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A B S T R A C T

Hard magnetorheological elastomers (ℎ-MREs) are essentially two phase composites comprising
permanently magnetizable metallic inclusions suspended in a soft elastomeric matrix. This
work provides a thermodynamically consistent, microstructurally-guided modeling framework
for isotropic, incompressible ℎ-MREs. Energy dissipates in such hard-magnetic composites
primarily via ferromagnetic hysteresis in the underlying hard-magnetic particles. The proposed
constitutive model is thus developed following the generalized standard materials framework,
which necessitates suitable definitions of the energy density and the dissipation potential.
Moreover, the proposed model is designed to recover several well-known homogenization results
(and bounds) in the purely mechanical and purely magnetic limiting cases. The magneto–
mechanical coupling response of the model, in turn, is calibrated with the aid of numerical
homogenization estimates under symmetric cyclic loading. The performance of the model is then
probed against several other numerical homogenization estimates considering various magneto–
mechanical loading paths other than the calibration loading path. Very good agreement between
the macroscopic model and the numerical homogenization estimates is observed, especially for
stiff to moderately-soft matrix materials. An important outcome of the numerical simulations
is the independence of the current magnetization to the stretch part of the deformation
gradient. This is taken into account in the model by considering an only rotation-dependent
remanent magnetic field as an internal variable. We further show that there is no need for an
additional mechanical internal variable. Finally, the model is employed to solve macroscopic
boundary value problems involving slender ℎ-MRE structures and the results match excellently
with experimental data from literature. Crucial differences are found between uniformly and
non-uniformly pre-magnetized ℎ-MREs in terms of their pre-magnetization and the associated
self-fields.

. Introduction

Rare earth-based, hard (permanent) magnetic NdFeB particle-filled magnetorheological elastomers (MREs) have been recently
xplored towards their potential applications in magnetic soft robots (Kim et al., 2018; Zhao et al., 2019; Ren et al., 2019; Alapan
t al., 2020), microfluidic separators (Hilber and Jakoby, 2012; Royet et al., 2017; Zhou et al., 2020), and bio-inspired magnetic
ensors (Kaidarova et al., 2018) among other innovative applications. In contrast to traditional soft magnetic iron particle-filled
REs, denoted henceforth as 𝑠-MREs, (Danas et al., 2012; Bodelot et al., 2017), NdFeB particle-filled hard MREs, denoted as ℎ-MREs,

xhibit remanent magnetization. Because of this feature, ℎ-MREs may be actuated by much smaller magnetic fields in comparison
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with iron-based MREs (Kim et al., 2018; Zhao et al., 2019; Ren et al., 2019; Alapan et al., 2020). In turn, in the works of Kim et al.
(2018) and Alapan et al. (2020), the initial magnetization is achieved through strong magnetic fields during the 3D printing process.

The fabrication of magneto-active particle-filled MREs was initiated by Rigbi and Jilkén (1983), who cured soft iron particles
n a natural rubber matrix and consequently investigated the mechanical properties of the composite under applied magnetic field.
ince then, numerous fabrication techniques and experimental probes for 𝑠-MREs have been reported (Jolly et al., 1996; Ginder
t al., 1999, 2000; Lokander and Stenberg, 2003; Danas et al., 2012; Bodelot et al., 2017). NdFeB particles bonded in polymers, on
he other hand, were initially fabricated to replace the traditional permanent magnets in various applications (Garrell et al., 2003).
ore recently, 3D printing has been exploited for the creation of permanent magnets with a desired distribution of the magnetic

ield (Huber et al., 2017; Taylor et al., 2019). Due to the aim of replacing hard permanent magnets, such ‘‘polymer bonded magnets’’
re mechanically stiff by design. In contrast to these mechanically stiff magnets, ℎ-MREs are based on NdFeB particles suspended
n rather soft matrix materials like polydimethylsiloxane (PDMS) (Linke et al., 2016; Schümann and Odenbach, 2017; Kalina et al.,
017; Sánchez et al., 2018). However, ℎ-MREs made of such soft elastomers with shear modulus 𝐺 ∼ 0.04 − 0.001MPa (Schümann
nd Odenbach, 2017) are often too soft to be used as structural elements. Moreover, the interactions of the strongly magnetic NdFeB
articles typically lead to considerable damage of the matrix. To avoid such effects, recent investigations on the coupled structural
esponse of ℎ-MREs use a moderately soft commercially available Sylgard 184 (10:1) PDMS matrix (Kim et al., 2018; Zhao et al.,
019) with a mechanical shear modulus in the range of 𝐺 ∼ 0.4−1.2MPa (Choi and Rogers, 2003; Johnston et al., 2014; Park et al.,
018).

On the other hand, the particles are practically rigid by comparison to the elastomer matrix and thus can only undergo rotation
ut not deformation in the context of the MRE composites under consideration. Their magnetic response, however, is more complex
nd involves several scales. Specifically, the size of the magnetic particles employed in both magnetically hard and soft MREs is in
he order of several microns. Hence, they are considerably smaller than the leading dimensions of typical ‘‘macroscopic’’ samples.
n particular, the commercially available (both, mechanically and magnetically) isotropic NdFeB particles (also known as MQP-

particles) have a median diameter of 10 − 30 μm, while the dimensions of the fabricated ℎ-MRE composites typically is in the
rder of 1 − 100 mm (Kim et al., 2018; Zhao et al., 2019). Moreover, the hard-magnetic particles are polycrystalline in nature,
aving randomly-oriented grains of ∼ 50 nm size (Huber et al., 2019). As a consequence, the ferromagnetic hysteresis in these hard
agnetic particles occurs at the nanometer scale since it results from the domain wall motions and their pinning/unpinning at the

rain boundaries (Livingston, 1981). This implies that a complete analysis of all physical mechanisms requires the consideration of
t least three scales ranging from the nano- to the millimeter scale, which makes the problem highly intractable in an analytical
ense.

In this work, we will focus on a more continuum approach with the goal of providing an explicit analytical model at the
acroscopic scale. In particular, the continuum magneto-elastic modeling traces its way back to Tiersten (1964, 1965) and Brown

1966). Since then, a set of different continuum models and formulations for the coupled magneto–mechanical response of magnets
as been proposed (see the monographs by Hutter and van de Ven (1978), Kovetz (2000)). More recently, the magneto-elastic
heory has been revisited and modernized for the modeling of 𝑠-MREs by Dorfmann and Ogden (2003, 2004) and Kankanala and
riantafyllidis (2004). A continuum model for the anisotropic 𝑠-MREs is subsequently proposed by Danas et al. (2012). These so-
alled ‘‘top-down’’ phenomenological models are devised from macroscopic experimental observations. In all those models, the
erromagnetic response of the particles and the composite is modeled, rather efficiently, in a continuum manner circumventing the
rocesses at the scale of domain wall motion.

On the other hand, ‘‘bottom-up’’ approaches allowing to model the macroscopic response of 𝑠-MREs have been developed based
n the (variational) homogenization of local microscopic potentials associated with the two individual phases of the composite.
or these methods, the decision on the relevant scales is of great theoretical and practical importance. If one is interested in
nderstanding the physical nature of ferromagnetism at the nanometer or micrometer scale of the particles themselves and the
orresponding domain wall motion, one appropriate framework is that of micromagnetics which goes back to Brown (1963) (but see
mportant works along these lines by James and Kinderlehrer (1993) and DeSimone and James (2002)). This theory has been very
ecently extended in the context of magneto–mechanics of elastomer composites by Keip and Sridhar (2018) in a two-dimensional
umerical setting. Unfortunately, it is extremely hard to obtain three-dimensional analytical ‘‘explicit’’ models for domain wall
otion at that nanoscale that also take into account particle interactions at the ℎ-MRE scale. In turn, the numerical resolution of
agnetic domains is computationally extremely demanding and for the moment it has mainly been achieved in two-dimensions and

t the scale of a few particles.
By contrast, when the magnetic particles are much larger than the typical magnetic domain scale (roughly the grain size),

s is the case in the present study, a phenomenological description of the magnetic response of the particles is often sufficiently
ccurate (Mukherjee and Danas, 2019). This holds in particular when the particles are themselves small in comparison with the actual
cale of interest, i.e. the macroscopic scale. Hence, the majority of works on homogenization in the context of MREs start from the
article scale (microns) which is then often referred to as microscale. Analytical homogenization estimates for the ‘‘effective response’’
f mechanically incompressible, soft magnetic composites are provided by Ponte Castañeda and Galipeau (2011) and Lefèvre
t al. (2017), while the numerical homogenization estimates for the same are provided by Kalina et al. (2016) and Danas (2017).
oreover, Keip and Rambausek (2016, 2017) developed a multi-scale (FE2) computational framework for 𝑠-MREs. However, none

f the analytical or numerical homogenization frameworks provide an explicit macroscopic model that can be readily applied to
2

macroscopic boundary value problem. Thus, ‘‘microstructure-guided’’ phenomenological models have been proposed recently
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by Lefèvre et al. (2019) and Mukherjee et al. (2020) and benchmarked against the analytical homogenization model of Lefèvre
et al. (2017) with good overall agreement and almost identical results in certain limiting cases. An alternative approach towards
such microstructurally-guided models has been developed recently by Kalina et al. (2020), which however, requires expensive
computations in order to fit a comparatively large set of model parameters. However, all models in those studies are concerned
with 𝑠-MREs involving no dissipation, neither mechanical nor magnetic.

From the viewpoint of dissipative MREs, Saxena et al. (2013, 2014) and Hossain et al. (2015) have included the effect of
viscoelasticity in a top-down approach to analyze the impact of cyclic loading and curing in the response and fabrication of MREs. By
contrast, following a bottom-up approach, Garcia-Gonzalez and Hossain (2020) provided a micromechanical model based on dipole
interactions for magneto–viscoelastic materials. Additional contributions including the effect of diffusion may also be mentioned in
the context of dissipative magneto-rheological gels (Garcia-Gonzalez and Landis, 2020). In all those studies, the dissipation results
from the mechanical part, while the magnetic part is purely energetic. As a consequence, none of the above-mentioned models can
be used to model the dissipative magnetic response of ℎ-MREs, which is the focus of the present work.

In this regard, the thermodynamically consistent modeling of the remanent magnetization is typically carried out via introducing
remanent internal variable. Such thermodynamic formalism has been first introduced to describe the remanent polarization in

erroelectric ceramics (Huber et al., 1999; Huber and Fleck, 2001; McMeeking and Landis, 2002; Landis, 2002; Klinkel, 2006).
ubsequently, this framework has been extended to ferromagnetic materials (Linnemann et al., 2009; Mukherjee and Danas, 2019).
ll the aforementioned works, however, have been developed in a small strain setting. Miehe et al. (2011) provide a general
umerical implementation procedure for the simulation of dissipative electro-magneto-elastic materials at small strains. Based on
hat, Rosato and Miehe (2014) proposed a ‘‘top-down’’ approach towards modeling the remanent polarization in ferroelectricity
t finite strains. Therein, the (remanent) deformation due to the remanent polarization is introduced explicitly to be a symmetric
otation-free tensor that encodes transverse isotropy with preferred direction aligned to the polarization.

Turning now to the modeling of ℎ-MREs, in a top-down approach, Zhao et al. (2019) proposed a purely energetic torque-based
model with no self-field magneto–mechanical coupling (i.e. no coupling in the sense of particle interactions) to describe the magneto–
mechanical response of uniformly pre-magnetized ℎ-MREs. Given its non-dissipative character, this model is valid for fairly small
applied magnetic fields around a pre-magnetization state. Furthermore, the pre-magnetization distribution needs to be postulated
or resolved separately with other modeling tools. Despite those limitations, that model has been shown to reproduce successfully
corresponding experimental results on uniformly pre-magnetized slender beams under small applied magnetic fields up to ∼ 50mT.

On the other hand, recent numerical simulations of Kalina et al. (2017) in ℎ-MREs revealed, although not directly, some
interesting effects relating magnetic dissipation with drastic microstructural rearrangements when subjected to cyclic magnetic
loads of finite amplitude. Yet, an appropriate incremental homogenization formalism for microstructured ℎ-MREs that allows for
the determination of effective properties from microstructural simulations is still lacking. In this regard, we rely on incremental
variational principles (Ortiz and Stanier, 1999) which render an incremental variational homogenization framework (Miehe, 2002;
Miehe et al., 2002) for the computation of the effective response of dissipative coupled composites that will serve as the basis of the
present numerical homogenization analysis. Moreover, Danas (2017) has shown that the numerical homogenization for magneto-
elastic (but also electro-elastic) composites necessitates suitable augmentations to the variational homogenization problem in order
to obtain the effective magneto–mechanical response due to pure particle–particle interactions, which is free from geometric shape
effects of the MRE sample (Keip and Rambausek, 2017).

In this regard and to the best knowledge of the authors, there exists no bottom-up or top-down analytical model up-to-date
that takes into account the magnetic dissipation on the magneto–mechanical response of ℎ-MREs at finite strains and arbitrary
proportional and non-proportional magnetic fields. In view of these considerations and particularly the fact that very soft ℎ-MREs

ay lead to drastic particle rearrangements and microstructural damage under large magnetic fields (see e.g., Schümann and
denbach (2017)), the goal of the present work is to propose a model for moderately soft ℎ-MREs, which has the following desired
roperties. First, all constitutive relations describing the magneto–mechanical dissipative response of the ℎ-MREs should be explicit
nd analytical. This allows for an efficient numerical implementation of the model in user material subroutines to solve macroscopic
oundary value problems of any type. Second, the model should also be derived in a thermodynamically consistent manner, so
hat it can deal properly with the vast range of possible loading conditions (e.g., magnetic, mechanical, magneto–mechanical,
onotonic, non-proportional or cyclic) without risking to have negative dissipation. This is achieved by use of a convex dissipation
otential within the framework of generalized standard materials (Halphen and Son Nguyen, 1975). Third, it is desirable that the
roposed model recovers existing rigorous homogenization results in limiting cases of interest. For instance, in the energetic limit,
here the dissipation vanishes, the model should recover the non-dissipative magnetic and mechanical homogenization estimates
f Lefèvre et al. (2017). Fourth, the model should reproduce with only a handful of calibration parameters the effective coupled
issipative response of ℎ-MREs obtained by rigorous numerical representative volume element (RVE) calculations. Such calculations
re carried out also in this study for the first time. Finally, the complete model should be versatile enough to allow easy calibration
o experiments even when the individual responses of the constituents are not known.

The paper is organized as follows. Section 2 summarizes the fundamental equations of magnetostatics and continuum mechanics
or the present case. Next, Section 3 introduces a thermodynamically consistent model for isotropic, incompressible ℎ-MREs
eginning with a detailed description of the basic assumptions, followed by the derivation of the constitutive relations by employing
oleman-Noll arguments and expressing the necessary properties of the energetic and dissipation potentials. Next, specific choices

or the energy density function and the dissipation potential are detailed in Section 4. Subsequently, Section 5 presents an
ncremental variational homogenization framework that is employed to compute the effective response of the ℎ-MREs via realizing
3

he microscopic fields explicitly, followed by computing their volume averages. These results will then provide the data for the
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actual calibration of the proposed macroscopic model in Section 6. In the same section, the fitted model is then probed against the
numerical homogenization estimates for various non-proportional magneto–mechanical loading paths in order to demonstrate its
predictive capabilities. The practical modeling capabilities of the proposed macroscopic model are assessed in Section 7, where we
solve macroscopic boundary value problems to simulate the experiments of Zhao et al. (2019), involving a uniformly pre-magnetized
ℎ-MRE cantilever beam. Furthermore, motivated by the recent experimental work of Ren et al. (2019), we study the bending response
of idealized slender non-uniformly pre-magnetized ℎ-MRE beams subjected to a transverse magnetic field. Therein, we show the
importance of using a complete model for ℎ-MREs together with the modeling of the surrounding air. We close the main part with
concluding remarks are provided in Section 8. Finally, in Appendix A, we provide an alternative equivalent Eulerian formulation of
the problem and in Appendix B, we detail explicit expressions for the derivatives of the new energetic-remanent invariants used in
the present work.

2. Preliminary definitions

We consider a deformable magneto-active solid, which occupies a volume 0 ∈ R3 ( ∈ R3) in the reference (current)
configuration with the boundary 𝜕0 (𝜕) and outward unit normal  (𝐧). The reference and current configurations are related
through the one-to-one deformation map 𝒚(𝐗), while 𝒚(𝐗) = 𝐗 for all 𝐗 ∈ R3∖0, except in the vicinity of the solid. We henceforth
ssume that 𝒚(𝐗) is continuous everywhere and twice continuously differentiable except at the solid–air interface or the interfaces
etween different phases in the material. The deformation gradient is defined as 𝐅 = Grad𝒚, where Grad denotes the gradient
perator with respect to 𝐗, which is the reference position vector of a material point in 0. In addition, the reference density of the
olid 𝜌0 is related to the current density 𝜌 by 𝜌 = 𝐽𝜌0, where 𝐽 = det 𝐅 > 0.

In the absence of electrodynamic effects and vanishing electric current in  , the local Eulerian magnetic field 𝐛 is divergence
ree and the local 𝐡 field is curl free, i.e.

curl𝐡 = 0 in R3, [[𝐡]] × 𝐧 = 0 on 𝜕 , (2.1)

div𝐛 = 0 in R3, [[𝐛]] ⋅ 𝐧 = 0 on 𝜕 . (2.2)

he current magnetization 𝐦 is defined by the constitutive relation

𝐛 = 𝜇0(𝐡 +𝐦) in R3, (2.3)

here 𝜇0 is the permeability of vacuum. In principle, any one of 𝐛 or 𝐡 (but not 𝐦1) may be selected as a primary variable. Within
this contribution, we choose to work with 𝐡 as a primary variable, whereas 𝐛 will be obtained via the proposed constitutive laws.
In addition, 𝐦 will be used for illustrating a number of results and thus is an auxiliary variable obtained via (2.3).

In the case of finite deformation of a magnetic solid, the Lagrangian counterparts of the Eulerian fields 𝐛 and 𝐡 can be obtained
by a pull-back operation from  to 0 and are denoted by 𝐁 and 𝐇, respectively, such that (Dorfmann and Ogden, 2003, 2004;
Kankanala and Triantafyllidis, 2004)

𝐁 = 𝐽𝐅−1𝐛, 𝐇 = 𝐅𝑇 𝐡. (2.4)

The Lagrangian 𝐇 and 𝐁 satisfy the referential versions of (2.1) and (2.2), which read as

Curl𝐇 = 0 in R3, [[𝐇]] × = 0 on 𝜕0, (2.5)

Div𝐁 = 0 in R3, [[𝐁]] ⋅ = 0 on 𝜕0, (2.6)

here the operators ‘‘Curl’’ and ‘‘Div’’ represent, respectively, the curl and divergence with respect to the referential 𝐗.
The mechanical balance laws consist of the linear and angular momentum balances. In absence of any body forces, the mechanical

inear momentum balance laws for a magneto-elastic solid read as

Div𝐒 = 0 in R3, [[𝐒]] ⋅ = 0 on 𝜕0, (2.7)

div𝝈 = 0 in R3, [[𝝈]] ⋅ 𝐧 = 0 on 𝜕 , (2.8)

n the Lagrangian and Eulerian configurations, respectively. The stresses 𝐒 and 𝝈 in (2.7) and (2.8) are the total2 first Piola–Kirchhoff
nd total Cauchy stress, respectively, which are related via

𝐒 = 𝐽𝝈𝐅−𝑇 . (2.9)

inally, the local form of the mechanical angular momentum balance is simply given by

𝝈 = 𝝈𝑇 and 𝐒𝐅𝑇 = 𝐅𝐒𝑇 (2.10)

1 The 𝐦 alone cannot describe entirely a magnetic boundary value problem since the magnetic fields 𝐡 and 𝐛 are non-zero even inside non-magnetic phases
(i.e. with 𝜇0 finite) but have 𝐦 = 𝟎. In former studies, such as that of Danas et al. (2012) that 𝐦 was one of the primary variables additionally 𝐛 was also
present in the global formulation.

2

4

In the sense that they account for mechanical and magneto–mechanical contributions. Hence, they are also present in air and vacuum.
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Fig. 1. Definition of the independent internal variable 𝑟 in the intermediate stretch-free configuration 𝑖. The components 𝐔 and 𝐑 denote the stretch tensor
nd the rotational component, respectively, of the deformation gradient 𝐅.

n the current and the reference configurations, respectively (Kankanala and Triantafyllidis, 2004). We note that several ‘‘classical’’
ormulations of magneto-elasticity consider applied magnetic body forces and body couples, which are taken into consideration
n the linear and angular momentum balance laws, respectively (Brown, 1966; Pao and Hutter, 1975; Hutter and van de Ven,
978). Nevertheless, in this paper we follow the approach of Kovetz (2000) and Kankanala and Triantafyllidis (2004), where the
electro)magnetic energy flux is accounted for in terms of the Poynting vector. This together with the balance of energy, the entropy
nequality and the Coleman-Noll argument avoids the postulation of magnetic forces and instead yields the concept of ‘‘total stress’’
hich is used throughout this contribution.

. Thermodynamics and constitutive properties

This section develops a thermodynamically consistent, microstructurally-guided constitutive modeling framework for ℎ-MREs. We
irst discuss the choice for the magnetic internal variable and the associated kinematic assumptions, which are at the heart of the
odel and subsequently establish a 𝐅 −𝐇 constitutive modeling framework. The objectivity and material symmetry conditions for

he present case of isotropic ℎ-MREs are then set, wherein the definition of the internal variables and their kinematics play a pivotal
ole. This allows then to define proper energetic and remanent mechanical, magnetic and magneto–mechanical invariants.

.1. Internal variable for magnetic dissipation

A thermodynamically consistent model for any dissipative material may be constructed through the definition of a finite number
f internal variables, which reflect the irreversible processes the material undergoes under external loads. In this regard, one of the
rincipal differences between ℎ-MREs and 𝑠-MREs is the underlying magnetic dissipation of the filler particles (e.g. NdFeB) in the
ormer. Due to the finite strains and the magneto–mechanical coupling, upon cyclic magnetic loading, the response of the ℎ-MRE
omposite exhibits both magnetic and mechanical (due to magneto–mechanical coupling) hysteresis.

In the present work, we will show by extensive assessment with numerical RVE simulations in Sections 6.2.1 and 6.2.2 that
nly one internal magnetic vectorial variable suffices to describe both the magnetic and the mechanical (due to coupling) dissipation
n the ℎ-MRE in the case of moderately soft to hard polymer matrices. This is a mere constitutive choice and does not constitute a
nique way to address this coupled dissipative effect.3

Specifically, we propose to introduce a magnetic internal variable, the remanent field 𝑟 in the stretch-free, intermediate
onfiguration 𝑖, as shown in Fig. 1. The central assumption behind this ‘‘choice’’ concerning the macroscopic model is that the
verage magnetization of the composite and thus magnetic dissipation is affected by macroscopic rotations but is independent of
acroscopic stretches. The range of validity of this assumption, which will be assessed in detail in Sections 6.2.1 and 6.2.2, depends
ainly on the shear modulus of the matrix phase, given that the particles are almost mechanically rigid and thus do not deform

ut may rotate, whereas the bulk modulus of the matrix phase is very large giving rise to a quasi-incompressible macroscopic
esponse of the ℎ-MRE. In fact, the shear modulus of the matrix controls the capability of the magnetized particles to rotate upon
pplication of a magnetic load that is non-aligned with their magnetization vector. In a soft polymeric matrix, the particles rotate
echanically but also evolve their magnetic state via dissipative mechanisms (such as domain wall motions) in order to align their
agnetization with the externally applied magnetic field (Kalina et al., 2017). The softer the matrix the more the rotations prevail

ver the magnetic dissipation mechanisms. By contrast, when the shear modulus of the matrix has a moderate value (e.g. greater
han ∼ 0.15MPa), local particle rotations are much less pronounced and dissipative processes dominate the response of the ℎ-MRE,
hile any rotations of the magnetized particles follow approximately the overall macroscopic rotation. This last case corresponds
ell to actual, fabricated ℎ-MREs in the literature (see for instance Zhao et al. (2019) and Ren et al. (2019)). In particular, we will

how in the context of Figs. 7 and 8 that a purely tensile or shear mechanical load of a remanently magnetized ℎ-MRE does not

3 Works by McMeeking and Landis (2005), McMeeking et al. (2007), Rosato and Miehe (2014) in the context of ferroelectricity, a somewhat similar problem,
5

se both mechanical and polarization internal variables that are eventually related via ad-hoc constitutive relations.
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change the amplitude of the effective magnetization but only its direction which follows the macroscopic average rotations. This
result is in direct connection with an internal remanent field lying in the intermediate and not in the undeformed configuration.

In view of this discussion, use of the standard polar decomposition 𝐅 = 𝐑𝐔 directly implies that the reference (in 0) and current
in ) remanent fields, 𝐇𝑟 and 𝐡𝑟, respectively are functions of 𝑟 and are given by

𝐡𝑟 = 𝐑𝑟, 𝐇𝑟 = 𝐔𝑟. (3.1)

hereby the following standard decompositions also hold (Mukherjee and Danas, 2019)

𝐡 = 𝐡𝑒 + 𝐡𝑟, 𝐇 = 𝐇𝑒 +𝐇𝑟. (3.2)

ere, 𝐡 and 𝐡𝑒 are the Eulerian total and energetic ℎ-fields, while 𝐇 and 𝐇𝑒 are the corresponding Lagrangian ones. The introduction
f 𝑟 in the intermediate configuration 𝑖 further implies that the Eulerian 𝐡𝑟 is stretch-free function of 𝐑 and 𝑟, while the
agrangian 𝐇𝑟 is a function of 𝐔 and 𝑟.

Obviously, the propositions (3.1) remain open to further refinements if required by the problem at hand. Nonetheless, we will
how in the results presented in Section 6 that the single internal variable 𝑟 is sufficient to achieve very good agreement with the
orresponding numerical RVE simulations under a wide range of cyclic and non-aligned loading conditions.

.2. Clausius-Duhem inequality and generic constitutive relations

In this section, we derive the constitutive relations for the ℎ-MREs in the reference configuration. The (local) Clausius–Duhem
nequality, which is derived from the (global) entropy imbalance, leads to a thermodynamically consistent constitutive framework
or dissipative ferro-electric/magnetic materials (McMeeking and Landis, 2002; Landis, 2002; Klinkel, 2006; Rosato and Miehe,
014). The present work is concerned with isothermal thermodynamic processes that involve zero heat flux and local variation in
he temperature. Thus, the Clausius–Duhem inequality for a magnetoelastic solid is given by

𝐒 ∶
.
𝐅 − 𝐁 ⋅

.
𝐇 −

.
𝑊 ≥ 0, (3.3)

here
.
( ) represents the material time derivative. The energy density 𝑊 = 𝑊 (C,𝐇,𝑟) is expressed in terms of the right Cauchy–

reen tensor C = 𝐅𝑇𝐅, the referential 𝐇 and the internal variable 𝑟. Such a definition of 𝑊 in terms of C ensures material frame
ndifference. Expanding subsequently

.
𝑊 in terms of its arguments, we rephrase (3.3) as

[

𝐒 − 2𝐅 𝜕𝑊
𝜕C

]

∶
.
𝐅 −

[

𝐁 + 𝜕𝑊
𝜕𝐇

]

⋅
.
𝐇 − 𝜕𝑊

𝜕𝑟 ⋅
.
𝑟 ≥ 0. (3.4)

Given the arbitrariness of the rates
.
𝐅 and

.
𝐇, the standard Coleman–Noll–Gurtin arguments lead to the constitutive relations in the

reference configuration

𝐒 = 2𝐅 𝜕𝑊
𝜕C

, 𝐁 = − 𝜕𝑊
𝜕𝐇

. (3.5)

ince the derivative of a scalar-valued tensor function with respect to a symmetric tensor is symmetric, the Cauchy stress 𝝈 = 𝐽−1𝐒𝐅𝑇
omputed from (3.5)1 remains identically symmetric. It thus satisfies the angular momentum balance (Kankanala and Triantafyllidis,
004; Suo et al., 2008; Rosato and Miehe, 2014) as detailed in Appendix A.

The remaining terms in (3.4) lead to the dissipation inequality, which reads

𝑟 ⋅
.
𝑟 ≥ 0, 𝑟 = − 𝜕𝑊

𝜕𝑟 . (3.6)

f course, the remanent field 𝑟 is the conjugate force quantity to 𝑟 and is also defined in the intermediate configuration (see
ig. 1). Using the generalized standard material framework (Halphen and Son Nguyen, 1975), one can readily write

𝜕𝑊
𝜕𝑟 +

𝜕𝐷

𝜕
.
𝑟

= 0 ⟹ 𝑟 = 𝜕𝐷

𝜕
.
𝑟

, (3.7)

where 𝐷(C,𝐇,𝑟,
.
𝑟) ≥ 0 is the dissipation potential. We note that the present hybrid formulation leads to the primary constitutive

elations (3.5) in the reference configuration, whereas the remanent constitutive relations (3.6)2 and (3.7) are defined in the
ntermediate configuration. One can develop the full constitutive framework in the intermediate configuration (see e.g., (Rosato
nd Miehe, 2014)), however, the reference primary variables lead to familiar stress measures like 𝐒 and also facilitate the numerical
omputations (Danas, 2017; Lefèvre et al., 2017). An equivalent framework in terms of Eulerian quantities is provided in Appendix A.

emark 1. It is notoriously troublesome to express 𝐒 and 𝝈 explicitly in terms of mechanical and magnetic stress contribu-
ions (McMeeking and Landis, 2005). Nevertheless, some insight can be gained when the referential 𝐇 and 𝑟 are expressed in
erms of their current counterparts 𝐡 = 𝐡(𝐅,𝐇) and 𝐡𝑟 = 𝐡𝑟(𝐑(𝐅),𝑟), respectively. We consider an energy density 𝑊 (𝐅,𝐇,𝑟) =
(C,𝐇,𝑟) with C = 𝐅𝑇𝐅 that has an equivalent form 𝑤(B,𝐡,𝐡𝑟) with B = 𝐅𝐅𝑇 , i.e. 𝑊 (𝐅,𝐇,𝑟) ≡ 𝑤(B,𝐡,𝐡𝑟). In addition, following

standard knowledge in magneto-elasticity, we decompose the free energy density as 𝑤(B,𝐡,𝐡𝑟) = 𝜌 𝜓(B,𝐡,𝐡𝑟) − (𝜇 ∕2)𝐽𝐡 ⋅ 𝐡 with 𝜓
6
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being the Helmholtz free energy associated with the ℎ-MRE (to be defined in Section 4). Then, the equivalent representation of 𝝈
in terms of 𝑤 is

𝝈 = 1
𝐽
𝜕𝑊
𝜕𝐅

𝐅𝑇 = 2
𝐽

[

𝜕𝑤
𝜕B

]

𝐡,𝐡𝑟
B + 1

𝐽

([

𝜕𝑤
𝜕𝐡𝑟

]

𝐅,𝐡
⋅ 𝜕𝐡

𝑟

𝜕𝐅

)

𝐅𝑇 + 1
𝐽

([

𝜕𝑤
𝜕𝐡

]

𝐅,𝐡𝑟
⋅ 𝜕𝐡
𝜕𝐅

)

𝐅𝑇

=
2𝜌0
𝐽

[

𝜕𝜓
𝜕B

]

𝐡,𝐡𝑟
B

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
𝝈𝑒

+
𝜌0
𝐽

{([

𝜕𝜓
𝜕𝐡𝑟

]

𝐅,𝐡
⊗ 𝐑𝑇 𝐡𝑟

)

∶ 𝜕𝐑
𝜕𝐅

}

𝐅𝑇

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝝈𝑟

+
(

𝐡⊗ 𝐛 −
𝜇0
2
|𝐡|2𝐈

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝝈𝚖𝚊𝚡𝚠

. (3.8)

n this expression,4 one may then define, with a relative abuse of notation, the mechanical part5 of the stress as 𝝈𝚖𝚎𝚌𝚑 = 𝝈𝑒 + 𝝈𝑟.
The first and last terms in (3.8) are identical to those already obtained in the context of the non-remanent, 𝑠-MREs (Kankanala and
Triantafyllidis, 2004; Danas, 2017), while, the remanent stress contribution 𝝈𝑟 appears because of the remanent internal variable
𝑟. By its definition, the 𝝈𝚖𝚊𝚡𝚠 is non-zero even in the absence of a material (i.e., if 𝜓 = 0) if the magnetic fields are non-zero. In
turn, the mechanical stress, 𝝈𝚖𝚎𝚌𝚑 includes both the energetic and remanent contributions, since they can both exist in the absence
of an applied external magnetic field. We note further that only the symmetry of the ‘‘total’’ Cauchy stress 𝝈 is guaranteed by
𝑊 (C,𝐇,𝑟), whereas 𝝈𝚖𝚎𝚌𝚑 and 𝝈𝚖𝚊𝚡𝚠 are, in general, not symmetric.

3.3. General properties of the free energy density and the dissipation potential

Before we proceed to specific constitutive propositions, we discuss first the constraints that need to be imposed on the energetic
and dissipation potentials, 𝑊 and 𝐷, respectively, in order to ensure (a) an even magneto–mechanical coupling, (b) material frame
indifference, (c) isotropic material symmetry and (d) positive dissipation (see (3.6)1).

We recall here that material objectivity and symmetry conditions are well-known for 𝑠-MREs (Kankanala and Triantafyllidis,
2004; Dorfmann and Ogden, 2004). However, as shown in Fig. 1, the present model for ℎ-MREs introduces a remanent internal
variable that is insensitive to the stretch 𝐔, leading to non-familiar magneto–mechanical invariants and rates. Hence, this section
focuses on stating explicitly all the aforementioned constraints in the context of isotropic ℎ-MREs.

Even magneto–mechanical coupling. The magneto–mechanical energy density 𝑊 and dissipation potential 𝐷 must be exactly the
same when both 𝐇 and 𝑟 change simultaneously sign. This condition reads

𝑊 (C,−𝐇,−𝑟) = 𝑊 (C,𝐇,𝑟), 𝐷(C,−𝐇,−𝑟,−
.
𝑟) = 𝐷(C,𝐇,𝑟,

.
𝑟), (3.9)

and ensures a symmetric, butterfly-type magnetostriction response for the ℎ-MRE (as discussed in Section 6).
Material frame indifference. This physical property imposes that 𝑊 and 𝐷 must remain invariant under a change of observer. A

change of observer leads to the new current position vector 𝐱∗ = 𝐜 + 𝐐𝐱, where 𝐜 is a rigid displacement field and 𝐐 is a proper
rotation matrix (Gurtin, 1982, p. 139–142). Since the arguments of 𝑊 and 𝐷, i.e. C,𝐇,𝑟 and

.
𝑟 are unaffected by such a transform,

the requirement of material frame indifference imposes no further restrictions on 𝑊 and 𝐷. This observation is in agreement with
he objectivity conditions used in mechanical visco-plasticity, where the intermediate strain-like variables remain unaffected by a
hange of observer (Dashner, 1993; Kumar and Lopez-Pamies, 2016).

Material symmetry. For isotropic MREs, 𝑊 and 𝐷 must remain invariant under a change in the reference configuration via a
onstant matrix 𝐊 ∈ 𝑂𝑟𝑡ℎ+. The material symmetry conditions on the potentials thus read

𝑊 (𝐊𝑇C𝐊,𝐊𝑇𝐇,𝐊𝑇𝑟) = 𝑊 (C,𝐇,𝑟), 𝐷(𝐊𝑇C𝐊,𝐊𝑇𝐇,𝐊𝑇𝑟,𝐊𝑇
.
𝑟) = 𝐷(C,𝐇,𝑟,

.
𝑟). (3.10)

Here, we note that the intermediate 𝑟 transforms as 𝑟 → 𝐊𝑇𝑟, which follows from (3.1) and the transformation 𝐔 → 𝐊𝑇𝐔𝐊
under a change in the reference configuration. We further remark that in mechanical visco-plasticity the change in the reference
configuration also modifies the intermediate plastic internal variables (Dashner, 1993; Bennett et al., 2016).

Entropy imbalance. The dissipation inequality (3.6)1 imposes an additional constraint on 𝐷

𝜕𝐷

𝜕
.
𝑟

(C,𝐇,𝑟,
.
𝑟) ⋅

.
𝑟 ≥ 0, (3.11)

hich is clearly satisfied if 𝐷(C,𝐇,𝑟,
.
𝑟) is a convex function of

.
𝑟.

Definition of invariants. In order to satisfy the conditions of even magneto–mechanical coupling, isotropic material symmetry and
rame indifference, we express the energy density function 𝑊 in terms of properly chosen isotropic invariants. In the present work,

we consider the purely mechanical invariants

𝐼1 = tr(C), 𝐼2 = tr(C)2 − tr(C2), 𝐼3 = 𝐽 2 = det C, (3.12)

4 It is emphasized that 𝐑(𝐅) = 𝐅(𝐅𝑇 𝐅)−1∕2 and hence, the evaluation of the derivative 𝜕𝐑∕𝜕𝐅 is a non-trivial operation. In this regard, we use the explicit
xpression of this fourth order tensor, provided by Chen and Wheeler (1993).

5 Here, 𝝈𝚖𝚎𝚌𝚑 is merely a notation introduced in the literature and might appear to be ambiguous, since a solid that is pre-magnetized, i.e., with remanent
agnetization, still creates equilibrated magnetic fields around it. Upon application of a mechanical load the corresponding magnetization and magnetic fields
7

ill evidently change as we will see in this work.



Journal of the Mechanics and Physics of Solids 151 (2021) 104361D. Mukherjee et al.

4

m
m

ℎ

H
m

o

I
r
m
m

w

T

S
d
i
v

𝑐
m
m

the uncoupled magnetic invariants

𝐼5 = 𝐡 ⋅ 𝐡 = 𝐇 ⋅ C−1𝐇, 𝐼𝑒𝑟5 = 𝐡 ⋅ 𝐡𝑟 = 𝐇 ⋅ C−1∕2𝑟, 𝐼𝑟5 = 𝐡𝑟 ⋅ 𝐡𝑟 = 𝑟 ⋅𝑟, (3.13)

and the coupled magneto–mechanical invariants

𝐼4 = 𝐡 ⋅ B𝐡 = 𝐇 ⋅𝐇, 𝐼𝑒𝑟4 = 𝐡 ⋅ B𝐡𝑟 = 𝐇 ⋅ C1∕2𝑟, 𝐼𝑟4 = 𝐡𝑟 ⋅ B𝐡𝑟 = 𝑟 ⋅ C𝑟. (3.14)

All the mechanical invariants along with 𝐼4 and 𝐼5 are the standard ones that are employed in non-dissipative magnetoelasticity (Keip
and Rambausek, 2016, 2017; Lefèvre et al., 2017; Lefèvre et al., 2019; Mukherjee et al., 2020). We further note that the ‘‘uncoupled’’
𝐼5-type invariants are unaffected by mechanical deformation when a certain Eulerian magnetic field is independently controlled
whereas the 𝐼4 do vary in this case (see relevant discussion in Danas (2017)). Finally, in order to satisfy the invariance of the

dissipation potential, we additionally employ the Euclidean norm |

.
𝑟

| =
√ .

𝑟 ⋅
.
𝑟 as an invariant of

.
𝑟.

. Explicit definitions for the free energy density and the dissipation potential

In this section, we propose explicit, analytical expressions for the free energy density 𝑊 and the dissipation potential 𝐷 using the
previously defined invariants in the case of incompressible ℎ-MREs. One of the main characteristics of the ‘‘microstructurally-guided’’
constitutive models presented here is that the macroscopic models almost exclusively depend on the properties of the underlying

icrostructure. Only a handful (usually one or two) additional parameters are introduced to allow for further calibration of the
odel.

For a better understanding, in the following, we first discuss the individual contributions to 𝑊 and 𝐷 step-by-step before
specifying the evolution equations and an equivalent incremental variational formulation.

4.1. The free energy density

Following the guidelines of the work of Mukherjee et al. (2020) for 𝑠-MREs, we consider a free energy density for incompressible
-MREs in terms of the aforementioned invariants, so that

𝑊 (𝐼1, 𝐽 , 𝐼𝑒𝑟4 , 𝐼
𝑟
4 , 𝐼5, 𝐼

𝑒𝑟
5 , 𝐼

𝑟
5) =

{

𝜌0𝛹𝚖𝚎𝚌𝚑(𝐼1) + 𝜌0𝛹𝚖𝚊𝚐(𝐼5, 𝐼𝑒𝑟5 , 𝐼
𝑟
5) + 𝜌0𝛹

𝚌𝚘𝚞𝚙𝚕𝚎(𝐼𝑒𝑟4 , 𝐼
𝑟
4 , 𝐼

𝑒𝑟
5 , 𝐼

𝑟
5) −

𝜇0
2 𝐼5, if 𝐽 = 1

+∞, otherwise.
(4.1)

ere, 𝛹𝚖𝚎𝚌𝚑 and 𝛹𝚖𝚊𝚐 deliver a purely mechanical and purely magnetic response, respectively. In turn, 𝛹𝚌𝚘𝚞𝚙𝚕𝚎 describes the coupled
agneto–mechanical response of the material. Finally, the last term −

𝜇0
2
𝐼5 takes into account the magnetic background (vacuum)

energy.

The mechanical contribution 𝛹𝚖𝚎𝚌𝚑. For the effective mechanical energy we employ the analytical homogenization energy density
f Lopez-Pamies et al. (2013) which is valid for general 𝐼1-based, incompressible, hyperelastic composites comprising mechanically

rigid particles, i.e.,

𝛹𝚖𝚎𝚌𝚑(𝐼1) = (1 − 𝑐)𝛹𝚖𝚎𝚌𝚑
𝚖

(1), 1 =
𝐼1 − 3

(1 − 𝑐)7∕2
+ 3. (4.2)

n this expression, 𝑐 is the volume fraction of the particles in the two-phase ℎ-MRE composite (see for instance Fig. 3c) and 𝛹𝚖𝚎𝚌𝚑
𝚖

epresents the 𝐼1-based isochoric mechanical free energy of the incompressible matrix (𝚖) phase. A specific choice for 𝛹𝚖𝚎𝚌𝚑
𝚖

will be
ade at a later stage. It is interesting to note that 𝛹𝚖𝚎𝚌𝚑 → +∞ as 𝑐 → 1, as a consequence of the rigid particles considered in this
odel.

Note further that for incompressible materials, the constitutive equation (3.5)1 for the stress becomes

𝐒 = 2𝐅 𝜕𝑊
𝜕C

+ 𝑝𝐅−𝑇 , (4.3)

here the pressure 𝑝 serves as the (negative) Lagrange multiplier associated with the incompressibility constraint 𝐽 = 1.

he magnetic contribution 𝛹𝚖𝚊𝚐. The purely magnetic energy is further decomposed into an energetic and a remanent part, so that

𝛹𝚖𝚊𝚐(𝐼5, 𝐼𝑒𝑟5 , 𝐼
𝑟
5) = 𝛹 𝑒,𝚖𝚊𝚐(𝐼5) + 𝛹 𝑟,𝚖𝚊𝚐(𝐼𝑒𝑟5 , 𝐼

𝑟
5). (4.4)

ince there is no explicit analytical homogenization model available for the remanent magnetization response, we propose a
ecoupled effective model that satisfies certain limiting conditions. Specifically, the initial slopes of the effective magnetization
n the proposed model are derived from corresponding analytical homogenization estimates and depend explicitly on the particle
olume fraction 𝑐 as well as on the particle magnetic properties described next.

For a better understanding, we first describe graphically the particle magnetic properties (corresponding to the limiting case
= 1) using a representative unidirectional magnetization hysteretic response in Fig. 2 (see Mukherjee and Danas (2019) for
ore details). Specifically, in Fig. 2a, an ideal hysteresis response is described by setting 𝜒𝑒

𝚙
= 0, which corresponds to no initial

agnetization before switching.6 Subsequently, the initial slope of magnetization at the onset of switching is given in terms of the

6 In Mukherjee and Danas (2019), the switching mechanism has been modeled by mimicking plastic yielding in an elasto-plastic problem.
8
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Fig. 2. Representative magnetic hysteresis loops. (a) Ideal magnetic particles with no initial magnetization response (𝜒𝑒
𝚙
= 0), perfect saturation 𝑚𝑠

𝚙
, coercive

field 𝑏𝑐
𝚙

and the remanent susceptibility 𝜒 𝑟
𝚙
. (b) Actual hard magnetic particles (e.g. NdFeB) with an initial energetic magnetization (𝜒𝑒

𝚙
≠ 0) which affects the

unloading slope and a very slow saturating response and coercive field 𝑏𝑐
𝚙
∕(1 + 𝜒𝑒

𝚙
). In both cases, the coercive field controls the point where the magnetic

switching initiates and is normalized by 𝜇0𝑚𝑠𝚙.

particle remanent susceptibility 𝜒𝑟
𝚙
, whereas the saturation magnetization is indicated by 𝑚𝑠

𝚙
. The coercive field 𝑏𝑐

𝚙
controls the point

where the magnetic switching initiates and is discussed in detail in Section 4.2.
By contrast, as depicted in Fig. 2b, the actual hysteresis loops of hard magnets do not exhibit perfect saturation such that a certain

slope of magnetization still remains even for high applied fields. This imperfect (or very slow) saturation is modeled in terms of the
‘‘energetic susceptibility’’ 𝜒𝑒

𝚙
, which governs both the initial magnetization slope before switching as well as the magnetization slope

at very high magnetic fields. The introduction of 𝜒𝑒
𝚙

thus modifies both the initial slope and the unloading slope of magnetization,
as well as the ferromagnetic switching initiation controlled by the coercive field becoming 𝑏𝑐

𝚙
∕[𝜇0(1 + 𝜒𝑒𝚙] (see Fig. 2b). In turn, the

corresponding slope at the onset of switching becomes 𝜒𝑟
𝚙
(1 + 𝜒𝑒

𝚙
)2 + 𝜒𝑒

𝚙
(this result will become more clear in the following). For

even more complex magnetic hysteretic responses, the reader is refereed to Mukherjee and Danas (2019).
In regard of this magnetic response of the particles, we propose, next, an effective magnetic free energy density for the ℎ-MRE

that ensures (i) the initial slopes of both, energetic and remanent magnetizations are given by the corresponding Maxwell–Garnett
(M-G) lower bounds for the present case of two-phase, isotropic composites, (ii) the effective saturation magnetization for ideal
magnets is given by 𝑚𝑠 = 𝑐 𝑚𝑠

𝚙
and (iii) in the limiting case of only particles (𝑐 = 1), we recover the response in Fig. 2. The property

(ii) reflects a homogenization result that holds true for 𝑠-MREs (see for instance Galipeau and Ponte Castañeda (2013) and Lefèvre
et al. (2017)) as well as for ℎ-MREs (as we will show in this study using numerical RVE simulations)

To achieve these properties, we first consider the energetic effective magnetic free energy to be a sum of an energetic and a
emanent part, i.e.,

𝜌0𝛹
𝑒,𝚖𝚊𝚐(𝐼5) = −

𝜇0
2
𝜒𝑒𝐼5, 𝜒𝑒 =

3𝑐𝜒𝑒
𝚙

3 + (1 − 𝑐)𝜒𝑒
𝚙

. (4.5)

Here, 𝜒𝑒 is the effective Maxwell–Garnett lower bound for the energetic susceptibility of two-phase magnetic composites with one
of the phases being non-magnetic (i.e. the matrix phase) given in terms of the particle volume fraction 𝑐 and the particle energetic
susceptibility 𝜒𝑒

𝚙
. This well-known homogenization result has been shown to deliver very accurate estimates when compared with

corresponding experimental results in 𝑠-MREs (Psarra et al., 2017) and will also be shown to be the case in ℎ-MREs by assessment
with numerical RVE calculations in Section 6.

Subsequently, the remanent magnetic free energy takes the form

𝜌0𝛹
𝑟,𝚖𝚊𝚐(𝐼𝑒𝑟5 , 𝐼

𝑟
5) = 𝜇0(1 + 𝜒𝑒)𝐼𝑒𝑟5 +

𝜇0
2

(

1 − 𝑐
3𝑐

)

𝐼𝑟5 +
𝜇0
𝑐

(𝑚𝑠)2

𝜒𝑟
𝚙

𝑓𝚙

(

√

𝐼𝑟5
𝑚𝑠

)

, 𝑚𝑠 = 𝑐 𝑚𝑠
𝚙

(

1 + 𝜒𝑒
𝚙

1 + 𝜒𝑒

)𝑞𝚜𝚊𝚝

. (4.6)

In this expression, 𝑞𝚜𝚊𝚝 = 1 is an exponent calibrated for fine-tuning the numerical RVE simulations in Section 6 and affects only
weakly the effective saturation magnetization estimate of the actual magnets. It becomes inconsequential for ideal magnets, where
𝜒𝑒 = 𝜒𝑒

𝚙
= 0. The general function 𝑓𝚙 describes the saturation response of the material and is such that 𝑓 ′

𝚙
becomes an inverse

igmoid function, which approaches +∞ when its argument tends to 1. Examples of such functions are provided in Table 1. In the
9

resent work, we employ the first choice, i.e., the inverse hypergeometric function 𝑓𝚙(𝜉) = −[log(1 − 𝜉) + 𝜉].
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Fig. 3. Schematic diagram of (a) macroscopic boundary value problem involving a MRE sample in air having a reference volume 0 with unit normal  on
the boundary 𝜕0 and a representative boundary with fixed displacement 𝐮0, (b) periodic arrangement of a RVE with polydisperse spherical inclusions and (c)
a RVE occupying a reference volume #

0 and boundary 𝜕#
0 .

Table 1
Inverse saturation function choices for the remanent potential.

Function name 𝑓𝚒(𝜉) 𝑓 ′
𝚒
(𝜉)

Inverse hypergeometric function −[log(1 − 𝜉) + 𝜉]
𝜉

1 − 𝜉

Tangent function − 4
𝜋2

log
[

cos
( 𝜋
2
𝜉
)] 2

𝜋
tan

( 𝜋
2
𝜉
)

Arctanh function −
[

(1 − 𝜉) tanh−1(𝜉) − log(𝜉 + 1)
]

tanh−1(𝜉)

One can show via straightforward algebraic manipulations that by considering the series expansion for small 𝑟 in (4.6) and by
retaining linear and quadratic terms with respect 𝑟, 𝛹 𝑟,𝚖𝚊𝚐 becomes

𝜌0𝛹
𝑟,𝚖𝚊𝚐(𝐼𝑒𝑟5 , 𝐼

𝑟
5) = 𝜇0(1 + 𝜒𝑒)𝐼𝑒𝑟5 +

𝜇0
2𝜒𝑟

𝐼𝑟5 + (|𝑟
|

3), 𝜒𝑟 =
3𝑐𝜒𝑟

𝚙

3 + (1 − 𝑐)𝜒𝑟
𝚙

. (4.7)

In Eq. (4.7), 𝜒𝑟 corresponds to the Maxwell–Garnett lower bound for two-phase magnetic composites with one of the phases being
non-magnetic and the other being the particle described by a remanent susceptibility 𝜒𝑟

𝚙
. This last energy (4.7) leads to an effective

initial slope at the onset of switching equal to 𝜒𝑟 and 𝜒𝑟(1 + 𝜒𝑒)2 + 𝜒𝑒 for ℎ-MREs comprising ideal and actual magnetic particles,
respectively, in the limit of C = 𝐈. These slopes may be interpreted in a similar fashion to those for the pure particles (𝑐 = 1), shown
in Fig. 2.

Furthermore, the limiting case of hard magnetic particles only, whose entire hysteretic response is described in Fig. 2, is readily
obtained by setting 𝑐 = 1 in (4.4),(4.5), (4.6) and (4.7) leading to 𝜒𝑒 = 𝜒𝑒

𝚙
, 𝜒𝑟 = 𝜒𝑟

𝚙
and 𝑚𝑠 = 𝑚𝑠

𝚙
in that limit.

The coupling energy density 𝛹𝚌𝚘𝚞𝚙𝚕𝚎. Finally, the coupling free energy density 𝜌0𝛹𝚌𝚘𝚞𝚙𝚕𝚎 is assumed to take the form

𝜌0𝛹
𝚌𝚘𝚞𝚙𝚕𝚎(𝐼𝑟4 , 𝐼

𝑒𝑟
4 , 𝐼

𝑟
5 , 𝐼

𝑒𝑟
5 ) = 𝑐 𝛽(𝑐)𝜇0

[

(𝐼𝑟4 − 𝐼
𝑟
5) − 2𝜒𝑒(𝐼𝑒𝑟4 − 𝐼𝑒𝑟5 )

]

. (4.8)

Here, 𝛽(𝑐) is an calibration function of the particle volume fraction 𝑐 that controls the amplitude of the hysteretic magnetostriction
response. At this point we keep 𝛽 general, while a specific form is proposed and discussed in Section 6.1 when the model response
is assessed with the full-field numerical homogenization estimates.

Remark 2. We note that quasi-incompressible models may often be more convenient in numerical implementations. Thus, we extend
in an ad-hoc manner the previous model to quasi-incompressible ℎ-MREs, such that

𝑊𝚌𝚘𝚖𝚙(𝐼1, 𝐽 , 𝐼𝑟4 , 𝐼
𝑒𝑟
4 , 𝐼5, 𝐼

𝑟
5 , 𝐼

𝑒𝑟
5 ) = 𝜌0𝛹

𝚖𝚎𝚌𝚑
𝚌𝚘𝚖𝚙

(𝐼1, 𝐽 ) + 𝜌0𝛹𝚖𝚊𝚐(𝐼5, 𝐼𝑟5 , 𝐼
𝑒𝑟
5 ) + 𝜌0𝛹𝚌𝚘𝚞𝚙𝚕𝚎(𝐼𝑟4 , 𝐼

𝑒𝑟
4 , 𝐼

𝑟
5 , 𝐼

𝑒𝑟
5 ) −

𝜇0
2
𝐽𝐼5, (4.9)

where

𝜌0𝛹
𝚌𝚘𝚖𝚙

𝚖𝚎𝚌𝚑
(𝐼1, 𝐽 ) = (1 − 𝑐)𝜌0𝛹𝚖𝚎𝚌𝚑

𝚖
(𝚌𝚘𝚖𝚙

1 ) +
𝐺′
𝚖

2(1 − 𝑐)6
(𝐽 − 1)2, 𝚌𝚘𝚖𝚙

1 =
𝐼1 − 3 − 2 ln 𝐽
(1 − 𝑐)7∕2

+ 3. (4.10)

The Lamé parameter 𝐺′
𝚖

penalizing volumetric deformation of the matrix phase is usually set to values 𝐺′
𝚖
≥ 500𝐺𝚖 to ensure a good

approximation for incompressibility. It should be noted that the last term in (4.10) has to be under-integrated in displacement-based
finite element schemes in order to avoid volumetric locking. The proposed quasi-incompressible model has been validated for large
10
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𝚖

and should be used with caution for lower ones. Specifically, if one deals with compressible ℎ-MREs, coupling of 𝐽
with the magnetic fields is expected to play an important role and thus the present model may become inaccurate for such cases.

4.2. The dissipation potential

It remains to define the evolution law for the internal variable 𝑟, which is obtained in terms of a magnetic dissipation potential.
positive dissipation is guaranteed when this potential is (strictly) convex. We start by considering a rate-dependent dissipation

otential (similar to visco-plasticity and creep in mechanics) and subsequently consider the rate independent limit. Specifically, we
rite the simple power-law potential

𝐷(
.
𝑟) = 𝑛 𝑏𝑐

𝑛 + 1
|

.
𝑟

|

𝑛+1
𝑛 , 1 ≤ 𝑛 ≤ ∞. (4.11)

In this expression, 𝑏𝑐 denotes the effective coercive field of the composite, 𝑛 is the rate exponent and |

.
𝑟

| =
√ .

𝑟 ⋅
.
𝑟 denotes the

uclidean norm. A value of 𝑛 = 1 leads to a rate-dependent linear switching response (similar to linear viscoelasticity) and 𝑛 = ∞
eads to a highly non-linear rate-independent response (similar to perfect plasticity) (Danas and Castañeda, 2009; Rosato and Miehe,
014). The dissipation potential is strictly convex everywhere except when 𝑛 = ∞ that becomes simply convex.

Our numerical homogenization estimates (see Section 6) and corresponding experiments (Huber et al., 2017; Kim et al., 2018)
how that the effective coercivity 𝑏𝑐 of the composite is equal to the coercivity of the inclusions 𝑏𝑐

𝚙
for ideal magnets, whereas it

xhibits a very weak dependence on 𝑐 for actual magnets. To capture both effects, we set

𝑏𝑐 = 𝑏𝑐
𝚙

(

1 + 𝜒𝑒

1 + 𝜒𝑒
𝚙

)𝑞𝚌𝚘𝚎𝚛

, (4.12)

here 𝜒𝑒 is defined in (4.5), 𝜒𝑒
𝚙

is the energetic susceptibility of the particles and 𝑞𝚌𝚘𝚎𝚛 = 4∕5 is a calibration exponent that becomes
inconsequential for ideal magnets, where 𝜒𝑒 = 𝜒𝑒

𝚙
= 0. We also remark that the dissipation potential in (4.11) is independent of

mechanical stretch since
.
𝑟 is defined in the intermediate configuration.

Relation (3.7)1 yields the intermediate remanent field 𝑟 as the work conjugate of
.
𝑟. Thus, a Legendre transform of 𝐷(

.
𝑟)

with respect to
.
𝑟 leads to its complimentary dissipation potential 𝐷∗(𝑟) = 𝑏𝑐 (|𝑟

|∕𝑏𝑐 )𝑛+1∕(𝑛 + 1), which is also a power-law with
an exponent 𝑛+1 on |𝑟

| =
√

𝑟 ⋅𝑟. Subsequently, in the limit of rate-independence, i.e., 𝑛 = ∞, the dual dissipation potential 𝐷∗

ecomes

𝑛 = ∞ ⟹ 𝐷∗(𝑟) =

{

0, if |𝑟
| ≤ 𝑏𝑐 ,

∞, otherwise.
(4.13)

his readily leads to the switching surface (similar to yield surface in plasticity) definition

𝛷(𝑟) ∶= |𝑟
|

2 − (𝑏𝑐 )2 = 0. (4.14)

inally, the evolution equation for 𝑟 is obtained from the principle of maximum remanent dissipation that leads to the associated
witching (normality) rule in the intermediate configuration

.
𝑟 =

.
𝛬 𝜕𝛷
𝜕𝑟 or 𝛥𝑟 = 𝛥𝛬 𝜕𝛷

𝜕𝑟 . (4.15)

Here, 𝛥𝛬 is a Lagrange multiplier that satisfies the Kuhn–Tucker conditions

𝛥𝛬 ≥ 0, 𝛷 ≤ 0 and 𝛥𝛬𝛷 = 0 (4.16)

In summary, the constitutive response of an ℎ-MRE may be fully defined in terms of the primary relations (3.5), the remanent
onstitutive relation (3.6)2 and the associated switching rule (4.15) along with the Kuhn–Tucker conditions (4.16). The numerical
mplementation of these constitutive equations is discussed in briefly in the next section, while a complete description is left for a
eparate communication which is in progress.

emark 3. Following Mukherjee and Danas (2019), we note that the switching surface-based hard ferromagnetic hysteresis model
ields the non-dissipative saturation-type magnetization response in the limit of 𝑏𝑐

𝚙
→ 0 (along with 𝜒𝑒

𝚙
= 0), which imply that 𝑏𝑐 → 0

and 𝜒𝑒 = 0 for the ℎ-MRE too. In those limits, the proposed macroscopic model for ℎ-MREs recovers – upon proper calibration of the
function – the corresponding homogenization model for 𝑠-MREs of Lefèvre et al. (2017) and thus that of Mukherjee et al. (2020).
he reader is referred to the thesis manuscript of Mukherjee (2020) for a more detailed analysis of this point.

.3. The limiting cases of pure particle and pure matrix

We discuss, now, two important limiting cases corresponding to a pure magnetic particle response, obtained easily by setting
= 1, and a pure non-magnetic matrix response, obtained by considering carefully the limit 𝑐 → 0, in the previous expressions.
hose two limiting cases will be used in our numerical computations to analyze directly a RVE comprising particles embedded in a
olymer matrix. Thus, one needs to be certain that the proposed ℎ-MRE model recovers seamlessly those two limits. This, in turn,
llows for a straightforward and unique numerical implementation of the proposed constitutive model.
11
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The limiting case of 𝑐 = 1. This case corresponds to the pure particle response, which is considered to be magnetic but mechanically
igid (i.e. C = 𝐈 in this case). In that case, the magnetic model simplifies further upon substitution of 𝑐 = 1 into (4.5) and (4.6).

Moreover, the coupling free energy (4.8) vanishes, since all magneto–mechanical and magnetic invariants become identical for
C = 𝐈. Thus, the energy density reads after some straightforward algebraic manipulations as

𝑊𝑐→1(𝐼1, 𝐼5, 𝐼𝑒𝑟5 , 𝐼
𝑟
5) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−
𝜇0
2
(1 + 𝜒𝑒

𝚙
)𝐼5 + 𝜇0(1 + 𝜒𝑒𝚙)𝐼

𝑒𝑟
5 + 𝜇0

(𝑚𝑠
𝚙
)2

𝜒𝑟
𝚙

𝑓𝚙

(

√

𝐼𝑟5
𝑚𝑠
𝚙

)

if C = 𝐈

+∞ otherwise.

(4.17)

The corresponding switching surface 𝛷 in this limit reads

𝛷𝑐→1(
𝑟) = |𝑟

|

2 − (𝑏𝑐
𝚙
)2. (4.18)

he magnetization response obtained from the energy density (4.17) and switching surface (4.18) is shown in Fig. 2a and 2b, having
𝑒
𝚙
= 0 and 0.1, respectively. In practice, one can easily obtain a similar numerical response by setting sufficiently large mechanical

roperties in (4.2) (e.g., the shear and bulk moduli) and 𝑐 = 1. This leads to 𝜌0𝛹𝚖𝚎𝚌𝚑(C) → 0 and C → 𝐈, while the only non-zero
nergetic contributions come from the corresponding magnetic parts.

he limiting case of 𝑐 = 0. This case results in a mechanical free energy equal to that of the matrix phase, i.e. 𝛹𝚖𝚎𝚌𝚑
𝚖

. Furthermore,
he coupling energy vanishes identically in (4.8) for 𝑐 = 0. In turn, the corresponding magnetic free energy 𝛹𝚖𝚊𝚐 in (4.6) becomes
or 𝑐 → 0 equal to

𝜌0𝛹
𝚖𝚊𝚐 =

{

0, if 𝑟 = 𝟎
+∞, if 𝑟 ≠ 𝟎.

(4.19)

his last relation, thus, imposes the constraint 𝑟 = 𝟎 when 𝑐 = 0 for the energy of the solid to remain bounded. As a result of
4.19), the energy density for the special case of 𝑐 = 0 is simply given by

𝑊𝑐→0(𝐼1, 𝐼5) = 𝜌0𝛹
𝚖𝚎𝚌𝚑
𝚖

(𝐼1) −
𝜇0
2
𝐼5 (4.20)

or the incompressible case, which is the common energy density for non-magnetic solids (see for instance Mukherjee et al. (2020),
efèvre et al. (2020)). Of course, the dissipation potential 𝐷 vanishes identically in this limit and the magnetic constitutive relation
or non-magnetic media leads to 𝐛 = 𝜇0𝐡 and thus to 𝐦 = 𝟎 in the matrix.

.4. Equivalent incremental variational formulation

The local constitutive equations proposed in the previous sections can be recast in an equivalent incremental variational form.
uch an exercise is carried out as it will prove extremely useful in Section 5, where we discuss the numerical homogenization of
-MRE RVEs. The idea of such an incremental potential is borrowed from existing literature on dissipative media (Ortiz and Stanier,
999; Miehe, 2002; Miehe et al., 2002; Hackl and Fischer, 2007; Miehe et al., 2011) and is appropriately adapted in the present
ontext of ℎ-MREs.

Variational principles for dissipative solids are constructed for the time interval associated with a time increment 𝛥𝑡, i.e. [𝑡, 𝑡 + 𝛥𝑡]
uch that the corresponding Euler–Lagrange equations yield both the balance laws for the primary fields and the evolution laws
orresponding to the dissipative processes. For simplicity in notation, we henceforth replace 𝑡 + 𝛥𝑡 by the symbol ‘‘𝜏’’.

In this work, one can devise an incremental potential  that accounts for the evolution of internal variables of the form

(𝐅𝜏 ,𝐇𝜏 ) = inf
𝑟
𝜏

[

∫

𝜏

𝑡

{ .
𝑊 (𝐅,𝐇,𝑟) +𝐷(

.
𝑟)

}

d𝑡
]

with 𝑟(𝑡) = 𝑟
𝑡 (4.21)

eing the initial value of 𝑟 in the time increment [𝑡, 𝜏]. In (4.21) the potentials 𝑊 (C,𝐇,𝑟) and 𝐷(
.
𝑟) are given by (4.9) and

4.11), respectively. Considering now the Legendre–Fenchel transform of 𝐷 = sup𝑟 (
𝑟 ⋅

.
𝑟 − 𝐷∗(𝑟)) together with the definition

f 𝐷𝙷∗(𝑟) in the rate-independent limit 𝑛 = ∞, we obtain the constrained optimization problem

(𝐅𝜏 ,𝐇𝜏 ) = inf
𝑟
𝜏
sup
𝑟𝜏∈

[

𝑊 (𝐅𝜏 ,𝐇𝜏 ,𝑟
𝜏 ) −𝑊 (𝐅𝑡,𝐇𝑡,𝑟

𝑡 ) +𝑟
𝜏 ⋅ {

𝑟
𝜏 −𝑟

𝑡}
]

, (4.22)

ith

 = {𝑟 ∶ 𝛷(|𝑟
|) = |𝑟

|

2 − (𝑏𝑐 )2 ≤ 0}. (4.23)

he inequality constraint in (4.23) can be imposed on (4.22) with the aid of a Lagrange multiplier, 𝛥𝛬 ≥ 0, such that

(𝐅𝜏 ,𝐇𝜏 ) = inf
𝑟
𝜏
sup
𝑟𝜏

inf
𝛥𝛬≥0

[

𝑊 (𝐅𝜏 ,𝐇𝜏 ,𝑟
𝜏 ) −𝑊 (𝐅𝑡,𝐇𝑡,𝑟

𝑡 ) +𝑟
𝜏 ⋅ {

𝑟
𝜏 −𝑟

𝑡} − 𝛥𝛬𝛷(
𝑟
𝜏 )
]

. (4.24)

his last optimization problem leads readily to time discrete forms of the constitutive relation (3.6)2 and the evolution of the internal
12

tate (4.15) respecting the Kuhn–Tucker conditions (4.16).
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In the present study, we obtain the internal state 𝑟
𝜏 and the auxiliary 𝑟

𝜏 and 𝛥𝛬 by solving the optimization problem in
(4.24) with a standard Newton–Raphson scheme. An alternative and perhaps more efficient implementation can be based on a
radial-return-type approach (Wilkins, 1964). The reader is referred to the Appendix A of (Mukherjee and Danas, 2019) or Chapter
4 of (Mukherjee, 2020) for additional details on the update algorithm. The updated 𝑟

𝜏 , 
𝑟
𝜏 and 𝛥𝛬 are then substituted in (4.24) to

obtain the optimized incremental potential for given values of the deformation gradient 𝐅 and magnetic h-field 𝐇. The incremental
onstitutive relations are then obtained by substituting (4.24) into (3.5), such that

𝐒𝜏 =
𝜕
𝜕𝐅𝜏

(𝐅𝜏 ,𝐇𝜏 ), 𝐁𝜏 = − 𝜕
𝜕𝐇𝜏

(𝐅𝜏 ,𝐇𝜏 ). (4.25)

5. Effective incremental response: numerical homogenization

This section describes the numerical homogenization framework used to analyze three-dimensional representative volume
elements (RVEs) of ℎ-MREs. Those computations, besides allowing for an in-depth understanding of the micro-deformation
mechanisms leading to the overall magneto–mechanical coupling, serve also to assess the accuracy of the previously-proposed
explicit macroscopic model at different particle volume fractions and a variety of loading conditions.

As shown in Fig. 3, each point of the macro-continuum 0 (Fig. 3a) is assumed to be described well at the microscale by a
representative volume element (RVE) having a reference volume of #

0 and comprising two phases, denoted as 𝚒 = 𝚙, 𝚖 representing
the particle and matrix phases, respectively (Fig. 3c). This assumption may be considered sufficient for the present ℎ-MRE composites
provided that the particle size is sufficiently smaller than the specimen analyzed.7 Then, for slowly varying mechanical and magnetic
fields at the macroscopic scales, the previous microstructural assumptions allow for separation of length scales (#

0 ≪ 0). In
addition, following Danas (2017), we consider a slowly varying microstructure, so that the microstructure can be assumed to be
(locally) periodic (see Fig. 3b). This interpretation results in periodic boundary conditions applied on a single RVE (see Fig. 3b).

5.1. Local energy density of the constituents

Henceforth, the microscopic field variables along with the energy functions and the corresponding invariants are indicated
with a q(⋅) symbol in order to distinguish them from their macroscopic counterparts. Since the microstructure is heterogeneous,
the referential representations of the local energy density |𝑊 and the local dissipation potential q𝐷 both depend on the reference
coordinate 𝐗, so that

|𝑊 (𝐗, qC, q𝐇, q𝑟) = 𝛩(𝐗)|𝑊𝚖(qC, q𝐇, q𝑟) + (1 − 𝛩(𝐗))|𝑊𝚙(qC, q𝐇, q𝑟) (5.1)

and

q𝐷(𝐗,
.
q𝑟) = 𝛩(𝐗) q𝐷𝚖(

.
q𝑟) + (1 − 𝛩(𝐗)) q𝐷𝚙(

.
q𝑟), (5.2)

espectively. In this last two expressions, 𝛩(𝐗) denotes the characteristic function taking the value 𝛩(𝐗) = 1 if 𝐗 ∈ #𝚖
0 and 𝛩(𝐗) = 0

f 𝐗 ∈ #𝚙
0 . The microscopic energy densities |𝑊𝚙 and |𝑊𝚖 are given by (4.17) and (4.20), respectively, i.e., the pure particle (𝑐 = 1)

nd pure matrix (𝑐 → 0) limiting cases. Of course, now all the field variables in (4.17) and (4.20) must be replaced with the
orresponding overscript ones q(⋅). Further note that (4.9) already features the quasi-incompressible mechanical response which is
ore convenient in numerical simulations. Finally, in (5.2), we may readily set q𝐷𝚖 = 0 since the magnetic dissipation is identically

ero in the non-magnetic polymer matrix.

.2. Incremental homogenization framework

This section discusses briefly the incremental periodic homogenization framework for ℎ-MREs based on an incremental micro-
potential |(𝐗, q𝐅𝜏 , q𝐇𝜏 ), which can be defined by substituting all quantities in (4.21) with an overscript q(⋅). The average deformation
gradient 𝐅 and Lagrangian ℎ-field 𝐇 at a discrete time 𝜏 ≡ 𝑡 + 𝛥𝑡 are then expressed in terms of the volume averages of the
corresponding microscopic quantities, so that

𝐅𝜏 =
1

|#
0 |

∫#
0

q𝐅𝜏 (𝐗) d𝑉 , 𝐇𝜏 =
1

|#
0 |

∫#
0

q𝐇𝜏 (𝐗) d𝑉 , (5.3)

espectively. The microscopic displacements q𝐮𝜏 (𝐗) and the microscopic scalar potential 𝜑̆𝜏 (𝐗) are additively decomposed into linear
macroscopic) and higher order (microscopic fluctuation) contributions8

q𝐮𝜏 (𝐗) = (𝐅𝜏 − 𝐈) ⋅ 𝐗 + 𝐮̃𝜏 (𝐗) and q𝜑𝜏 (𝐗) = −𝐇𝜏 ⋅ 𝐗 + 𝜑̃𝜏 (𝐗), ∀ 𝐗 ∈ #
0 , (5.4)

7 The particle size in typical ℎ-MREs is in the order of 10−30 μm, while a cubic RVE as we will see contains approximately five particles per direction, i.e., has
side of ∼ 50−150 μm at moderate volume fractions. The specimen sizes in actual experiments are usually in the centimeter scale and thus are sufficiently larger

han the microstructure. In turn, such models including any type of phenomenological ones should be used with caution in the context of slender structures such
s those in Psarra et al. (2017) and Kim et al. (2018), where one or two of the specimen dimensions may be a fraction of a millimeter. In that case, additional
alibration may be required.

8 Notice that the deformation gradient 𝐅 can be expressed in terms of the displacement gradient, so that 𝐅 = 𝐈+Grad𝐮. The magnetic 𝐇 field, by virtue of its
curl-free property, can be expressed as 𝐇 = −Grad𝜑, where 𝜑 is a scalar potential. The last two relations are scale-independent and thus, remain equally valid
13

for the macro and the micro scales.
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where 𝐮̃𝜏 (𝐗) and 𝜑̃𝜏 (𝐗) are the fluctuation fields. Their average over #
0 is required to vanish such that (5.4) is consistent with (5.3),

which is automatically fulfilled for #
0 -periodic fluctuation fields.

Based on the above definitions, the incremental homogenized potential for the numerical RVE reads

(𝐅𝜏 ,𝐇𝜏 ) = inf
q𝐮𝜏∈(𝐅𝜏 )

sup
q𝜑𝜏∈(𝐇𝜏 )

[

1
#
0
∫#

0

|(𝐗, q𝐅𝜏 , q𝐇𝜏 ) d𝑉

]

, (5.5)

here  and  represents the sets of admissible microscopic q𝐮𝜏 and q𝜑𝜏 fields, defined, respectively, as

(𝐅𝜏 ) =
{

q𝐅𝜏 = 𝐈 + Grad q𝐮𝜏 , q𝐽𝜏 > 0,q𝐮𝜏 = (𝐅𝜏 − 𝐈) ⋅ 𝐗 + 𝐮̃𝜏 , 𝐮̃𝜏 periodic in #
0
}

(5.6)

nd

(𝐇𝜏 ) =
{

q𝐇𝜏 = −Grad q𝜑𝜏 , q𝜑𝜏 = −𝐇𝜏 ⋅ 𝐗 + 𝜑̃𝜏 , 𝜑̃𝜏 periodic in #
0
}

. (5.7)

pplying then the Hill–Mandel lemma, we recover the macroscopic constitutive relations defined in (4.25).
At this stage, the definition of the incremental homogenization problem for ℎ-MREs is formally complete and one could proceed

o compare the explicit model with the numerical RVE homogenized response (5.5). Nevertheless, it has been shown in (Danas, 2017)
hat such use of (5.5) does not reveal properly the effective magneto–mechanical response that arises from interactions between the
agnetic particles. Instead, further modifications to the incremental variational principle are necessary, as detailed in the following.

.3. Augmented macroscopic potential energy for RVE evaluations

Recent works of Keip and Rambausek (2016), Danas (2017) and Mukherjee et al. (2020) pointed out a key difference between
he electro-active and magneto-active boundary value problems. Electro-active elastomers are typically loaded by electrodes that
re directly attached to the material. In contrast, the MREs are usually immersed in the magnetic field created by fixed poles of
lectromagnets that rest at a certain distance away from the MRE sample (Bodelot et al., 2017; Zhao et al., 2019). One of the main
ifferences between those two problems is that in the first the electric fields are zero outside the body, implying a zero Maxwell stress
n vacuum, while in the second the magnetic fields and thus the Maxwell stress are not zero. In an effort to appropriately take into
ccount the pure magneto–mechanical coupling in the RVE, free from the effect of those macroscopic boundary conditions, Danas
2017) and Mukherjee et al. (2020) proposed an augmented potential energy that involves three additional loading terms to deal with
he surrounding RVE medium, the applied Eulerian magnetic field and the potential control of an average mechanical stress field.
his potential energy allows to describe properly the magnetic effects (including the Maxwell stresses) exerted by the surrounding
VEs on the RVE under study and is briefly revisited here for completeness. The reader is referred to (Danas, 2017) for a complete
iscussion on this highly non-trivial matter.

Specifically, the first additional term serves to describe the application of the current macroscopic ℎ-field, 𝐡𝚊𝚙𝚙, at the level of
he RVE, instead of the referential one, 𝐇. This may be achieved by the use of a penalty term

𝜇0
2𝜁

|𝐅−𝑇
𝜏 𝐇𝜏 − 𝐡𝚊𝚙𝚙𝜏 |

2 with 𝜁 ≪ 1. Next,
he macroscopic background energy −𝜇0𝐼5∕2 (or −𝜇0𝐽𝐼5∕2 in the quasi-incompressible case) is subtracted from (5.5). This accounts
or the presence of the neighboring RVEs (see Fig. 3b) by imposing the continuity of the macroscopic Maxwell stresses between
eighboring RVEs, far from the boundaries of the specimen. Finally, to be able to prescribe macroscopic mechanical stress 𝐒𝚖𝚎𝚌𝚑𝜏
nstead of deformation 𝐅, one may consider the term 𝐒𝚖𝚎𝚌𝚑𝜏 ∶ (𝐅𝜏 − 𝐈). Assembling these three additional terms together, we obtain
he augmented potential energy (Danas, 2017; Mukherjee et al., 2020)

𝒫 (𝐅𝜏 ,𝐇𝜏 ) = (𝐅𝜏 ,𝐇𝜏 ) +
𝜇0
2
𝐅−𝑇
𝜏 𝐇𝜏 ⋅ 𝐅−𝑇

𝜏 𝐇𝜏 +
𝜇0
2𝜁

|𝐅−𝑇
𝜏 𝐇𝜏 − 𝐡𝚊𝚙𝚙𝜏 |

2 − 𝐒𝚖𝚎𝚌𝚑𝜏 ∶ (𝐅𝜏 − 𝐈), (5.8)

ith (𝐅𝜏 ,𝐇𝜏 ) defined by (4.24) for the analytical model and by (5.5) for the numerical RVE. The resulting Euler–Lagrange
quations of the RVE response under the prescribed magnetic and mechanical loads introduced in (5.8) are obtained by setting
𝒫 (𝐅𝜏 ,𝐇𝜏 ) = 0, which leads to

𝐒𝜏 − 𝐒𝚖𝚊𝚡𝚠𝜏 − 𝐒𝚖𝚎𝚌𝚑𝜏 = 𝟎, 𝐁𝜏 − 𝜇0C−1𝐇𝜏 −
𝜇0
𝜁
𝐅−1
𝜏 (𝐅−𝑇

𝜏 𝐇𝜏 − 𝐡𝚊𝚙𝚙𝜏 ) = 𝟎. (5.9)

ere, 𝐒𝚖𝚊𝚡𝚠 = 𝐽𝝈𝚖𝚊𝚡𝚠𝐅−𝑇 is the 1st Piola–Kirchhoff expression for the energetic Maxwell stress, whose expression in terms of 𝐡 and
is given in (3.8). In turn, by writing the second equation in (5.9) in terms of the Eulerian parts as

𝐛𝜏 − 𝜇0𝐡𝜏 −
𝜇0
𝜁
(𝐡𝜏 − 𝐡𝚊𝚙𝚙𝜏 ) = 0, (5.10)

e simply obtain the constitutive relation (2.3), with

1
𝜁
(𝐡𝜏 − 𝐡𝚊𝚙𝚙𝜏 ) = 𝐦. (5.11)

his is achieved since 𝐡𝜏 → 𝐡𝚊𝚙𝚙𝜏 as 𝜁 → 0 making the first term finite and equal to 𝐦. Again, the reader is referred to (Danas, 2017)
or more details on this part.
14
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5.4. Numerical implementation aspects

The augmented variational problem (5.8) is solved numerically by use of an implicit, nonlinear finite element (FE) method. The
E computations for the effective RVE response rely on three preliminary steps; (a) RVE generation and conformal meshing, (b)
ocal constitutive modeling along with the local evolution of q𝑟 and (c) the application of the periodic boundary conditions (5.4).
elow we comment on these three points as well as on the actual FE scheme.

RVE generation. This work considers three-dimensional, isotropic RVEs with monodisperse and polydisperse spherical inclusions
n a cube having sides of reference length 𝐿#

0 (such that #
0 = (𝐿#

0)
3). We employ a distance minimization-based random sequential

adsorption (RSA) algorithm that efficiently generates randomly distributed polydisperse spherical inclusions, whose volumes sum up
to a prescribed particle volume fraction (Segurado and Llorca, 2002; Anoukou et al., 2018; Zerhouni et al., 2019; Tarantino et al.,
2019). For the monodisperse microstructures, we simply prescribe the total number of inclusions in the RVE, which in the present
case are equal to 𝑁𝚝𝚘𝚝 = 60. Instead for the polydisperse RVE, we consider three families of spherical inclusions of different sizes
each with size ratios equal to 1 ∶ 7∕9 ∶ 4∕9 (from the largest to the smallest). Each family contributes to the total volume fraction
in proportions of 0.6𝑐, 0.3𝑐 and 0.1𝑐 (from the largest to the smallest). By choosing the largest particle radius to be 𝑅𝚖𝚊𝚡∕𝐿#

0 = 0.106
the remaining two particle families have a radius of 𝑅∕𝐿#

0 = 0.093, 0.074. Those values lead to a total number of particles in the
RVE equal to 𝑁𝚝𝚘𝚝 ≈ 130, 280, 300 for 𝑐 = 0.1, 0.2 and 0.3, respectively. It is mentioned here that the use of such a high number
f particles leads to very large systems with about 106 degrees of freedom. This makes the simulation time prohibitively long even
hen parallelized given the finite strains and large cyclic magnetic loads. For this reason, whenever that is possible from the point
f view of convergence in terms of RVE size, we use the monodisperse microstructures. In this regard, a convergence analysis with
espect to the particle number and size ratios has been carried out and the above values were found to be acceptable for maintaining
balance between RVE convergence and simulation time. This point is further discussed in the following section.

Meshing. Conformal meshes of ten-node, isoparametric, quadratic tetrahedral elements are then generated by employing the open
ource mesh generation software NETGEN (Schöberl, 1997) that also identifies the opposite boundary nodes, which are then used
o apply the periodic boundary conditions across the RVE. The reader is referred to the Appendix B of Danas (2017), which provides
straightforward way to apply the magneto–mechanical periodic boundary conditions across the opposite boundaries of the RVE.

Local evolution of internal variable q𝑟. A typical FE numerical routine evaluates the local force (generalized force in case of the
REs having both mechanical and magnetic components) vector and stiffness matrix at the individual integration (Gauss) points

nside an element. In addition, the proposed internal variable formulation necessitates the storage and evolution of the internal
ariable q𝑟 at each Gauss point. Thus, given the local primary variables q𝐅𝜏 and q𝐇𝜏 the local increment in q𝑟 from the previously

stored q𝑟
𝑡 is obtained by solving (4.24), which, in turn, leads to the associated switching rule (4.15). Eq. (4.15) along with the

Kuhn–Tucker conditions therein are solved via an implicit Newton–Raphson method.
Solution of the global optimization problem with the augmented potential energy. Along with the locally-updated q𝑟 the local force and

tiffness matrices are then constructed, which are subsequently assembled to construct the corresponding global matrices. Finally,
he augmented potentials in (5.8) are taken into account by introducing a dummy element that is associated with the corner nodes
f the RVE. The local element matrices are constructed by developing a user-defined element (UEL) which is then coupled with
he commercial ABAQUS/Standard solver in order to solve the global problem. The inbuilt fully implicit nonlinear FE solver is
mployed. Finally, the effective incremental response is computed via (5.3) and the volume average of the local q𝐒𝜏 and q𝐁𝜏 fields.
he reader is referred to Chapter 4 of the thesis manuscript of Mukherjee (2020) for a more detailed discussion of these steps.

. Results: assessment of the analytical model

This section discusses the model calibration followed by comparisons with the corresponding numerical RVE results under
oupled magneto–mechanical loading conditions. In all subsequent results, we use a standard incompressible Neo-Hookean energy
or the polymer matrix phase, i.e.,

𝜌0𝛹
𝚖𝚎𝚌𝚑
𝚖

(𝐼1) =
𝐺𝚖

2
(𝐼1 − 3). (6.1)

his functional form is used in (4.2) to obtain the effective mechanical energy for the analytical model. We recall that in the analytical
odel the mechanical response of the particles is considered rigid. In turn, the magnetic properties of the particle are reported in
able 2 and correspond to a commercially available NdFeB material. In particular, these parameters are obtained by fitting the purely
agnetic model with the experimentally measured hysteresis loops of magnetically isotropic NdFeB particles reported in Deng et al.

2015). Evidently, the model is general enough to be able to deal with any other type of hard magnetic particles.

Table 2
Magnetic properties of the NdFeB particles.
𝜒𝑒
𝚙

𝜒 𝑟
𝚙

𝜇𝟶𝑚𝑠𝚙 (T) 𝑏𝑐
𝚙

(T) 𝜇𝟶 (μN A2)

0.105 8.0 0.842 1.062 4𝜋10−1
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The numerical simulations use the same functions and parameters as the analytical model with only two differences that do not
ffect, however, the validity of the comparison. The first difference is the use of a quasi-incompressible energy for both the matrix
nd the particle phase, which is simply obtained by adding compressible terms in (6.1), such that it becomes

𝜌0𝛹
𝚖𝚎𝚌𝚑
𝚌𝚘𝚖𝚙,𝚒(𝐼1, 𝐽 ) =

𝐺𝚒

2
(𝐼1 − 3 − 2 ln 𝐽 ) +

𝐺′
𝚒

2
(𝐽 − 1)2, 𝚒 = 𝚖, 𝚙. (6.2)

The quasi-incompressible character of the matrix is ensured by setting 𝐺′
𝚖
= 500𝐺𝚖. Use of higher values has shown practically

no difference in the simulated effective results. The second difference is the use of finite but large Lamé moduli for the particle,
i.e., 𝐺𝚙 = 500𝐺𝚖 and 𝐺′

𝚙
= 500𝐺𝚙. The phase contrast ratio of 𝐺𝚙∕𝐺𝚖 = 500 has been shown in several earlier studies (see for

instance Lopez-Pamies et al. (2013)) to be sufficiently large and thus render a nearly rigid mechanical response for the particle.
The results in the following sections consider the variation of two parameters, namely, the particle volume fraction 𝑐 and the

matrix shear modulus 𝐺𝚖, which are, in fact, the two critical parameters that can be varied during the fabrication of ℎ-MREs. Instead,
the magnetic properties of the particle phase are kept constant.

6.1. Symmetric cyclic loading and calibration of the 𝛽 function in the model

In this section, the goal is to calibrate the coupling parameter 𝛽 introduced in the coupled magneto–mechanical energy (4.8) for
the analytical model by use of corresponding RVE simulations. For this purpose, we fix the matrix shear modulus to 𝐺𝚖 = 0.5 MPa
and vary the particle volume fraction 𝑐 = 0.1, 0.2 and 0.3. The proposed shear modulus resembles closely that of the moderately-soft,
commercially-available Sylgard-184 PDMS elastomer (Park et al., 2018; Wang et al., 2019).

We consider symmetric cyclic magnetic loading in terms of 𝐡𝚊𝚙𝚙 = ℎ𝚊𝚙𝚙1 𝐞1 with a maximum amplitude ℎ𝚊𝚙𝚙1 = 3𝑚𝑠
𝚙
. Note that the

loading rate does not play any role here, since both the macro and microscopic ℎ-MRE models are rate-independent. As mechanical
boundary conditions we employ

𝑆𝚖𝚎𝚌𝚑

11 = 𝑆𝚖𝚎𝚌𝚑

22 = 𝑆𝚖𝚎𝚌𝚑

33 = 0, 𝐹𝑖𝑗 = 0, ∀𝑖 ≠ 𝑗. (6.3)

Similar to the numerical RVE results of non-hysteretic 𝑠-MREs (Mukherjee et al., 2020), in ℎ-MREs too, the effective magnetostric-
tion response exhibits a certain variance with respect to the RVE realizations, even for sufficiently large number of polydisperse
spherical inclusions. For the effective RVE half-cycle responses shown in Fig. 4, we employ five different RVE realizations per particle
volume fraction 𝑐 = 0.1, 0.2 and 0.3. The corresponding average magnetization, 𝑚1∕𝑚𝑠𝚙 and the parallel, 𝜆1−1 and transverse, 𝜆2,3−1,
magnetostrictions are shown in Fig. 4. The light-colored patches around the respective averages indicate the scatter resulting from
the considered realizations.

Fig. 4. Numerically computed effective (a) magnetization, (b) parallel and (c) transverse magnetostrictions the ℎ-MRE RVEs, subjected to uniaxial Eulerian
𝐡𝚊𝚙𝚙 = ℎ𝚊𝚙𝚙1 𝐞1 loading/unloading. The average effective responses (solid lines) along with the range of their fluctuations (light patches) for different realizations
of the respective RVEs are indicated. The RVEs of different volume fractions are comprised of random polydisperse spherical hard-magnetic inclusions, coming
from three distinct families.

Specifically, in Fig. 4a, the scatter of the magnetization response is found to be vanishingly small, whereas, those of the parallel
(𝜆1 in Fig. 4b) and transverse magnetostrictions (𝜆2 and 𝜆3 in Fig. 4c) are gradually increasing with the magnetic load. Notice from
ig. 4 that neither the effective magnetization, nor the magnetostriction saturates at higher ℎ-fields. Rather, they maintain a slope
ith the applied ℎ𝚊𝚙𝚙1 . Such response can be attributed to the inherent non-saturating magnetization response of the NdFeB particles,
s observed in Fig. 2b for 𝜒𝑒

𝚙
> 0. Moreover, we observe that the overall amplitude of the magnetostriction is rather small (∼10−3)

ndicating that a matrix with shear modulus 𝐺𝚖 = 0.5MPa is rather stiff in relation to the magnetic particle-to-particle forces. Even
o, a permanent deformation is obtained upon complete removal of the applied magnetic field. This is obviously a direct consequence
f the permanent magnetization of the particles and of their mutual interaction once magnetized permanently.

In Fig. 5a–c, we show the contours of the microscopic q𝑏1∕𝜇0𝑚𝑠𝚙 fields after the end of the initial half-cycle (i.e., final state
hown in Fig. 4) in the deformed RVEs for the three particle volume fractions under consideration. Fig. 5a–c also shows that the
agnetic self-fields under no applied 𝐡𝚊𝚙𝚙 become considerably stronger with increasing volume fraction. Furthermore, the contours
16
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Fig. 5. Contours of the numerically computed (a–c) normalized microscopic q𝑏1, (d–f) normalized local q𝑚1 and (g–i) nominal mechanical strain q𝜆1 − 1 in the
RVEs after the first half cycle of loading along 𝐞1, under which the effective responses are shown in Fig. 4. Three different, RVEs having (a,d,g) 𝑐 = 0.1, (b,e,h)
0.2 and (c,f,i) 0.3 are shown.

of microscopic q𝑚1∕𝑚𝑠𝚙 are shown in Fig. 5d–f, where we observe q𝑚1 ≈ 𝑚𝑠
𝚙

in the particles, while q𝑚1 = 0 in the non-magnetic matrix
phase. In accord with the computed effective magnetostrictions in Fig. 4b and c, we observe very small overall deformation of the
RVEs, although the local (microscopic) strain fields may be much higher (twice as large) and varying extensively in the matrix
phase. For instance, the contours of the local nominal strain q𝜆1 − 1 fields are shown in Fig. 5g–i.

The magnetization and magnetostriction response under a fully reversed proportional loading is then computed for 𝑐 = 0.1, 0.2
and 0.3 by considering a single RVE of each volume fraction. These RVEs are selected to be those, whose effective response is the
closest to the corresponding average shown by the firm lines in Fig. 4b and c. The resulting magnetization and magnetostriction
hysteresis loops along with the corresponding model estimates are shown in Fig. 6. Specifically, one of the magnetization RVE curves
(𝑐 = 0.3) is used to calibrate the two exponents 𝑞𝚜𝚊𝚝 and 𝑞𝚌𝚘𝚎𝚛 introduced in relations (4.6) and (4.12), respectively.9 In turn, the
RVE magnetostriction curves in Fig. 4b are used to calibrate the 𝛽 function introduced in (4.8), which becomes

𝛽(𝑐) ∶= 19.0𝑐2 − 10.4𝑐 + 1.71. (6.4)

The range of validity of this function pertains to its calibration range, i.e., 𝑐 ≤ 0.3. In addition, we note that 𝛽 is a constant for a
given volume fraction and thus only affects the amplitude of the magnetostriction response of the model but not its form, which is
of a butterfly type and results directly from the corresponding magnetic hysteresis response.

9 We note that these exponents serve to fine-tune the calibration of the magnetization response allowing for an excellent agreement. Instead, setting them
equal to unity changes only weakly the resulting magnetization response.
17



Journal of the Mechanics and Physics of Solids 151 (2021) 104361D. Mukherjee et al.

m
h
m

f
a

t
f
t
t
t
c

6

T
a

t
f
h
(

n
t
t
t
d

6

d

A

a
e
R

Fig. 6. Computed macroscopic hysteresis loops of effective (a) magnetization, (b) parallel and (c) transverse magnetostrictions of ℎ-MRE RVEs having the
atrix shear modulus 𝐺𝚖 = 0.5 MPa and particle volume fractions 𝑐 = 0.1, 0.2 and 0.3. The RVEs are subjected to a fully reversed, proportional cyclic loading
aving amplitude of 3𝑚𝑠

𝚙
. The average of the effective responses computed from five realizations of a RVE are shown without the fluctuation patches for the

agnetostrictions.

In this regard, we find that the model is capable of reproducing extremely well the effective magnetic response of the ℎ-MRE
or several volume fractions. As a result of this excellent agreement, the effective magnetostriction is also well reproduced by only
single calibration constant since 𝛽 is a constant for a given volume fraction 𝑐.

Finally, we note that as the volume fraction of the particles decreases, the magnetization tends to saturate faster. By contrast,
he switching point controlled by the magnetic coercivity 𝑏𝑐 of the composite seems to be almost insensitive to the particle volume
raction, which justifies the proposition (4.12). We further note that the calibrated 𝛽 parameter in (6.4) is also found to predict
he effective magnetostriction responses considerably well for all 𝐺𝚖 ≥ 0.2 MPa. Some representative computations to probe
his predicting capability of the model have been carried out. These results are not shown here for brevity. Instead, we probe
he predictive capability of the model in the following subsection by comparison with pre-magnetized ℎ-MRE RVEs subjected to
ombined magneto–mechanical loadings.

.2. Mechanical and magnetic loading of a pre-magnetized RVE

Several experiments and applications use pre-magnetized ℎ-MRE samples (Kim et al., 2018; Zhao et al., 2019; Ren et al., 2019).
he pre-magnetization of the samples is achieved by exposing them once to large magnetic fields near magnetic saturation. As
lready shown in the context of Figs. 4 and 5, this process leads to particles being permanently magnetized.

In this section, we probe the performance of the proposed model in cases of pre-magnetized ℎ-MREs. The results are obtained in
wo steps. In the first step, we pre-magnetize the RVEs starting from the initial state of zero magnetization by applying a magnetic
ield ℎ𝚊𝚙𝚙1 𝐞1 up to a value ℎ𝚊𝚙𝚙1 ∕𝑚𝑠

𝚙
= 3 and subsequently decreasing it back to zero. This loading procedure is identical to the magnetic

alf-cycles in Section 6.1. The second step consists in investigating the effects of (i) uniaxial mechanical tension, (ii) simple shear and
iii) cyclic magnetic loading perpendicular to the pre-magnetization direction and assess to model under these loading conditions.

We focus our analysis on pre-magnetized ℎ-MREs with particle volume fraction 𝑐 = 0.2 and three distinct matrix shear moduli,
amely 𝐺𝚖 = 0.3, 0.5 and 1 MPa. The magnetic material parameters related to the matrix and particle phases remain identical to
hose in Table 2, whereas the coupling coefficient 𝛽 is considered to be given by (6.4). We also remark that the results shown in
he following subsections have been obtained for monodisperse particle distributions in order to make the computations feasible
ime-wise. Such a simplification is perfectly acceptable for the present loading conditions, where the scatter of the RVE response
ue to different realization was found to be negligible for monodisperse RVEs with sixty particles.

.2.1. Uniaxial tension perpendicular to pre-magnetization
In this section, we apply a purely mechanical uniaxial tension loading along the 𝐞2 direction, which is perpendicular to the

irection 𝐞1 of the pre-magnetization of the ℎ-MRE, while the applied magnetic field is kept identically zero, i.e.,

𝑆𝚖𝚎𝚌𝚑

22 ≠ 0, 𝑆𝚖𝚎𝚌𝚑

11 = 𝑆𝚖𝚎𝚌𝚑

33 = 0, 𝐹𝑖𝑗 = 0, ∀𝑖 ≠ 𝑗, 𝐡𝚊𝚙𝚙 = 𝟎. (6.5)

s shown in the inset of Fig. 7a, we consider half a cycle, described by a linear increase of 𝑆𝚖𝚎𝚌𝚑

22 from 0 to 𝐺𝚖 and subsequent
decrease to 0 (note that the rate of loading is inconsequential since the models under study are rate-independent). Moreover, we
show results for three shear moduli, 𝐺𝚖 = 0.3, 0.5, 1.0.

Fig. 7a, b and c show the mechanical stretch 𝜆2 and the magnetizations along the 𝐞1 and 𝐞2 directions for the numerical RVE
nd the analytical model. The corresponding deformed RVEs are depicted in Fig. 7d–f. It is noted that the numerically computed
ffective stretch 𝜆2−𝜆02 (with 𝜆02 denoting the initial remanent stretch due to the pre-magnetization) does fluctuate with the different
VE realizations. Nevertheless, as shown in Fig. 4, the magnitude of such realization-dependent scatter in the strain remain less than
18
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Fig. 7. Evolutions of (a) mechanical stretch 𝜆2 − 𝜆02 (with 𝜆02 denoting the initial remanent stretch due to the pre-magnetization) and magnetizations along (b)
𝐞1 and (c) 𝐞2 under applied uniaxial tensile stress 𝑆𝚖𝚎𝚌𝚑

22 , whose temporal evolution is shown in the inset of (a). The inset of (c) shows a schematic of the ℎ-MRE
with the direction of pre-magnetization 𝐦0 and the applied uniaxial tension. Contours of the q𝐛 field in the deformed RVE under applied 𝑆𝚖𝚎𝚌𝚑

22 ∕𝐺𝚖 = 1 for 𝐺𝚖 =
(d) 1.0, (e) 0.5 and (f) 0.3 MPa. The arrows on the particles show the average direction of q𝐦 in them.

5×10−4, which is considerably smaller than the magnitude of the stretch ( 0.25), shown in Fig. 7a. Thus, the numerical computations
with the monodisperse RVEs lead to excellent estimates under purely mechanical loading conditions, while at the same time, they
keep the computational expense considerably low. This observation has already been done in the context of 𝑠-MREs by Danas (2017),
where the mechanical and magnetic response was found to converge for RVEs of considerably lower number of particles, whereas
the pure magnetostriction (i.e. for zero overall applied mechanical load) required substantially larger RVE sizes with more particles.

In particular, we observe excellent agreement between the numerical homogenization results and the model estimates in all
cases shown in Fig. 7a–c, namely, the principle stretch 𝜆2 and the effective magnetization responses along 𝐞1 and 𝐞2. The model
predictions for the transverse stretches 𝜆2 and 𝜆3 also match perfectly the numerically computed responses (not shown explicitly
here). It is noted further that all results shown here are independent of the matrix shear modulus upon the normalization 𝑆𝚖𝚎𝚌𝚑

22 ∕𝐺𝚖.
This is a particular feature of the Neo-Hookean model used for the mechanical description of the matrix phase and simply implies
that the overall response of the ℎ-MRE is also of a Neo-Hookean type (see relevant discussion in Lopez-Pamies et al. (2013)).

Remark 4. Finally, we close the discussion of Fig. 7 with an important observation, that of the stretch-independence of the current
effective remanent magnetization 𝐦0, observed in Fig. 7b,c, as predicted by the model and confirmed by the RVE simulations.
In simple words, we find that the current remanent magnetization remains unaffected by the stressing (or stretching) of the
solid. As a result, the cyclic loading of a pre-magnetized ℎ-MRE does not lead to dissipation. This does not mean that the local
magnetization does not change via corresponding particle rearrangement. On the contrary, particles rearrange due to the finite
straining. Nonetheless, this does not affect the average current magnetization of the RVE, which is an important feature that needs
to be reproduced both by phenomenological top-down as well as homogenization bottom-up models. The ability of the present
model to recover this feature is linked to the definition of the internal variable 𝑟 in the intermediate stretch-free configuration as
discussed in Section 3.1. In turn, this feature has also been observed in the context of 𝑠-MREs experimentally (Danas et al., 2012),
numerically (Mukherjee et al., 2020) and theoretically (Lefèvre et al., 2017) via an independence of the current magnetization
response to pre-stressing. This feature is linked also to the underlying (quasi-)incompressibility of the materials under study and
should be taken into account in the modeling of MREs in general.
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Fig. 8. Evolutions of (a) shear strain 𝛾12 and magnetizations along (b) 𝐞1 and (c) 𝐞2 under applied simple shear stress 𝑆𝚖𝚎𝚌𝚑

12 , whose loading path is shown in
the inset of (a). A schematic of the ℎ-MRE with the direction of pre-magnetization 𝐦0 and the applied shear stress is shown in the inset of (b). Contours of the
𝐛 field in the deformed RVE under applied 𝑆𝚖𝚎𝚌𝚑

12 ∕𝐺𝚖 = 1 for 𝐺𝚖 = (d) 1.0, (e) 0.5 and (f) 0.3 MPa. The arrows on the particles show the average direction of q𝐦
in them.

6.2.2. Simple shear parallel to pre-magnetization
We apply a purely mechanical simple shear stress 𝑆𝚖𝚎𝚌𝚑

12 loading. The corresponding traction vector is parallel to the pre-
magnetization direction 𝐞1 of the ℎ-MRE, while the applied magnetic field is kept identically zero during this step, i.e.,

𝑆𝚖𝚎𝚌𝚑

12 ≠ 0, 𝑆𝚖𝚎𝚌𝚑

11 = 𝑆𝚖𝚎𝚌𝚑

22 = 𝑆𝚖𝚎𝚌𝚑

33 = 0, 𝐹21 = 𝐹13 = 𝐹31 = 𝐹23 = 𝐹32 = 0, 𝐡𝚊𝚙𝚙 = 𝟎. (6.6)

Furthermore, the evolution for the applied 𝑆𝚖𝚎𝚌𝚑

12 is shown in the inset of Fig. 8a.
In Fig. 8a–c, we observe an excellent agreement between the model predictions and the numerical homogenization results for

the effective shear strain 𝐹12 = 𝛾12 as well as for the effective magnetizations along 𝐞1 and 𝐞2, respectively. All results, shown in the
context of this figures, are independent of the matrix shear modulus upon the normalization 𝑆𝚖𝚎𝚌𝚑

12 ∕𝐺𝚖.
Again, we observe that despite the significant shearing strains and particle rearrangements, the amplitude of the current effective

magnetization 𝐦 remains unaffected (see inset of Fig. 8b). Instead, the orientation of the magnetization vector significantly changes
with the applied shearing, as revealed by the change of the individual components 𝑚1∕𝑚𝑠𝚙 and 𝑚2∕𝑚𝑠𝚙 in Fig. 8b and c, respectively.
Interestingly, this rotation remains (almost) identical to the macroscopic (average) rotation of the RVE induced by the shearing.
Therefore, the affine rotation-based model presented in this work predicts the evolution of 𝐦 in this case accurately.

Figs. 8d–f show three deformed RVEs at 𝑆𝚖𝚎𝚌𝚑

12 ∕𝐺𝚖 = 1 for the three 𝐺𝚖 under consideration. It is noted that the RVE deformations
and the local q𝑏1 fields remain identical for all three 𝐺𝚖 under consideration. The only key feature to note here is the uniform
distribution of the particle rotations, which, in turn, rotates the local (microscopic) and therefore the global (effective) magnetization
vectors.

6.2.3. Cyclic magnetic loading perpendicular to pre-magnetization
In this section, we investigate the effect of cyclic magnetic loading applied along 𝐡𝚊𝚙𝚙 = ℎ𝚊𝚙𝚙2 𝐞2, which is perpendicular to the

direction of the pre-magnetization 𝐞1. As shown in the inset of Fig. 9a, the loading/unloading path is a simple ramp-type linear
increase/decrease from a zero applied field to ℎ𝚊𝚙𝚙2 = 3𝑚𝑠

𝚙
and then decrease to zero. The mechanical boundary conditions for this

loading case are given by

𝑆𝚖𝚎𝚌𝚑

11 = 𝑆𝚖𝚎𝚌𝚑

22 = 𝑆𝚖𝚎𝚌𝚑

33 = 𝑆𝚖𝚎𝚌𝚑

12 = 𝑆𝚖𝚎𝚌𝚑

32 = 0, 𝐹21 = 𝐹13 = 𝐹31 = 𝐹23 = 0. (6.7)

Since all the shear degrees of freedom on the surface with reference unit normal along 𝐞2 are left free, the applied magnetic
loading induces an average shear strain along direction 1, namely 𝛾12, in the RVE due to the collective rotation of the microscopic
hard magnetic particles. The evolution of the magnetization components along 𝐞1 and 𝐞2 along with that of the induced shear under
applied ℎ𝚊𝚙𝚙 are shown in Fig. 9. Unlike the preceding two results involving mechanical tension and shear of a pre-magnetized
20
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Fig. 9. Evolution of the magnetization components along 𝐞1 (a,d,g) and 𝐞2 (b,e,h) and the induced shear strain 𝛾12 (c,f,i) under applied perpendicular magnetic
oading along 𝐞2 (inset of a) to a pre-magnetized ℎ-MRE along 𝐞1 (inset of b). Effect of three distinct 𝐺𝚖, namely, 𝐺𝚖 = (a–c) 1.0 , (d–f) 0.5 and (g–i) 0.3 MPa
n the effective magnetization components and induced shear strain.

Fig. 10. (a) Proportional magnetic loading path along 𝐞2, (b) relative difference between the computed and model predicted magnitudes of 𝐦 and (c) angle (in
n absolute sense) between the computed and the model-predicted effective magnetizations. The points (I), (II) and (III) indicates loading instances at which the
eformed RVE along with the 𝑏2 contours are shown in Fig. 11.
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ℎ-MRE, here we observe a strong dependence of the resulting magneto–mechanical response on 𝐺𝚖. First, we notice from Fig. 9c, f
and i that the induced shear strain increases with the decreasing shear modulus of the matrix. Furthermore, the magnitude of the
induced shear strains are one to two orders higher than those of the magnetostrictions under a aligned magnetic loading, as observed
in Fig. 4b and c. This last observation suggests that the effect of collective particle rotations due to non-aligned magnetic loading
induces a substantially stronger magneto–mechanical coupling than inter-particle attraction. This is perhaps the reason that most of
the soft robotic applications of ℎ-MREs exploit these large deflections under non-aligned magnetic loadings with respect to the pre-

agnetization direction (Kim et al., 2018; Zhao et al., 2019). We also note from the numerical homogenization computations that,
nder this non-aligned loading condition, the scale of variations due to RVE realizations in the magnetostriction stretch components
𝑖 (𝑖 = 1− 3) remains less than 2 × 10−3 and are significantly smaller than the induced shear strains due to the particle realignment.

As a result, such variations do not play a significant role in the macroscopic response of the ℎ-MREs, while they allow the use of
RVEs with a smaller number of monodisperse particles.

In this highly non-trivial loading scenario, the model predictions remain in acceptable agreement with the computed RVE results,
especially for stiffer ℎ-MREs having 𝐺𝚖 ≥ 0.5MPa. The predicted effective magnetization and shear responses, however, start differing
from the numerical ones for the relatively softer ℎ-MRE with 𝐺𝚖 = 0.3 MPa. To further investigate this disparity, we plot the
relative error in the magnitude of the predicted magnetization and the predicted direction of the magnetization with respect to
the numerical homogenization estimates in Fig. 10b and c. In particular, we observe from Fig. 10b that, the relative error in the
predicted magnitude of 𝐦 remains below 3% during most of the loading/unloading process. On the other hand, Fig. 10c shows that
the absolute difference between 𝜃𝙵𝙴

𝚖𝚊𝚐
and 𝜃𝚖𝚘𝚍𝚎𝚕

𝚖𝚊𝚐
becomes significant at the initiation of the non-proportional loading and during the

unloading. Here the angles 𝜃𝚖𝚊𝚐 are measured in degrees and with respect to the 𝑋1 axis and therefore, are computed simply via
𝜃𝚖𝚊𝚐 = tan−1(𝑚2∕𝑚1).

The increasing differences between the predicted and computed directions of the effective 𝐦 for a decreasing matrix shear
modulus is attributed to the non-affine particle rotations in the microstructure, i.e., the particles tend to rotate differently from the
macroscopic rotation of the RVE (Kalina et al., 2017). Instead, the magnetization magnitudes match significantly better. Evidently,
the extent of these non-affine rotations increases with decreasing 𝐺𝚖, thus, leading to gradually larger differences between the model
predictions and the numerical homogenization results. Even so, the predicted induced shear strain responses for 𝐺𝚖 = 0.3 MPa in
Fig. 9i exhibit an acceptable qualitative and quantitative agreement with the corresponding numerical results, given the strongly
non-aligned loading considered here.

In connection with this, Fig. 11 shows a number of representative contour plots of the local q𝑏2 fields in the composite at various
loading instants, indicated by (I), (II) and (III) on Fig. 10a. Evidently, the deformed configurations in Fig. 11 show a greater extent
of induced shear in the RVEs with softer matrix (cf., Fig. 11b and h), which are in accordance with the effective responses in
Fig. 9. Furthermore, visual inspections of the individual particles in Fig. 11b, e and h clearly show an increasing tendency of non-
proportional particle rotations. Even if the deformed configurations in state (III), i.e., Fig. 11c, f and i look identical, the directions
of the local magnetization in the particles differ considerably. This is due to the greater extent of non-affine particle rotations in
the softer matrix (𝐺𝚖 = 0.3 MPa) during the initial non-proportional loading cycle (see initial surface fluctuations in Fig. 10c).

6.3. Discussion on the non-affine rotation of the particles

More precisely, the magnetization of ℎ-MREs along the direction of non-aligned magnetic loading results from two competing
mechanisms: first, from the particle rotations in the soft elastomer matrix and second, from the magnetic switching in the particles
themselves. As shown in Fig. 10c, during the initial non-aligned loading, the particles are more susceptible to undergo rotations in
order to align themselves with the applied ℎ-field, thus, inducing an overall shear strain 𝛾12 in the RVE. Moreover, the tendency of
the particles to undergo additional non-affine rotations increases with the decreasing 𝐺𝚖. Nevertheless, both affine and non-affine
particle rotations are hindered by the elastic restoring energy, exerted by the matrix. This constraint to the (affine and non-affine)
particle rotations increases with increasing 𝐺𝚖, leading to smaller induced 𝛾12 and also lesser non-affine rotations (see Fig. 10c).
Eventually, the magnetic switching mechanism dominates over the particle rotations at higher applied fields and consequently, the
induced shear starts to saturate (see Fig. 9c, f and i). Also, we observe negligibly small non-affine particle rotations in Fig. 10c
during the later part of the loading half cycle, when the magnetic switching mechanism dominates in the process of rotating the
average 𝐦.

During the unloading, on the other hand, no magnetic switching takes place. Nonetheless, because of the elastic restoring energy,
the rotated particles start coming back to their initial position as the applied magnetic field ℎ2 is gradually removed. Consequently,
the induced 𝛾12 vanishes upon the removal of the applied ℎ𝚊𝚙𝚙2 (see Fig. 9c, f, i and Fig. 11c, f and i). In addition, the particles also
undergo non-affine rotations while returning back to their initial positions, in order to compensate for their non-affine rotations
during the initial part of the loading half cycle. Consequently, this leads to the differences between numerical results and the
proposed affine rotation-based model predictions, especially at smaller values of the shear modulus of the matrix (Fig. 9g and h).

Even so, the analytical model proposed here is versatile enough to be further calibrated to recover more accurately the response
even at smaller values of 𝐺𝚖. Such an exercise is not conducted here because that is beyond the scope of the present study.
Nevertheless, the model is used in the next section to solve boundary value problems and compare with experiments proposed
22
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Fig. 11. Contours of the numerically computed local q𝑏2 fields in a deformed mesh at the loading/unloading instances (I) (a,d,g), (II) (b,e,h) and (III) (c,f,i) as
indicated in Fig. 10a. Contours are shown for three different matrix shear modulus, namely, 𝐺𝚖 = 1.0 MPa (a–c), 0.5 MPa (d–f) and 0.3 (g–i).

7. Results: solution of macroscopic boundary value problems using the analytical model

In this section, we employ the analytical model proposed in this study to solve macroscopic boundary value problems (BVPs) with
ℎ-MREs.10 Till date, most experimental ℎ-MRE studies consider pre-magnetized slender beams under applied non-aligned magnetic
fields (Kim et al., 2018; Zhao et al., 2019; Ren et al., 2019). We first solve a macroscopic boundary value problem that models
the experiment of Zhao et al. (2019) with a uniformly pre-magnetized cantilever beam. After that, we investigate three cases of
non-uniformly magnetized ℎ-MRE beams subjected to magnetic loading that is perpendicular to the long axis of the beam. The
latter are motivated from the experiments of Ren et al. (2019), although the exact geometric/material parameters are not used
here. Both problems are solved in a two-dimensional plane-strain setting for simplicity. The model however is three-dimensional as
shown earlier.

10 It is unambiguous here that the present BVPs involve a ℎ−MRE sample inside an air domain and the corresponding applied magnetic fields are applied far
from the body. Instead, in Section 6, we dealt with RVE simulations and thus infinite domains that involve no air. The applied fields therein may be identified
with the average magnetic fields in the RVE.
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Fig. 12. (a) Schematic diagram of the numerical BVP involving the ℎ-MRE and surrounding air. The length of the square air domain 𝐿Air is considered to
be 𝐿Air = 10𝐿0 and four boundaries of this domain are denoted by 𝜕Left

Air , 𝜕Top
Air , 𝜕Right

Air and 𝜕Bottom
Air . (b) Step 1, indicating the applied pre-magnetizing field

𝐛𝚖𝚊𝚐 direction (by red arrows) and magnitude (right hand side plot). The four interfaces between air and ℎ-MRE are denoted by 𝜕Left
MRE, 𝜕Top

MRE, 𝜕Right
MRE and

𝜕Bottom
MRE . The hatched interfaces represent fixed displacement degrees-of-freedom, i.e. 𝐮 = 𝟎. (c) Two subsequent magnetic loading paths for (c) Step 2, indicating

the actuation field 𝐛𝚊𝚙𝚙 applied along 𝐞2, while its magnitude is shown in the adjacent plot. The length and width of the ℎ-MRE are indicated by 𝐿0 and w0,
respectively, while the fixed ℎ-MRE-air interface in this step is indicated by a hatched line. .

7.1. Deflection of uniformly pre-magnetized cantilever beams

As pointed out by numerous works with BVPs involving MREs, the magnetic field is applied by fixed magnetic poles, situated
far from the MRE sample (Psarra et al., 2017; Bodelot et al., 2017; Zhao et al., 2019). Such condition is adapted in a numerical
setting via considering a sufficiently large volume of surrounding air around the ℎ-MRE sample (see Fig. 12a). In the framed two-
dimensional numerical BVP, the total numerical computation area is considered to be a square with length 𝐿Air = 10𝐿0, where 𝐿0
is the length of the ℎ-MRE sample, while its width is denoted by w0. Thus, the aspect ratio of the rectangular ℎ-MREs is defined via
𝑟asp = 𝐿0∕w0. The total numerical computation area is defined via  = Air ∪ MRE. While the outer boundary of the surrounding
air domain is defined via 𝜕Air = 𝜕Left

Air ∪ 𝜕Top
Air ∪ 𝜕Right

Air ∪ 𝜕Bottom
Air , the interface between the ℎ-MRE and the air is defined via

𝜕MRE = 𝜕Left
MRE ∪ 𝜕Top

MRE ∪ 𝜕Right
MRE ∪ 𝜕Bottom

MRE (see Fig. 12a and b).
Similar to the microscopic problem, we employ the incremental potential (4.24) in order to numerically obtain the local magnetic

and mechanical fields for the ℎ-MRE, we employ the quasi-incompressible mechanical model in (4.9) together with the switching
surface (4.14) and the associated switching rule (4.15).

The modeling of air space surrounding the ℎ-MRE needs special consideration (Keip and Rambausek, 2016; Pelteret et al., 2016;
Psarra et al., 2017, 2019). In this work we follow the approach of Psarra et al. (2017, 2019) which is summarized in the following.
In order to obtain a numerically feasible ‘‘deformation’’ in the free space, we apply a linear constraint on each node in the air
domain (Air). For this purpose, we first define a distance coefficient for each node in Air. This requires to find the closest node on
the interface 𝜕MRE to the node 𝑛 in Air, which is achieved by a simple nearest neighbor search algorithm. The distance coefficient
is subsequently defined to be

𝑑(𝑛)𝑖 = 1 −

|

|

|

𝑋(𝑛)
𝑖
|

|

|𝜕MRE
−𝑋(𝑛)

𝑖
|

|

|Air

|

|

|

0.5𝐿Air
. (7.1)

Subsequently, we employ a constraint between those two nodes, the one at the boundary of the solid and that in the air, which
reads

(𝑛)
𝑖 ≡

⎧

⎪

⎨

⎪

⎩

𝑑(𝑛)𝑖 𝑢(𝑛)𝑖
|

|

|𝜕MRE
− 𝑢(𝑛)𝑖

|

|

|Air
= 0, if 0 < 𝑑(𝑛)𝑖 ≤ 1

𝑢(𝑛)𝑖
|

|

|Air
= 0, otherwise.

(7.2)

In order to apply this constraint in the present incremental variational setting, we introduce a penalty potential to be applied in
the air domain, such that (Psarra et al., 2019)

𝜌0𝛹𝚙𝚎𝚗𝚊𝚕𝚝𝚢(𝐮) =
𝑁Air
∑

𝑛=1

2
∑

𝑖=1

𝐺𝑐
2𝐿𝑐𝜁

(

(𝑛)
𝑖

)2
, (7.3)

where 𝑁Air is the number of air nodes, 𝐿𝑐 is a reference length parameter set to be equal to w0, 𝐺𝑐 is an arbitrary shear modulus-
like parameter, which is set to that of the ℎ-MRE and 𝜁 is a penalty parameter, which is set to 10−3 in order to ensure the proper
application of the constraint (7.2).
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Finally, the total potential energy associated with the air takes the form

𝑊Air(𝐮, 𝜑) = 𝜌0𝛹𝚙𝚎𝚗𝚊𝚕𝚝𝚢(𝐮) −
𝜇0
2
𝐽𝐼5. (7.4)

he second term in this expression is the magnetostatic energy, which must be included in order to assure a finite magnetic 𝑏-field
n the air domain Air. No additional mechanical energy is considered for the air. In practice, the penalty potential (7.3) is applied in
he finite-element setting by defining a set of 𝑁Air dummy elements having two nodes, namely, the air node and the MRE interface
ode.

In summary, the incremental variational principle for the BVP becomes in the time step [𝑡, 𝜏]

𝒫 (𝐮𝜏 , 𝜑𝜏 ) = inf
𝐮𝜏∈𝙱𝚅𝙿

sup
𝜑𝜏∈𝙱𝚅𝙿

[

∫MRE

(𝐮𝜏 , 𝜑𝜏 )d𝑉 + ∫Air
𝑊Air (𝐮𝜏 , 𝜑𝜏 )d𝑉

]

. (7.5)

ote that mechanical body forces are neglected and no mechanical tractions are applied anywhere in the domain. The incremental
otential  for the ℎ-MRE is defined by (4.24). In addition, the constraint sets 𝙱𝚅𝙿 and 𝙱𝚅𝙿 are those defined in (5.6) and (5.7),
espectively, with the periodic boundary conditions replaced by proper Dirichlet conditions at the ℎ−MRE boundary, denoted by
MRE ≡ 𝜕Top

MRE∪𝜕
Lef t
MRE∪𝜕

Bottom
MRE ∪𝜕Right

MRE , and the air boundary, denoted by 𝜕Air ≡ 𝜕Top
Air ∪𝜕

Lef t
Air ∪𝜕Bottom

Air ∪𝜕Right
Air , as discussed

n the following. These Dirichlet boundary conditions in the BVP allow for an initial pre-magnetization along the long axis of the
eam and subsequent actuation by applying a magnetic field perpendicular to the pre-magnetization direction. The steps to apply
hem are:

– Step-1: Pre-magnetization of the beam. As indicated in Fig. 12b (top), the first ‘‘pre-magnetization’’ step is carried out by
considering all the ℎ-MRE and air boundaries to be fixed, while a magnetic (pre-)loading along the long axis of the beam is
applied in terms of the magnetic scalar potential 𝜑, such that

𝐮𝜏 = 𝟎, ∀ 𝐗 ∈ 𝜕MRE and 𝐮𝜏 = 𝟎, ∀ 𝐗 ∈ 𝜕Air (7.6)

𝜑𝜏 = 0, ∀ 𝐗 ∈ 𝜕Lef t
Air and 𝜑𝜏 = −

𝑏𝚖𝚊𝚐1,𝜏

𝜇0
𝐿Air ∀ 𝐗 ∈ 𝜕Right

Air . (7.7)

The temporal evolution of 𝑏𝚖𝚊𝚐1 is also shown in Fig. 12b.
– Step-2: Actuation via a perpendicular magnetic field. The actuation step in Fig. 12c, is carried out by considering a cantilever

boundary condition for the ℎ-MRE along with the mechanical and magnetic boundary conditions at the air boundary, so that

𝐮𝜏 = 𝟎, ∀ 𝐗 ∈ 𝜕Lef t
MRE and 𝐮𝜏 = 𝟎, ∀ 𝐗 ∈ 𝜕Air (7.8)

𝜑𝜏 = 0, ∀ 𝐗 ∈ 𝜕Bottom
Air and 𝜑𝜏 = −

𝑏𝚊𝚙𝚙2,𝜏

𝜇0
𝐿Air ∀ 𝐗 ∈ 𝜕Top

Air , (7.9)

In addition, the temporal evolution for 𝑏𝚊𝚙𝚙2 is shown in Fig. 12c.

It should be noted at this point that, the pre-magnetization step (Step-1) requires a considerably high applied magnetic field
close to saturation, whereas, the actuation step (Step-2) only considers a maximum loading up to 50 mT.

The two important material parameters for the pre-magnetized ℎ-MRE are the effective shear modulus 𝐺 of the composite and
the effective remanent magnetization after the pre-magnetization step. The measured values for these two are provided by Zhao
et al. (2019) to be 𝐺 = 0.303 MPa and 0.114 MA/m, respectively. We thus set the particle volume fraction 𝑐 = 0.177 to obtain the
aforementioned local remanent magnetization in MRE after the pre-magnetization at 2 T, while all the purely magnetic and coupling
material parameters are kept identical to those provided in Table 2. A straightforward calculation from (4.2)1 with 𝐺 = 0.303 MPa
and 𝑐 = 0.177 yields the matrix shear modulus 𝐺𝚖 ≈ 0.186 MPa for ideally incompressible composites. The numerical simulations
are conducted employing the constitutive model (4.9) with 𝐺𝚖 = 0.186 MPa and 𝐺′

𝚖
= 500𝐺𝚖.

The contours of the magnitudes of 𝐛, 𝐡 and 𝐦 fields along with their directions are shown in Fig. 13 at the beginning (a–c)
and end (d–f) of Step-2. As observed in Fig. 13c, we obtain a uniformly pre-magnetized ℎ-MRE after Step-1. The pre-magnetization
fields are indicated with a superscript ‘‘0’’, while the magnetic fields due to the Step-2 transverse magnetic loading are indicated
only by the respective symbols. Notice that the local 𝐡 field in the MRE structure remains small compared to the 𝐛 and 𝐦 fields,
except at its left and right boundaries due to corner effects. Thus, one can approximate 𝐛 ≈ 𝜇0𝐦 ∀𝐗 ∈ MRE for this specific case
of uniformly pre-magnetized ℎ-MREs. In fact, this approximation also seems to hold under applied actuation field 𝑏𝚊𝚙𝚙2 = 50 mT,
which, in turn, leads to high deflection of the cantilever (see Fig. 13d–f). This property of exhibiting extreme mechanical deflection
without changing its magnetic properties under applied small fields makes the slender ℎ-MREs an ideal candidate for remote robotic
actuation (Kim et al., 2018; Ren et al., 2019; Alapan et al., 2020).

The computed end-tip deflections of the pre-magnetized cantilever beams are then compared to the corresponding experimental
measurements reported by Zhao et al. (2019) for two slenderness ratios, namely 𝑟𝚊𝚜𝚙 = 10 and 17.5. As shown in Fig. 14a, the
agreement between the present simulations and the experiments is excellent. For further comparison, in Figs. 14b,c, we show,
respectively, the entire experimental and numerical deflected beam shapes for 𝑟𝚊𝚜𝚙 = 10 at an applied magnetic field 𝑏𝚊𝚙𝚙2 = 25 mT.
The agreement again is found to be good. A code developed by Mukherjee et al. (2021) based on ABAQUS/Standard reproducing
the results in Fig. 13 and Fig. 14 is available at http://www.doi.org/10.5281/zenodo.4588578.
25
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Fig. 13. Residual magnetic (a) 𝐛, (b) 𝐡 and (c) magnetization 𝐦 fields in the ℎ-MRE having an aspect ratio 𝑟asp = 10, along with magnetic self fields around
the surrounding air after Step 1, i.e., the initial magnetization at 2 T. The colored contours represent the magnitude of these fields, whereas the black arrows
represent their directions. The lengths of these arrows denote the relative magnitude of the vectors. (d–f) Deflected pre-magnetized ℎ-MRE under an applied
transverse field of 45 mT along 𝐞2. Magnitude and directions of the resulting (d) 𝐛, (e) 𝐡 and (f) 𝐦 fields in the ℎ-MRE and its surrounding air is shown by
colored contours and black arrows, respectively.

Fig. 14. (a) Comparison between numerically computed and experimentally measured end-tip displacement of the pre-magnetized ℎ-MREs (following Steps 1
and 2 as depicted in Fig. 12b and c) having two different aspect ratios 𝑟asp = 10 and 17.5. (b) Experimentally captured deflected beam having 𝑟asp = 10 under
𝑏𝚊𝚙𝚙2 = 25 mT and (c) numerically computed shape of the pre-magnetized beam of the same 𝑟asp under the same applied 𝑏-field.

7.2. Deflection of non-uniformly pre-magnetized cantilever beams

Non-uniformly pre-magnetized slender structures are not only of theoretical but also of practical interest. In a recent example
of a locomotive application, Ren et al. (2019) fabricated jellyfish-like swimming robots having remotely-actuated flapping ℎ-MRE
structures. Motivated from the pre-magnetization process described in Ren et al. (2019), we consider here three idealized plane-strain
geometries of slender ℎ-MRE beams having 𝑟𝚊𝚜𝚙 = 10. The three beams are pre-magnetized by fixing them to molds with different
geometrical profiles (see Fig. 15), which evidently leads to substantially different pre-magnetization profiles. Subsequently, the
26
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Fig. 15. Pre-deformation geometries before the initial magnetization along 𝐞2 of three different samples of ℎ-MREs, namely (a) I, (b) II and (c) III, all having
the same length 𝐿0 and width w0 in their undeformed configurations. The pre-magnetizing field 𝐛𝚖𝚊𝚐 direction is shown by red arrows, while its magnitude remains
the same as in Fig. 12b. The pre-deformed profiles of the top boundary of the ℎ-MREs are given by 𝑋2 = 4.6|𝑋1|, 𝑋2 = 6.5𝐿0(𝑋1∕𝐿0)2 and 𝑋2 = 10𝐿0(|𝑋1|∕𝐿0)3

or the samples I, II and III, respectively.

re-magnetization field is removed and the beams are released from the mold almost recovering their original straight shape (the
esulting magnetostrictive effects are fairly small and do not change essentially the beam geometry). Finally, the beams are subjected
o a small actuation field applied perpendicular to the long axis of the beam.

To solve this problem numerically, we employ the same principle, mesh and material parameters used in the previous section
Fig. 12). In turn, the solution process consists of the following four steps:

– Step-1: Profiling of the beam. The first step, now, consists in the pre-deformation, where prescribed displacements 𝐮𝜏 = 𝐮Top𝜏
are applied on the boundary 𝜕Top

MRE, while 𝐮𝜏 = 𝟎 is maintained for all 𝐗 ∈ 𝜕Lef t
MRE. These displacements are applied via the

‘‘DISP’’ subroutine of Abaqus, in such a way that the top boundary of the ℎ-MREs adheres to (a) a linear, (b) a quadratic and
(c) a cubic mold profile, whose specific functional forms are indicated in Fig. 15.11

– Step-2: Pre-magnetization of the beam. In this step, we apply a pre-magnetizing field 𝐛𝚖𝚊𝚐 = 𝑏𝚖𝚊𝚐2 𝐞2 similar to that prescribed
in (7.9). The temporal variation of the applied 𝑏𝚖𝚊𝚐2 is considered similar to that in Fig. 12b.

– Step-3: Release of the beam. In this step, the applied pre-displacement is released, i.e., 𝐮Top is decreased to zero allowing
the beam to recover its (almost) original form.

– Step-4: Actuation via a perpendicular magnetic field. In this step, we apply exactly the same boundary conditions as in
(7.8) and (7.9) with the same magnetic loading described by Fig. 12c.

The contours of the |𝐛0|, |𝐡0| and |𝐦0
| fields along with their directions in the beginning of Step-4 are shown in Fig. 16 for the

pre-magnetization geometries I (a–c), II (d–f) and III (g–i). Again, the superscript ‘‘0’’ indicates the induced magnetic fields
after the pre-magnetization and relaxation process. Figs. 16c,f,i show that the non-uniformity of the pre-magnetization field in the
beam increases with the increasing pre-bending of the structure. Thus, III exhibits a significant non-uniformity in the direction of
𝐦0, while its magnitude remains almost the same throughout the beam.

Similarly, the distributions of the 𝐛0 and 𝐡0 fields in the beams are also not uniform, especially, for the pre-magnetization
profiles II and III. Moreover, the local 𝐡0 fields are of the same order as the 𝐦0 fields, thus, contrasting the previous case of
uniformly magnetized beams. As a result, in this case of non-uniformly magnetized beams, approximating the local 𝐛0 fields simply
by 𝐛0 = 𝜇0𝐦0 may lead to significant errors and such a process should at least be rigorously verified with corresponding full field
simulations including the surrounding air as done in the present study.

From a more quantitative point, we show in Fig. 17 the non-uniformity of (a) the magnitude of 𝐦0 and (b) the orientation angle
of 𝐦0 with respect to the vertical axis 𝐞2 along the centerline of the beam for all three pre-magnetization cases I, II and III.
Evidently, the magnitude of 𝐦0 remains almost the same and fairly uniform for all the three cases. By contrast, the orientation of

0 varies significantly, with the III exhibiting the more heterogeneous profile.
As a result of this highly non-uniform pre-magnetization profile, the actuated deflections of the beams are different for the same

xternally applied 𝐛𝚊𝚙𝚙. In particular, Fig. 18a shows the deflected shapes of these beams at 𝑏𝚊𝚙𝚙2 = 50 mT and Fig. 18b reports the
corresponding evolution of their end-tip deflection 𝛿 as a function of 𝑏𝚊𝚙𝚙2 . We observe that the beam III exhibits the maximum
deflection. This implies obviously that different pre-magnetization and loading patterns may lead to a variety of deflection responses
of beams and slender structures more generally. This mechanism is exploited ingeniously in Ren et al. (2019) to actuate asymmetric
bending responses at different parts of a soft robot remotely via a magnetic field leading to locomotion and swimming.

11 The ‘‘DISP’’ subroutine of Abaqus applies displacement in terms of the current coordinate 𝐱. The specific displacement functions employed in the numerical
computations are (i) 𝑢Top1 = −0.10𝑥1, 𝑢

Top
2 = 0.46𝑥1, (ii) 𝑢Top1 = −0.30𝐿0(𝑥1∕𝐿0)2, 𝑢

Top
2 = 0.65𝐿0(𝑥1∕𝐿0)2 and (iii) 𝑢Top1 = −0.62𝐿0(𝑥1∕𝐿0)3, 𝑢

Top
2 = 𝐿0(𝑥1∕𝐿0)3 for

I, II and III, respectively. These displacements are chosen heuristically that roughly ensure an un-stretched centerline of the beam, having length 𝐿0 in
the pre-deformed configurations, shown in Fig. 15. Although more sophisticated means of imposing such a condition may be possible, those methods are not
27

employed here for simplicity given that we are studying an idealized problem.
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Fig. 16. Magnitude and directions of residual 𝐛, 𝐡 and 𝐦 fields in (a–c) I, (d–f) II and (g–i) III after the pre-magnetization of the deformed samples along
𝐞2 (see schematic diagrams in Fig. 15), following a loading path qualitatively similar to Fig. 12b, but having an amplitude of 2 T and after the release of their
pre-deformation. The colored contours represent the magnitude of the vector fields, while the black arrows represent their directions.

Fig. 17. Variation of the residual magnetization 𝐦0, induced by the magnetization of the pre-deformed ℎ-MREs, along its length after the pre-deformation is
released. The variation of (a) magnitude and (b) direction of the 𝐦0 vector is shown along the centerline of three differently pre-deformed ℎ-MREs, namely, I,
II and III.
28



Journal of the Mechanics and Physics of Solids 151 (2021) 104361D. Mukherjee et al.

8

M
e
a
r

c
f
a
t

s
r
t

n
i

f
w
i
m

Fig. 18. Deflection of non-uniformly magnetized ℎ-MREs I, II and III under applied field 𝑏𝚊𝚙𝚙2 having amplitude shown in Fig. 12c and direction along 𝐞2.
(a) Deflected shapes of I, II and III under applied 𝑏𝚊𝚙𝚙2 = 50 mT. (b) Evolutions of the normalized end-tip deflections 𝛿∕𝐿0 of I, II and III with 𝑏𝚊𝚙𝚙2 .

. Concluding remarks

In this paper, we propose an explicit, analytical constitutive model for isotropic incompressible (and quasi-incompressible) ℎ-
REs comprising hard-magnetic (of any type), mechanically-rigid particles embedded in elastomeric matrix. The model involves

xplicitly the dependence on the particle volume fraction as well as the individual properties of the constituents. Additionally, as
mere result of the dissipative magnetic response of the particles, it is capable of delivering a macroscopic coupled dissipative

esponse upon application of arbitrary proportional or non-proportional (e.g. cyclic) magnetic or mechanical loading conditions.
The model is constructed following rigorous mathematical and physics principles. In particular, we ensure thermodynamic

onsistency of the model by deriving the constitutive relations from the localized Clausius–Duhem inequalities and by employing the
ramework of generalized standard materials, which yields the evolution laws for the remanent internal variables. The objectivity
nd material symmetry properties of the isotropic ℎ-MREs are obtained by proposing the energetic and dissipation potentials in
erms of suitable invariants involving both energetic and remanent parts.

Specifically, the present model uses a single (vector-valued) internal variable, the remanent magnetic ℎ-field 𝑟, which is
defined in the intermediate stretch-free configuration. This choice is motivated by rigorous full field RVE simulations, which show
that the resulting current effective remanent ℎ-field and consequently the current magnetization are completely unaffected by
the macroscopic stretch. This further implies that the amplitude of the current magnetization is independent of changes in the
macroscopic deformation gradient. In turn, the current magnetization orientation may change depending on the applied loads and
its rotation is a complex function of the underlying particle rotations. In the present study, we assume an affine particle rotation
model that is valid for practically relevant ℎ-MREs having a moderately soft polymeric matrix (with shear modulus 𝐺𝚖 ≥ 0.15 MPa,
although in practical applications the model can be used even for softer matrices but with caution). In those cases, identifying the
rotation of the remanent ℎ-field with the macroscopic rotation tensor leads to an explicit model, while it delivers sufficiently accurate
estimates for both the effective magnetic and mechanical fields under complex loading conditions (for instance, non-aligned, cyclic
magnetic loads with the pre-magnetization of the RVE).

The proposed modeling framework inherently takes care of the magnetic body force and body torque-like terms in a magneto-
active solid by incorporating their effects in the total stress. Thus, no additional body force/torque-like terms are required to be
incorporated in the local linear/angular momentum balance equations. The total Cauchy stress remains symmetric in the proposed
modeling framework. In particular, the Helmholtz free energy associated with the proposed macroscopic models of the ℎ-MREs
is considered to be the sum of three distinct contributions, namely the mechanical, magnetic and coupling free energies. Only
three additional modeling parameters are introduced in the macroscopic model, which are then estimated by calibrating the model
predictions with the numerical homogenization results.

As a result of this construction, the proposed model admits a number of useful limiting cases already obtained in the literature
for 𝑠-MREs or the response of the individual constituents. Specifically, in the limit of a soft magnetic response, i.e., 𝑏𝑐

𝚙
→ 0, the

tress measures reduce to those defined by Kankanala and Triantafyllidis (2004). Moreover the resulting effective model response
eproduces exactly the response from the analytical homogenization model of Lefèvre et al. (2017). Secondly, in the limit of 𝑐 = 1,
he proposed 𝝈 yields the classical definition of the total 𝝈 by Robinson (1975) in the context of metallic permanent magnets.

The assessment of the proposed constitutive model is carried out in two steps. First, the model response is compared with full-field
umerical RVE homogenization results and second, the model is employed in a numerical boundary value problem in order to probe
ts performance to the experimental measurements of Zhao et al. (2019).

Our numerical realizations of both, the microscopic fields in the RVE and the macroscopic fields in the macroscopic BVPs benefit
rom the definition of suitable (incremental) variational principles. In particular, an incremental potential is derived following the
ork of Miehe et al. (2002, 2011) by appropriately reformulating it in the present context of dissipative magneto-elasticity. This

ncremental potential is then used to frame the incremental variational principles for both, microscopic RVE computations and
acroscopic structural computations.
29
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The model responses both under proportional and non-proportional loading paths show comprehensive agreements with the full-
ield numerical homogenization estimates. Specifically, the model responses under aligned magnetic and mechanical loadings of a
re-magnetized ℎ-MRE are in excellent agreement with the numerical homogenization results. In turn, non-proportional magnetic
oading gradually leads to a less accurate comparison mainly due to non-affine particle rotations in the mechanically softer ℎ-MREs
e.g. 𝐺𝚖 < 0.3 MPa). In this regard, it is noted that the non-affine particle rotations control the magnetization/demagnetization
esponses of the softer, gel-like ℎ-MREs having 𝐺𝚖 ∼ 0.01−0.1 MPa (Linke et al., 2016; Kalina et al., 2017). Of course, the proposed

affine rotation model cannot be applied readily to model such highly compliant composites. Indeed, further refinements to the
proposed framework are needed in those cases. Nonetheless, it is noted that most of the practical applications of the ℎ-MREs to-date
consider relatively stiffer PDMS matrix having 𝐺𝚖 ∼ 0.15 − 1.5 MPa. Moreover, such ℎ-MREs, once permanently magnetized, are
ypically subjected to high mechanical but only very low magnetic fields (Kim et al., 2018; Zhao et al., 2019; Ren et al., 2019;
lapan et al., 2020). Contextually, in the aforementioned loading regime, the proposed affine rotation model is observed to predict

he microstructure response sufficiently well. Hence, it can be readily employed to solve many magneto–mechanical boundary value
roblems of practical interest even for softer materials. Moreover, the proposed model involves fairly simple terms and is versatile
nough to allow for ad-hoc calibration via the coupling parameter 𝛽 or even via the homogenized parameters 𝜒𝑒, 𝜒𝑟, 𝑚𝑠 and 𝑏𝑐 ,
hich can be fitted independently and without any reference to the particle magnetic properties and volume fraction.

In this regard, the proposed model is applied to solve for the deflection of pre-magnetized ℎ-MRE cantilever beams, subjected
o remotely applied transverse magnetic fields. The model prediction is found to be in excellent agreement with the experimentally
easured end-tip deflections of the ℎ-MREs. We further apply the model in non-uniformly pre-magnetized beams. Therein, we find

hat even though the pre-magnetized ℎ-MRE structures are not subjected to high magnetic fields, the presence of the surrounding
ir and the pre-magnetization process itself is crucial to estimate the local pre-magnetic 𝐛, 𝐡 and 𝐦 fields in the structure. In this
ontext, we also point the reader towards the recent work of Alapan et al. (2020), where the measured stray 𝑏-fields around the
-MRE structures exhibit significant non-uniformity. Hence, the proposed fully hysteretic constitutive framework having an evolving
emanent field finds direct relevance in the modeling of non-uniformly pre-magnetized structures, even though they are not exposed
o high magnitude of actuation magnetic fields after their pre-magnetization.

Finally, the applicability of the proposed model does not remain confined within pre-magnetized structures under applied non-
ligned magnetic fields. Various pre-magnetized structures are employed in sensing devices, where the perturbations in its magnetic
elf-field is measured (Kaidarova et al., 2018; Sitti and Wiersma, 2020). Further works on the application of the proposed model in
arious sensing device-related BVPs is underway. Last but not least, the present model can be further simplified in the case of small
ctuating fields around a pre-magnetized state. Such an effort is underway and will be presented elsewhere.
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ppendix A. Eulerian formulation of the thermodynamic framework

The Lagrangian and Eulerian forms of the Clausius–Duhem inequalities can be obtained via performing localization of the global
ntropy imbalance equations at the reference and the current configurations, respectively (Kankanala and Triantafyllidis, 2004;
orfmann and Ogden, 2004). We point out that in the Eulerian description below, 𝐡 and 𝐡𝑟 are now the independent magnetic and

nternal variables, respectively.
We start by recovering the localized Eulerian form of the Clausius–Duhem inequality from its Lagrangian counterpart (3.3)

𝐒 ∶
.
𝐅 − 𝐁 ⋅

.
𝐇 −

.
𝑊 ≥ 0. (A.1)

ubstituting 𝐒 = 𝐽𝝈𝐅−𝑇 along with 𝐁 = 𝐽𝐅−1𝐛 and 𝐇 = 𝐅𝑇 𝐡 into the last equation we obtain

𝐽𝝈 ∶
.
𝐅𝐅−1 − 𝐽𝐅−1𝐛 ⋅

.
𝐅𝑇 𝐡 −

.
𝑤 ≥ 0. (A.2)
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Here, 𝑤(B,𝐡,𝐡𝑟) = 𝑊 (C,𝐇,𝑟). Since the stretch rate 𝒍 is defined via 𝒍 =
.
𝐅𝐅−1, the last equation upon algebraic manipulations leads

to

𝐽𝝈 ∶ 𝒍 − 𝐽 (𝐡⊗ 𝐛) ∶ 𝒍 − 𝐽𝐛 ⋅
.
𝐡 −

.
𝑤 ≥ 0. (A.3)

Expanding subsequently the current potential 𝑤, so that 𝑤 = 𝜌0𝜓 − 𝐽 (𝜇0∕2)𝐡 ⋅ 𝐡 in the last expression we rephrase it to be

𝐽𝝈 ∶ 𝒍 − 𝐽 (𝐡⊗ 𝐛) ∶ 𝒍 − 𝐽𝐛 ⋅
.
𝐡 − 𝜌0

.
𝜓 +

𝜇0
2
𝐽 |𝐡|2𝒍 + 𝜇0𝐽𝐡 ⋅

.
𝐡 ≥ 0. (A.4)

inally, collecting the coefficients of 𝒍 and
.
𝐡 in the above we obtain

𝐽
(

𝝈 − 𝐡⊗ 𝐛 +
𝜇0
2
|𝐡|2𝐈

)

∶ 𝒍 − 𝜇0𝐽𝐦 ⋅
.
𝐡 − 𝜌0

.
𝜓 ≥ 0. (A.5)

Expanding subsequently the material rate of the Helmholtz free energy
.
𝜓(B,𝐡,𝐡𝑟) of (A.5) in terms of its arguments (see also

Remark 1), we obtain

𝐽
(

𝝈 − 𝐡⊗ 𝐛 +
𝜇0
2
|𝐡|2𝐈

)

∶ 𝒍 − 𝜇0𝐽𝐦 ⋅
.
𝐡 − 𝜌0

𝜕𝜓
𝜕B

∶
.
B − 𝜌0

𝜕𝜓
𝜕𝐡

⋅
.
𝐡 − 𝜌0

𝜕𝜓
𝜕𝐡𝑟

⋅
.
𝐡𝑟 ≥ 0, (A.6)

which upon rearrangement finally reads

𝐽
[

𝝈 −
2𝜌0
𝐽

𝜕𝜓
𝜕B

B −
(

𝐡⊗ 𝐛 −
𝜇0
2
|𝐡|2𝐈

)

−
𝜌0
𝐽

{(

𝜕𝜓
𝜕𝐡𝑟

⊗ 𝐑𝑇 𝐡𝑟
)

∶ 𝜕𝐑
𝜕𝐅

}

𝐅𝑇
]

∶ 𝒍 − 𝐽
[

𝐦 +
𝜌0
𝐽
𝜕𝜓
𝜕𝐡

]

⋅
.
𝐡 − 𝜌0

𝜕𝜓
𝜕𝐡𝑟

⋅
𝛥
𝐡𝑟 ≥ 0, (A.7)

here
𝛥
𝐡𝑟 =

.
𝐡𝑟 −𝜴𝐡𝑟 is the objective Green–Naghdi rate of the remanent ℎ-field with 𝜴 =

.
𝐑𝐑𝑇 is the mechanical spin tensor (Green

and Naghdi, 1965).12 Notably, the Green–Naghdi rate of the internal variable in (A.7) ensures the energy dissipation to remain
independent of the mechanical spin 𝜴. In other words, the Green–Naghdi rate of 𝐡𝑟 ensures that, in the absence of external magnetic
fields, a rigid rotation of a permanently magnetized ℎ-MRE does not add to any energy dissipation.

From Remark 1 we know that the sum in the first square bracket of (A.7) is symmetric. This enables us to replace the velocity
gradient 𝒍 by the Eulerian rate of deformation tensor 𝒅 = sym[𝒍], which lets us arrive at

𝐽
[

𝝈 −
2𝜌0
𝐽

𝜕𝜓
𝜕B

B −
(

𝐡⊗ 𝐛 −
𝜇0
2
|𝐡|2𝐈

)

−
𝜌0
𝐽

{(

𝜕𝜓
𝜕𝐡𝑟

⊗ 𝐑𝑇 𝐡𝑟
)

∶ 𝜕𝐑
𝜕𝐅

}

𝐅𝑇
]

∶ 𝒅 − 𝐽
[

𝐦 +
𝜌0
𝐽
𝜕𝜓
𝜕𝐡

]

⋅
.
𝐡 − 𝜌0

𝜕𝜓
𝜕𝐡𝑟

⋅
𝛥
𝐡𝑟 ≥ 0, (A.8)

where 𝒅 = sym[𝒍] is the symmetric part of the mechanical deformation rate. Owing to the arbitrariness13 of 𝒅 and
.
𝐡, the standard

arguments of the Coleman–Noll–Gurtin framework leads to the constitutive relations for the total Cauchy stress and the current
𝑏-field, such that

𝝈 =
2𝜌0
𝐽

𝜕𝜓
𝜕B

B +
(

𝐡⊗ 𝐛 −
𝜇0
2
|𝐡|2𝐈

)

+
𝜌0
𝐽

{(

𝜕𝜓
𝜕𝐡𝑟

⊗ 𝐑𝑇 𝐡𝑟
)

∶ 𝜕𝐑
𝜕𝐅

}

𝐅𝑇 (A.9)

and

𝐦 = −
𝜌0
𝐽
𝜕𝜓
𝜕𝐡

⇒ 𝐛 = − 1
𝐽
𝜕𝑤
𝜕𝐡

, (A.10)

respectively, where the latter is obtained via the relation 𝑤(B,𝐡,𝐡𝑟) = 𝜌0𝜓(B,𝐡,𝐡𝑟) − (𝜇0∕2)𝐽𝐡 ⋅ 𝐡. Of course, the expression of total
𝝈 in terms of the mechanical, Maxwell and remanent parts remains identical to (3.8). Straightforward algebraic manipulations after
substituting the fourth order tensor 𝜕𝐑∕𝜕𝐅, given by Chen and Wheeler (1993) into (A.9) leads to the expression for 𝝈 given by

𝝈 =
2𝜌0
𝐽

𝜕𝜓
𝜕B

B +
(

𝐡⊗ 𝐛 −
𝜇0
2
|𝐡|2𝐈

)

+ 2
𝐽 det 𝐙

𝐙 skw
(

𝐡𝑟 ⊗ 𝐛𝑟
)

𝐕𝐙 (A.11)

where 𝐕 and 𝐙 are given as

𝐕 = 𝐅𝐑−1 and 𝐙 = tr[𝐕]𝟏 − 𝐕, (A.12)

respectively. Subsequently, the Eulerian dissipation inequality reads

𝐛𝑟 ⋅
𝛥
𝐡𝑟 ≥ 0, with 𝐛𝑟 = −𝜌0

𝜕𝜓
𝜕𝐡𝑟

= − 𝜕𝑤
𝜕𝐡𝑟

, (A.13)

where 𝐛𝑟 is the remanent 𝑏-field that is the energetic work conjugate of 𝐡𝑟. Furthermore, the generalized standard material relation

in the current configuration is given in terms of 𝑤(B,𝐡,𝐡𝑟) and 𝒟 (
𝛥
𝐡𝑟), such that (Halphen and Son Nguyen, 1975)

𝜕𝑤
𝜕𝐡𝑟

+ 𝜕𝒟

𝜕
.
𝐡𝑟

= 0 and 𝐛𝑟 = 𝜕𝒟

𝜕
𝛥
𝐡𝑟
. (A.14)

12 The original work of Green and Naghdi (1965) propose objective rates in the context of mechanics. Nonetheless, the vectorial representation of the
reen–Naghdi rate is referred in this paper.
13 The current stretch rate 𝒅 is independent of the spin 𝜴 =

.
𝐑𝐑𝑇 . Hence, the Green–Naghdi rate

𝛥
𝐡𝑟, which is a function of the spin tensor, remains independent
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Since the dissipation potential 𝒟 (
𝛥
𝐡𝑟) is defined in terms of the objective Green–Naghdi rate, we can rephrase the derivative of 𝒟

with respect to
.
𝐡𝑟 in the last equation in terms of its derivative with respect to

𝛥
𝐡𝑟 by applying the chain rule, such that

𝜕𝑤
𝜕𝐡𝑟

+ 𝜕𝒟

𝜕
𝛥
𝐡𝑟

= 0 ⟹ 𝐛𝑟 = 𝜕𝒟

𝜕
𝛥
𝐡𝑟
. (A.15)

Concerning material frame indifference and isotropy we remark that all invariants introduced in Section 3.3 can be expressed
quivalently in terms of B, 𝐡 and 𝐡𝑟. As a consequence, the energy density and the dissipation potential of the Eulerian formulation
utomatically fulfill material frame indifference and isotropy when internally represented in terms of these invariants.

ppendix B. Derivatives of 𝑰𝒆𝒓
𝟒 and 𝑰𝒆𝒓

𝟓 with respect to C

Computation of the first Piola–Kirchhoff stress in a Lagrangian setting from the constitutive relation (3.5)1 is performed via
inding the derivative of (4.1) with respect to C. The computation of 𝐒 is involved with computing the derivatives of the invariants
efined in the Eqs. (3.12), (3.13) and (3.14) with respect to C. In this regard, it is noted from (3.12), (3.13) and (3.14) that the
erivatives of all the invariants therein with respect to C are straightforward except the mixed invariants 𝐼𝑒𝑟4 and 𝐼𝑒𝑟5 , which are the
unctions of C1∕2 and C−1∕2, respectively. This appendix is, therefore, devoted towards providing the C derivatives of 𝐼𝑒𝑟4 and 𝐼𝑒𝑟5 .

In this context Hoger and Carlson (1984) provide explicit expressions for dC1∕2∕dC, which is derived from the solution of the
ensor equation having a general form AX+XA = Q. Thus, the derivative of 𝐼𝑒𝑟4 with respect to C is computed via first considering
he scalar equation

C1∕2C1∕2 ∶ sym(𝐇⊗𝑟) = C ∶ sym(𝐇⊗𝑟). (B.1)

ifferentiating both sides of the last with respect to C yields

C1∕2 𝜕
𝜕C

[C1∕2 ∶ sym(𝐇⊗𝑟)] + 𝜕
𝜕C

[C1∕2 ∶ sym(𝐇⊗𝑟)]C1∕2 = sym(𝐇⊗𝑟), (B.2)

which can be rephrased such that

C1∕2
𝜕𝐼𝑒𝑟4
𝜕C

+
𝜕𝐼𝑒𝑟4
𝜕C

C1∕2 = sym(𝐇⊗𝑟), (B.3)

having the same general form of AX + XA = Q. The solution to (B.3) is thus given by (Hoger and Carlson, 1984)
𝜕𝐼𝑒𝑟4
𝜕C

= 4
𝛥

[

𝐼𝚄1C sym(𝐇⊗𝑟)C − (𝐼𝚄1 )
2
{

C sym(𝐇⊗𝑟)C1∕2 + C1∕2sym(𝐇⊗𝑟)C
}

+

(𝐼𝚄1 𝐼
𝚄

2 − 𝐼𝚄3 )
{

C sym(𝐇⊗𝑟) + sym(𝐇⊗𝑟)C
}

+ ((𝐼𝚄1 )
3 + 𝐼𝚄3 )C

1∕2sym(𝐇⊗𝑟)C1∕2−

(𝐼𝚄1 )
2𝐼𝚄2

{

C1∕2sym(𝐇⊗𝑟) + sym(𝐇⊗𝑟)C1∕2
}

+
{

(𝐼𝚄1 )
2𝐼𝚄3 + (𝐼𝚄1 𝐼

𝚄

2 − 𝐼𝚄3 )𝐼
𝚄

2

}

sym(𝐇⊗𝑟)
]

, (B.4)

where 𝐼𝚄1 , 𝐼𝚄2 and 𝐼𝚄3 are three principal invariants of 𝐔 = C1∕2 and 𝛥 = 8(𝐼𝚄1 𝐼
𝚄

2 − 𝐼𝚄3 )𝐼
𝚄

3 . Notice that 𝜕𝐼𝑒𝑟4 ∕𝜕C is symmetric.
Similarly, the derivative 𝜕𝐼𝑒𝑟5 ∕𝜕C is computed via considering the scalar equation

C−1∕2C−1∕2 ∶ sym(𝐇⊗𝑟) = C−1 ∶ sym(𝐇⊗𝑟). (B.5)

Differentiating both sides of the last with respect to C yields

C−1∕2 𝜕
𝜕C

[C−1∕2 ∶ sym(𝐇⊗𝑟)] + 𝜕
𝜕C

[C−1∕2 ∶ sym(𝐇⊗𝑟)]C−1∕2 = −C−1sym(𝐇⊗𝑟)C−1, (B.6)

which can be rephrased such that

C1∕2
𝜕𝐼𝑒𝑟5
𝜕C

+
𝜕𝐼𝑒𝑟5
𝜕C

C1∕2 = −C−1∕2sym(𝐇⊗𝑟)C−1∕2, (B.7)

having the same general form of AX + XA = Q. The solution to (B.7) is thus given by (Hoger and Carlson, 1984)
𝜕𝐼𝑒𝑟5
𝜕C

= − 4
𝛥

[

𝐼𝚄1C
1∕2 sym(𝐇⊗𝑟)C1∕2 − (𝐼𝚄1 )

2
{

C1∕2 sym(𝐇⊗𝑟) + sym(𝐇⊗𝑟)C1∕2
}

+

(𝐼𝚄1 𝐼
𝚄

2 − 𝐼𝚄3 )
{

C1∕2 sym(𝐇⊗𝑟)C−1∕2 + C−1∕2sym(𝐇⊗𝑟)C1∕2
}

+ ((𝐼𝚄1 )
3 + 𝐼𝚄3 ) sym(𝐇⊗𝑟)−

(𝐼𝚄1 )
2𝐼𝚄2

{

sym(𝐇⊗𝑟)C−1∕2 + C−1∕2sym(𝐇⊗𝑟)
}

+
{

(𝐼𝚄1 )
2𝐼𝚄3 + (𝐼𝚄1 𝐼

𝚄

2 − 𝐼𝚄3 )𝐼
𝚄

2

}

C−1∕2sym(𝐇⊗𝑟)C−1∕2
]

. (B.8)

otice that 𝜕𝐼𝑒𝑟5 ∕𝜕C is also symmetric.
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