (14), is under integrated by
using a single Gauss point at the center of the element. The remaining
of the terms in (12) are integrated using a standard 4-point Gauss
quadrature for the tetrahedral elements. Finally, the effects of the two
augmented terms in (35) are taken care of by introducing a fictitious
element connecting the master nodes (see details of implementation
in [28]). The FE computations are carried out by developing a user-
element (UEL) subroutine, which is then coupled with the commercially
available finite element package ABAQUS/Standard. The developed
code is rigorously benchmarked with analytical uniaxial loading so-
lutions under both mechanical and magnetic loading. Moreover, the
present comparison with the analytical homogenization estimates also
serves as a benchmarking of our code.

Subsequently, we prescribe a loading path where the normal compo-
nents of the average mechanical traction are equal to zero. In addition,
the shear components of the deformation gradient are also blocked to
ensure a uniaxial magnetostriction response. The Eulerian h-field h,
is applied in direction 1, while the response in the other directions is
on average the same due to isotropy of the RVE. These boundary and
loading conditions imply

h_ ho_ h_ _ D —h =
Smech = gnech — guech =, F,;=0,Vi#j, h=h,=he. (78)
The last condition is applied by constraining |h, — F~"H]| to be zero via
the penalty term in (35). In all the computations, the penalty parameter

¢ is taken to be 1073,
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Fig. 6. (top) Three representative polydisperse microstructures for ¢ = 0.1, 0.2 and 0.3 having approximate number of polydisperse particles N, , ~ 130, 280 and 290, respectively.
(bottom) The corresponding unstructured meshes with quadratic ten-node tetrahedral elements leading to 1.55x 10°, 1.62x 10° and 1.50 x 10° degrees of freedom, respectively, for

¢=0.1, 0.2 and 0.3.
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Fig. 7. Numerically computed effective response of cubic RVEs comprising of random polydisperse spherical magnetizable inclusions, coming from three distinct families. The
composite is subjected to an Eulerian h-field along the X, direction and zero overall mechanical traction. The overall Eulerian A-field is applied from 0 to 0.5m; with a maximum
increment of 0.01m;. (a) The effective magnetization for different particle volume fractions. Average of the (b) parallel and (c) transverse magnetostrictions (solid lines) obtained
from 10 different realizations of the RVEs with ¢ = 0.1,0.2 and 0.3, along with the 95% trust regions (light patches) associated with each estimates. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

First, we study the evolution of the effective magnetization and
magnetostriction of a numerical RVE with the applied # for volume
fractions ¢ = 0.1,0.2 and 0.3. As discussed by Danas [28] in the
context of 2D RVEs, a converged magnetostriction response (i.e. in
terms of scatter of the response for different realizations) necessitates
an substantially large number of particles in the unit cell. The present
3D computations also show a highly fluctuating magnetostriction re-
sponse in both parallel (see Fig. 7b) and transverse (see Fig. 7c)
directions of the applied h-field. Evidently, in 3D, the computations
become extremely costly by further increase of the number of par-
ticles beyond N.,,, > 60. Therefore, we follow a second approach
to obtain a converged average response. This consists in computing
the effective response of the unit-cells for a sufficiently large number
of realizations but a smaller number of particles (e.g., Nyo,o = 60,
which leads to a total number of polydisperse particles N, ~ 130,
280 and 290 for ¢ = 0.1, 0.2 and 0.3, respectively). Subsequently, by
considering the average magnetostriction out of all the realizations,
we assume that the response is representative in terms of a volume
element. While this approach does not constitute a rigorous method
to estimate the response of the RVE in a highly nonlinear setting, it
still provides a useful assessment tool for the analytical solutions, even
though any differences found between the numerical and the analytical
homogenization model should be rationalized with extreme caution.
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In this regard, we employ 10 different realizations for each volume
fraction and show the average effective magnetization, parallel and
transverse magnetostrictions in Fig. 7a, b and c, respectively. In accord
with previous studies by Danas [28], the fluctuations in the effective
magnetization m; are negligible and thus are not shown in Fig. 7a.
Therein, the effective saturation magnetization m* of the composite is
observed to be directly proportional to the particle volume fraction,
i.e., m* = ¢m?. In turn, the fluctuations in the parallel magnetostriction
are not negligible. The continuous lines in Fig. 7b indicate the average
magnetostriction extracted from 10 realizations, whereas the light blue
patches indicate the 95% trust region of the random RVE response. The
trust regions of the transverse magnetostriction components are even
larger (see Fig. 7c) as compared to the parallel magnetostriction one.
Moreover, the transverse stretch components 1, and A; of a unit cell
may differ considerably. However, the average transverse magnetostric-
tion components are very close indicating an acceptable convergence
to isotropy (see Fig. 7c). Note that the scatter of the results observed
in the average magnetostriction response is substantially larger than
the one observed for the average magnetization response as well as
the average purely mechanical response (not shown here but can be
found in [32]). Nonetheless, the scatter in the parallel and transverse
components of the magnetostriction tend to vanish with the increase
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Fig. 8. Numerically computed (a—c) normalized local magnetic field b,/ Homy, and (g-i) local nominal mechanical strain 1, — 1 for three particle volume fractions ¢ = 0.1, 0.2 and
0.3 at an overall applied macroscopic field h/m; =0.5. (d-f) and (j-1) correspond to a given cross-section of the unit-cell as depicted in (a).

of N,,.. For completeness, in Appendix B, we present representative
particle and mesh convergence studies for the case of ¢ = 0.3 and
G, =0.3 MPa.

We attempt to rationalize further the previous results by showing
in Fig. 8 representative contour plots for the three volume fractions
¢ =0.1, 0.2 and 0.3 at an overall applied macroscopic field h/m; =0.5.
The Figs. 8a—f, show the normalized local component b, / Homs,, Whereas
Figs. 8g-1, show the local nominal mechanical strain i, — 1. A first
observation in the context of Figs. 8a—f is that the particle interactions
exhibit a long range, which can be larger than 4 radii of the largest
particle along the direction of the applied field. This interaction is
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stronger at higher volume fractions (see for instance Fig. 8f), while
it reveals that extreme caution needs to be taken when such material
systems are analyzed with simpler dipole-dipole models. Also, the
concentration of the 7)1 field, which can reach rather high values, is
strongly dependent on local particle distributions, thus explaining par-
tially the difficulty in obtaining a converged isotropic response under
such loading conditions and magneto-mechanical loads. In other words,
by slightly changing the positions of the particles, one can change
substantially the corresponding interactions. In turn, Figs. 8g-1, reveal
the strong concentration of strains in-between particles. These strains
can reach values higher than |0.1|, whereas the overall straining of the
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Fig. 9. (a) Effective magnetization and effective (b) parallel and (c) transverse magnetostrictions as obtained from the numerical homogenization (discrete points), analytical
homogenization (firm lines) for the particle volume fractions ¢ = 0.1,0.2 and 0.3. Eulerian h-field is applied at a local point in the MRE, which is free from mechanical tractions.

RVE is |0.03|. Due to particle rearrangement, we also observe significant
tensile strains at various points in the unit-cell. It is further noted
that these strains can exceed the value of 1 when the matrix is softer,
as was recently discussed by Danas [28]. Such high strains can lead
to debonding and final loss of efficiency in the magneto-mechanical
coupling, unless specific fabrication steps are not taken (for a more
detailed discussion see [8]). Unfortunately, in the present 3D study,
we were not able to carry out such computations for softer matrices
(e.g., G, < 0.1 MPa) due to computational convergence problems.

Next, we compare the average FE magnetization and magnetostric-
tion response of Fig. 7 with those obtained from the analytical F-H
homogenization model, defined in (39). Note that, the homogenization
model is incompressible. Thus, we consider F = Ae; ® ¢; + 1/1/2;¢, ®
e, +1/ \//1_1 e; ® e; and subsequently, for a given h, we compute 4, and
the arbitrary pressure p by solving the first two equations given by the
traction conditions (78),. The magnetization and the magnetostriction
response from the analytical homogenization model and the FE simula-
tions are compared in Fig. 9. In this figure, for volume fractions ¢ = 0.1
and 0.2, we observe an excellent agreement between the analytical
and FE homogenization models for both the magnetization and the
magnetostriction. In turn, for the higher particle volume fractions,
¢ = 0.3, the analytical homogenization estimates for 4; (i = 1,2,3) are
significantly lower in absolute value than that obtained from the FE
calculations, as shown in Figs. 9b and c. Instead, the agreement in the
magnetization response is excellent even for ¢ = 0.3.

In this regard, given the fact that the analytical homogenization esti-
mates are very accurate at volume fractions of practical interest (i.e. ¢ <
0.2), we choose them in the following to calibrate our phenomeno-
logical models even for larger volume fractions but more importantly
for much lower matrix shear moduli that the FE calculations do not
converge. Note, however, that the phenomenological models may be
calibrated using available experimental results or directly numerical FE
computations.

5.2. Comparison between the phenomenological and homogenization esti-
mates without mechanical pre-load

This section assesses the F-H (see Eq. (58)) and F-B (see Eq. (70))
incompressible phenomenological models for a large range of matrix
shear moduli, spanning a range of 0.003 < G, < 0.3 MPa (or equiv-
alently 0.003 < G; < 0.3). In particular, we choose for illustration
purposes, three shear moduli G, = 0.003,0.03,0.3 MPa. We set the
magnetic properties of the iron particles, i.e., v, and m} unaltered (see
Table 2). Finally we apply the boundary/loading conditions described
in (78).

The effective magnetization and magnetostriction for G = 0.3,0.03
and 0.003 and four different volume fractions ¢ = 0.05,0.1,0.2 and
0.3 are shown as a function of the applied Eulerian h—field h/m in
Figs. 10a, d, g and Figs. 10b, e, h, respectively. The transverse magne-
tostriction components, 4, and 45, are equal to 1//2; since we consider
the MRE to be incompressible in both the analytical homogenization
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and the phenomenological models. We find an excellent agreement
between the analytical homogenization estimates and the proposed
phenomenological ones, both in terms of m; and A, for all ¢ considered
here.

In Figs. 10c, f, i, we show the magnetostriction A4, — 1 at various
values of the applied Eulerian field h/m. At h = 0.2mg, the phe-
nomenological estimates are slightly different from the corresponding
homogenization estimates for particle volume fractions ¢ > 0.25. In
turn, at higher h-fields such as h = 0.5mg or h=15m;, the phenomeno-
logical models are in very close agreement with the homogenization
estimates, even for higher particle volume fractions such as ¢ = 0.35.
Hence, the slight mismatch between the phenomenological and the
homogenization estimates at moderate fields and large volume fraction
can be directly attributed to the specific functional form of the coupling
free energy (61) and (72). In turn, the calibrated coupling coefficients
ﬁf and ﬂZB manage to model very accurately the saturation magne-
tostriction, even for ¢ > 0.25, as indicated by the almost perfect overlap
of the A, curves in Figs. 10c, f, i at higher applied A-fields. Thus, the
overall performance of the phenomenological models is found to be ex-
cellent up to ¢ = 0.25 and even sufficiently accurate for particle volume
fraction of ¢ = 0.35. We recall, here, that the homogenization estimates
were found to underestimate the magnetostriction by comparison to
FE results for volume fraction ¢ = 0.3. Hence, the use of the proposed
phenomenological models for volume fractions ¢ > 0.2 should be done
with caution.

Finally, an important observation in the context of Fig. 10 is that the
computed magnetization response is fairly independent of the matrix
shear modulus G, as easily observed by comparing parts (a), (d) and
(g). Instead, the magnetostriction response is a very strong function of
G:.

5.3. Comparison between the phenomenological and homogenization esti-
mates with mechanical pre-load

The final step in the assessment of the proposed phenomenological
models is to probe the model for mechanical pre-loads that lie out-
side the previous calibration range. We, thus, consider three different
mechanical pre-loads, namely, the uniaxial pre-stress, the equibiaxial
pre-stress and the pre-shear stress. In this regard, Figs. 11-13 show
the effective magnetization and pure magnetostriction (i.e. A; — A? with
/1‘1) denoting the initial pre-stretching due to the applied pre-stress) for
G, = 0.003 and 0.03 MPa at a volume fraction ¢ = 0.2 as a function of the
applied Eulerian h—field A/m?. In all subsequent cases, the direction of
magnetic loading is prescribed along e, while the direction of applied
pre-stresses are varied. The magnitude of the applied pre-stresses is
selected in accord with experimentally relevant pre-stress conditions
(see [6]). The corresponding pre-stretches /1? (i = 1,2,3) can be easily
computed numerically or analytically for Neo-Hookean solids and are
not presented explicitly here (see e.g., [53]).

Uniaxial pre-stress load: The uniaxial pre-stresses are applied along
the direction 1 or 2, i.e., ST°" /G, # 0 or 55" /G, # 0, respectively, re-

2
taining the rest of the boundary conditions the same as those described
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Fig. 10. Effective (a, d, g) magnetization and (b, e, h) magnetostriction as a function of the applied normalized Eulerian field 4/m? obtained by the analytical F-H homogenization
model (39) (solid lines), the phenomenological F-H model (58) (dashed lines) and the phenomenological F-B model (70) (dashed-dot lines) for particle volume fractions
¢=0.05,0.1,0.2 and 0.3 for matrix shear moduli of G, =0.3,0.03 and 0.003 MPa. Zero average axial mechanical pres-stress is applied. (c, f, i) Effect of particle volume fractions ¢

on the magnetostrictions at various values of hfm.

in (78). As discussed before and in agreement with the earlier results
of [6], the magnetization response in Fig. 11a and d are independent
of the matrix shear modulus G, and the pre-stress (not labeled in the
figure for clarity). All models are in excellent agreement in this case of
magnetization response.

In turn, in Fig. 11b, ¢, e and f, the magnetostriction response
depends on the pre-stress as expected. We observe that application
of a tensile pre-stress S‘ffcn /G, along the direction of the magnetic
loading leads to an enhancement of compression, while application of
a compressive pre-stress moves the magnetostriction curve upwards,
i.e. to less compression. These results are in qualitative agreement with
the reported experimental results in [6]. On the other hand, applied
transverse tensile and compressive pre-stresses S;‘;Ch/Gm leads to a
reduction and an enhancement in the magnetostriction, respectively
(see Fig. 11e and f). Moreover, the variability of the magnetostriction
due to the transverse pre-stress S;‘;Ch is found to be weaker than the
axial one, ST‘fCh.

In all these magnetostriction responses we observe that the phe-
nomenological model, while remaining in very good agreement with
the homogenization model for small to moderate values of 4, it tends
to underestimate (in absolute value) the saturating magnetostriction at
higher fields. The differences between the phenomenological and ho-
mogenization estimates are larger for the higher matrix shear modulus
G, = 0.03 MPa, while they become much smaller for the lower one
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G, = 0.003 MPa. Even so, the phenomenological model retains the
correct characteristics even at large pre-stresses.

Equibiaxial pre-stress load: Equibiaxial mechanical loading together
with a transverse applied magnetic field along the third direction is
often encountered in layered MRE structures [37,53,54]. Thus, mo-
tivated from such practical loading situations, we probe, next, the
phenomenological model under applied equi-biaxial pre-stress along
directions 2 and 3, such that S35<"/G,, = SE"/G, = Sge/G, # 0,
while the remaining boundary conditions are given by (78). Similar
to the uniaxial pre-loading, no significant change in the magnetization
is observed in Fig. 12a. The magnetostriction obtained from the ho-
mogenization model is found to change in Fig. 12b and c depending
on the direction of S;‘i“h /Gy. In turn, a very weak change is observed
in the phenomenolgical magnetostriction response. We note that an
equibiaxial pre-tension (pre-compression) along directions 2-3 leads
to a pre-compression (pre-tension) along 1, which is the direction of
magnetic loading. Hence, the magnetostriction is observed to decrease
(increase) for Sgi“h /Gy > 0 (SgieCh /G, < 0), which is in agreement
with the previous observations in the context of uniaxial pre-stresses.
Again the phenomenological model is in better agreement with the
homogenization model at softer matrices.

Shear pre-stress load: The magneto-mechanical measurements in [6]
also consider mechanical loading paths where a shear pre-stress is ap-
plied transverse to the applied magnetic field. Thus, a shear pre-loading
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Fig. 11. Effective (a, d) magnetization and (b, c, e, f) magnetostriction as a function of the applied normalized Eulerian field h/m; obtained by the analytical F-H homogenization
model (39) (solid lines), the phenomenological F-H model (58) (dashed lines) and the phenomenological F-B model (70) (dashed-dot lines) for particle volume fraction ¢ = 0.2 and for
matrix shear moduli of G, = 0.03 and 0.003 MPa. (a—c) and (d—f): Two sets of average uniaxial mechanical pres-stress are applied as 75" /G, = —0.3,0,0.3 and S3;** /G, = -0.3,0,0.3,

respectively.
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Fig. 12. Effective (a) magnetization and (b, ¢) magnetostriction as a function of the applied normalized Eulerian field #/m’ obtained by the analytical F-H homogenization model
(39) (solid lines), the phenomenological F~-H model (58) (dashed lines) and the phenomenological F-B model (70) (dashed-dot lines) for particle volume fraction ¢ = 0.2 and for
matrix shear moduli of G, =0.03 and 0.003 MPa. (a—c) Three average equibiaxial mechanical pres-stress are applied, so that Sg‘zec" /G, = S?;Ch /G, = 82" /G, =-0.3,0,03.

is considered in this section by applying S57"/G,, > 0, while keeping
the rest of the boundary conditions identical to (78). In agreement with
the previous observations, the magnetization remains unaffected by the
applied S‘{‘;Ch (see Fig. 13a). In Figs. 13b and ¢, the magnetostriction
estimates obtained by both models are completely independent of S‘zl‘leCh.
Furthermore, the application of S37°" leads to a shear stain and a trans-
verse magnetization along e,. The resulting shear strain is interestingly
found by both models to be completely independent of the applied
magnetic field and thus is not included in Figs. 13b and c. Similarly,
the transverse magnetization remains considerably lower (~ 1073m?)
than the parallel magnetization and thus is not included in Fig. 13a.
We note in passing that very similar results are also obtained by both
models for a shear pre-stress S‘f‘;Ch /G, # 0 and thus is not included here
for brevity.

In summary, the above results are in qualitative agreement with
those in [6] and suggest that MRE devices that are based on a shearing
mechanical load exhibit very weak coupling along that direction and
thus negligible magnetorheological stiffening. This is one of the sub-
stantial differences between MR elastomers and MR fluids, since the
latter can mainly operate in shearing conditions. Instead, the MR solids
can mainly operate under uniaxial and multi-axial ones.

Bi
6. Concluding remarks

In this work, we present explicit phenomenological models both
in the F — H and the F — B space, which are based on a rigorous
homogenization solution, which, in turn, lies in the space of the de-
formation gradient, F, and Lagrangian h-field, H. We analyze the
magnetization and magnetostriction problem using an augmented vari-
ational principle in an effort to retrieve the pure microscopic “mate-
rial” magneto-mechanical coupling in magnetorheological elastomers
(MREs). We then use this framework to study numerically and an-
alytically the homogenized response of isotropic MREs comprising
I,-based hyperelastic matrix and mechanically rigid iron particles
that exhibit negligible magnetic hysteresis (i.e. magnetically soft). The
most important part of this study consists in proposing simple explicit
homogenization-guided phenomenological models in both F — H and
F — B variable space. Those phenomenological models are proposed
both in the context of incompressible and nearly incompressible setting
making them highly versatile and easy-to-implement in finite element
user material subroutines.

Specifically, we show by comparison with full field FE RVE calcu-
lations that the analytical homogenization model of [19] is sufficiently
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Fig. 13. Effective (a) magnetization and (b, ¢) magnetostriction as a function of the applied normalized Eulerian field h/m} obtained by the analytical F~-H homogenization model
(39) (solid lines), the phenomenological F-H model (58) (dashed lines) and the phenomenological F-B model (70) (dashed-dot lines) for particle volume fraction ¢ = 0.2 and for
matrix shear moduli of G, =0.03 and 0.003 MPa. (a—c) Three overall pre-shear stresses are applied: S‘,_“fm /G, =0,0.3,0.5.

accurate for small to moderate particle volume fractions (i.e., 0 <
¢ < 0.2). While this model is general since it is based on a rigorous
homogenization procedure, it is implicit for the case of magnetically
saturating particles and thus requires the solution of an additional
nonlinear algebraic equation for the complete description of the MRE
response. Also it is only proposed in the F — H variable space since
a Legendre-Fenchel transform is not analytically feasible in the gen-
eral nonlinear magnetic saturation context. Nonetheless, it offers an
extremely valuable base to investigate the response of isotropic MREs
and to help calibrate phenomenological models.

In this regard, in the present study, we propose explicit phenomeno-
logical models that are based on the homogenization model. In par-
ticular, the proposed energy functions recover three main features of
the [19] homogenization model: (i) they recover the exact (in the sense
of homogenization) effective magnetization response at small and very
large (i.e. at magnetization saturation) magnetic fields, (ii) they predict
the exact magnetostriction response at small-to-moderate magnetic
fields for any mechanical pre-loads and (iii) their purely mechanical
response is exactly that of the homogenization model, which has been
originally obtained in [32]. In turn, in order to maintain the simplicity
of the models, we choose not to recover exactly the magnetostriction
response at very large saturating magnetic fields (but see along these
directions the recent work in the F — H space of [31]). In particular, in
a number of applications that the geometry plays a predominant role
(see for instance [54]) or the coupling is weak (i.e., at fairly large shear
moduli of the matrix phase, e.g. larger than 0.3MPa for instance), the
coupled part of the energy can be easily dropped while maintaining the
dependence on the volume fraction of the particles in the mechanical
and magnetic energy. This last modeling approach is straightforward
and fairly accurate for such applications and requires a minimum set
of calibration such as the mechanical and purely magnetic constitutive
parameters of the MRE.

Specifically, in order to obtain the nontrivial behavior of the mag-
netostrictive response as a function of the applied Eulerian magnetic
field (i.e., is initially quadratic, subsequently increases in a slower non-
quadratic manner reaching a saturating value), we propose a coupling
energy that is a nonconvex function of its argument. It is noted, how-
ever, that the coefficient multiplying this coupling part is rather small
thus leading to an overall convex magneto-elastic energy function. Even
so, it is evident from that observation that for more complex MREs
(i.e. with non-spherical particles or particle-chain distributions) such
nonconvexities could lead to instabilities and loss of ellipticity (see for
instance [53,55] and [37,54]). Such an analysis is beyond the scope of
the present manuscript and is left for a future study.

Furthermore, the proposed phenomenological model comprises very
few calibration parameters, which in the present study are reduced to
a single one, i.e., ﬂZH ‘B This parameter is then calibrated numerically
by comparison with the analytical homogenization model of [19].
Nevertheless, the form of the phenomenological energy functions is
more universal and can be used more generally in fitting any exper-
imental or numerical estimates that may be available. As also been
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shown, extrapolation of the phenomenological estimates in a regime
that lies rather far from the calibration process (e.g. significant applied
pre-stresses) gives very satisfactory and accurate results at small and
moderate applied magnetic fields and even large fields particularly for
softer matrices.

By using the simple explicit energy functions together with the
variational framework of [28] that allows to study the pure material
magneto-mechanical coupling, we have obtained several interesting
results. SPecifically, all presented models show that in the context of
isotropic MREs, the magnetization response is insensitive to the shear
modulus of the matrix material even when the latter ranges from values
between 0.003-0.3 MPa (this observation is also valid for the larger
range 0.001-1 MPa not explicitly shown here). On the other hand, the
magnetostriction response is highly dependent of the shear modulus
of the matrix G,, as intuitively expected. A second observation, which
is consistent with the recent work of [28], is that the microscopic
deformation of isotropic MREs leads to compressive magnetostriction
for zero overall mechanical tractions in the RVE. Hence, the observed
overall extensive response of MRE specimens in experiments (see for
instance [8]) is a result of the specimen shape and the entire set of
boundary conditions and geometry of the experimental setup. This has
been discussed in detail in [19], who showed that in zones of (al-
most) zero mechanical tractions, the MRE exhibits compressive strains.
Finally, application of pre-stresses results in the phenomenological
models becoming less accurate especially at larger magnetic fields, even
though their predictions become increasingly better for softer matrices.
Finally, we find that the effect of a mechanical pre-load is maximum
for uniaxial pre-stressing and negligible for shearing ones.

In closing, it is worth mentioning that the actual MREs may be
viscoelastic in nature and thus the extension of the present work to
that context is necessary. Recent studies towards that direction revealed
several interesting features (see for instance [56] and [57]), however,
no constitutive micromechanical models that take into account the
particle volume fraction and microstructure have been proposed yet.
Furthermore, in even more recent works, the iron particles have been
replaced by hard magnetic particles such as NdFeB-particles adding one
more level of complexity, that of magnetic hysteresis (see recent work
of [58]). Such a study that builds upon the present one is underway.
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Appendix A. Pull-back transformation of effective Eulerian field h

The effective Eulerian h-field is defined by (24), such that

h= ;# h(x) do. (A.1)

Substituting h(x) by its pull-back transformation (2), and expressing the
current volume V* = JV} in the above, we obtain
1

h= JXF’TX H(X) dV =
JV# XF (X) - HX)

1

v W x) HX) av, (A2)

vi oF
where the microscopic deformation gradient F is defined in Section 2
via F(X) = Grad y(X), with y(X) denoting the continuous and twice
differentiable one-to-one mapping from the reference to the current
configuration. The deformation gradient tensor F can then be expressed
in index notation as F,, ='y,,,, where the comma “,” in the subscript
denotes partial differentlatlon with respect to X, such that y,, =
dy,,/0X,. Furthermore, J = detF in (A.2) can be expressed in index
notation as

Jj= (A.3)

1
6 CuikCparYinYjaYir:

where ¢;;, is the standard permutation symbol.

To obtain the pull-back transformation of h in terms of F and
H in the average context, we first show that the tensor aJ/dF is
divergence-free and then utilize this condition along with the kine-
matically admissible boundary conditions on H or dJ/dF and the
Hill-Mandel lemma.

Divergence of 0J /oF: The tensor 0J /oF is readily evaluated from
(A.3), such that

aJ 1
GF ZE €mjkCngrYjgYir |-

mn

(A4

In turn, Div(dJ /dF) can be computed by taking the divergence on both
sides of the above equation, such that

(),
oF,, /. 2

By interchanging the dummy indices in the previous equation, one gets
the desired divergence-free result

< aJ > _1, .
aan ” 0 “mjkJj.q

Application of the Hill-Mandel lemma: We express (A.2) in index
notation as
— [ 2y dV=—L#/ of
JVE Jvt oF; IVE Jvt oF;

Here, the curl-free condition on H allows to write the latter in terms
of a scalar potential ¢ such that H = —Grad¢ (or equivalently, H, =
—,). From the divergence theorem and the divergence-free property
of 0J /oF, we recast (A.6) to read

|:€mjk€nqryj,qr1Yk,r + Emjkenqry/',qyk,rn:| .

|:€nqryk¢rn - enqryk,nr:| =0. (AS)

g, dv. (A6)

=

h=—L (p./\/ ds,

. (A7)
b vt Jov oF,

where W is the unit normal on the reference boundary 6178‘ . Notice
that, in Vg , the scalar potential ¢ is defined by (23), tobe ¢ = —H, X, +
@ with @ periodic (i.e. takes identical values in opposite faces of the
periodic boundary). Next, substituting this last expression in (A.7), we

obtain
—N; dS}

P / oJ
! IVE vt OF;

where we recall that the effective H, is constant. The second term in
(A.8) is identically zero since @ is periodic and the term J\/‘jaf /OF, ;s
anti-periodic (by simple use of the divergence-free property of 3J /o F, -

~ aJ
0F

— H X, N; dS - / (A.8)

ovE
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In turn, by employing the divergence theorem in the first term of (A.8)

together with the divergence-free property of dJ /dF;; j» we obtain

1 oJ

_— H.
IV} vt oF;

= - *.9

O 6y, v =1 [ ! 9J dV]

Iy Jve oF;

Again, using the divergence-free property of dJ/dF, ;> the last term in
the square brackets is simply equal to the average dJ/dF;;, such that

1(3JH FlH

-T
i= 7 9F, f F' -H

Appendix B. Particle and mesh convergence

This section presents a convergence study of the computed effective
magnetization and magnetostriction for a particle volume fraction ¢ =
0.3 in terms of the overall number of particles in the RVE and the
number of degrees of freedom. It has been observed in Section 5.1
as well as in former numerical homogenization estimates [28] that
the effective magnetization exhibits negligible scatter when different
realizations of RVEs are considered. We thus exclude for brevity the
convergence study in terms of the effective magnetization and focus
only on the magnetostriction results.

For all the computations performed hereafter, the material pa-
rameters for the particle and the matrix phases are those presented
in Table 2. Moreover, the applied overall (macroscopic) boundary
conditions remain the same with those described in Eq. (78).

Convergence of the number of particles: In addition to a set of 10
realizations of the polydisperse RVEs having N, = 60 (Ny,. ~
290) considered in Section 5.1, we analyze here two additional sets
of 10 RVEs each. As defined in Section 5.1, in the first set of RVEs,
we use the same three different families having the same size ratio
(i.e. (1,7/9,4/9)) and relative volume proportion (0.6,0.3,0.1)c, re-
spectively. Furthermore, it comprises polydisperse spherical particles
obtained by setting N,,., = 100, which leads to a R,,,/L = 0.0895
(with L =1 denoting the size of the cubic unit cell) and a total number
of actual particles N.,. ~ 450. The last set has 10 RVE realizations
with polydisperse spherical particles from four different families of size
ratio 1.0, 0.778, 0.556, and 0.333 whose relative proportion in the total
particle volume being 0.6, 0.3, 0.2 and 0.1, respectively. This last set is
obtained by considering N, = 120, which leads to a maximum sphere
radius R,,, /L = 0.0842 and a total number of particles N, ~ 750. The
average value of the total degrees of freedom for each set of RVEs is
1.5x10°, 2.7x 10 and 8.5x 10° for Ny, ~ 290, 450 and 750, respectively.
Notice that, the N.,. in these polydisperse RVEs is not a primary
variable, rather, is a derived quantity. The primary variables that define
a polydisperse RVE is given by the particle volume fraction ¢, the
equivalent number of monodisperse particles N, ., the size ratio of
different families and their relative volume proportions. For a detailed
discussion of these RVE constructions the reader is referred to the
recent works of Anoukou et al. [49], Zerhouni et al. [50] and Tarantino
et al. [59].

The average of the computed magnetostriction responses for the
three aforementioned sets of RVEs are shown in Fig. B.1a. Here we
observe that, with increasing number of particles, the average parallel
(4; — 1) and transverse (4, — 1, 43 — 1) magnetostrictions converge to
that reported in Fig. 7b and c, respectively. Furthermore, the scatter of
the computed magnetostrictions are observed to decrease considerably
(see Fig. B.1b) with the increase of the number of particles. It should
be noted here that the convergence of the computed magnetostriction
in Fig. B.1la and b is valid for the present use of energy functions
(e.g. Neo-Hookean mechanical response defined in (14)). A different
hyperelastic law with more pronounced nonlinearities (such as Gent
hyperelasticity) for the matrix phase may need additional convergence
studies and perhaps even larger number of particles.

Mesh convergence: Next, we investigate the mesh convergence of the
computed effective magnetization and magnetostriction for a specific
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Fig. B.1.
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(a) Average effective parallel and transverse magnetostriction stretches, (b) scatter in the parallel magnetostrictions as obtained from the numerical homogenization for

the particle volume fraction of ¢ = 0.3 and the total number of particles N, ,, ~ 290 (firm lines), N, ~ 450 (dashed lines) and N,,, ~ 750 (chain-dotted lines). Eulerian h-field is
applied at a local point in the MRE, which is free from mechanical tractions.
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Fig. B.2. Computed (a) effective magnetization and (b—c) effective parallel and transverse magnetostrictions for a RVE with ¢ = 0.3 and N,,, ~ 290 having four different meshes
with total degrees-of-freedom 0.8 x 10° (dashed-dotted lines), 1.5 x 10° (dotted lines), 3.4 x 10° (dashed lines) and 5.1 x 10° (solid lines).

RVE given by Fig. 7 for ¢ = 0.3. In addition to the given mesh in
Fig. 7, we perform the computations for three additional meshes; one
with a coarser mesh with total number of degrees of freedom equal
to 0.8 x 10° and two with finer meshes having 3.4 x 10° and 5.1 x 10°
degrees of freedom. As shown in Fig. B.2a, the effective magnetiza-
tion is converging rapidly for all meshes, whereas, the parallel and
transverse magnetostrictions in Fig. B.2b and c are seen to be slightly
underestimated when the coarse mesh with 0.8x10° degrees-of-freedom
is used. Nevertheless, the magnetostriction response is observed to
converge rapidly with the subsequent mesh refinements. Notice that
in all the reported results in Section 5.1, we use the RVEs with approx-
imately 1.5 x 10° degrees of freedom, which leads to fully converged
magnetization and magnetostriction responses as observed in Fig. B.2.
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