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Freedericksz instability for the twisted nematic device: A three-dimensional analysis
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Of interest here is the fully three-dimensional analysis of the Freedericksz transition for the twisted nematic
device (TND), which is widely used in liquid-crystal display monitors. Using a coupled electromechanical
variational formulation, the problem is treated as a bifurcation instability triggered by an externally applied
electric field. More specifically, we study a finite thickness liquid-crystal layer, anchored between two infinite
parallel plates relatively rotated with respect to each other by a given twist angle and subjected to a uniform
electric field perpendicular to these bounding plates. The novelty of the proposed analysis lies in the fully
three-dimensional formulation of the TND problem that considers all possible bounded perturbations about the
principal solution. By scanning a wide range of the liquid crystal’s material parameter space, we establish whether
the Freedericksz transition is global, i.e., has an eigenmode depending solely on the layer thickness coordinate,
or local (also termed the periodic Freedericksz transition), i.e., has an eigenmode with finite wavelengths in one
or both directions parallel to the plate. It is found that global modes are typical for low values, while local modes
appear at large values of the twist angle. Moreover, for certain TND’s, the increase in twist angle can lower the
critical electric field, findings that could be useful in guiding liquid-crystal selection for applications.
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I. INTRODUCTION

Nematic continua are materials with elongated rodlike
molecules that have preferred local average directions, which
are modeled as directors. These materials exhibit important
multiphysics coupling properties between their director orien-
tation and externally applied mechanical, electric, magnetic, or
thermal fields. In addition to their theoretical interest, they are
of tremendous importance to applications, particularly in the
form of liquid crystals, which have revolutionized the display
technology in the form of liquid-crystal displays (LCDs).
The twisted nematic device (TND) is the most widely used
fundamental building block of LCDs, and it is the object of
the present investigation.

The TND consists of a liquid-crystal layer anchored
between two parallel plates. One of the plates is rotated
with respect to the other by an angle �φ: 90◦ for a typical
TND or 270◦ for a supertwisted nematic device (STND).
In the absence of a transverse (i.e., normal to the bounding
plates) electric field, all the directors are parallel to the
bounding plates and form helices that rotate the light by
�φ, allowing its passing through the two polarized end plates
(their polarization directions differ by �φ). When the applied
transverse electric field exceeds a critical value, the directors
suddenly acquire a transverse component. This phenomenon,
termed the Freedericksz transition, is responsible for the
change of polarization direction in the light, which prevents
its passage through the device.

The Freedericksz transition was discovered in the late 1920s
[1,2], while its TND version—which opened the door for
the display technology revolution due to its low transition
voltage—was discovered in the 1970s [3]. The discovery of the
STND [4] followed, and since then developments in this field
have progressed exponentially (see, e.g., [5]). On the theoreti-
cal side, the continuum mechanics modeling of the free energy
for liquid crystals using a unit vector termed the director to

represent the local macromolecular orientation was introduced
in [6–8], while the full theory for the time-dependent behavior
of these materials was subsequently introduced in [9,10] (for
a more recent general continuum theory, see also [11]).

The present work is motivated by the fact that modeling the
Freedericksz transition problem in the liquid-crystal literature
(see, for example, the standard excellent textbooks [12,13]),
is often based on a one-dimensional (1D) analysis that uses
director fields depending solely on the layer thickness coordi-
nate (see, e.g., more recent work [14,15]). Special cases that
require 2D considerations have been shown to exist [16] (see
also the book by Virga [17] for more details) exhibiting finite
(with respect to the plate-parallel coordinates) wavelength
eigenmodes, termed periodic Freedericksz transitions.

For problems involving Freedericksz transitions in TNDs,
perturbation methods involving 1D or 2D approximations for
the director field are frequently used (e.g., see [18–20]) for
the sake of analytical tractability. However, no systematic,
general investigation of the Freedericksz transition problem
for the TND has been presented, to the best of our knowledge,
that considers all possible eigenmodes in order to select the
critical one (corresponding to the lowest electric field) and
to thus establish whether this mode is global, i.e., dependent
solely on the thickness coordinate (and thus captured by a 1D
analysis) or local, i.e., has finite wavelengths with respect to
one or both in-plane coordinate directions (and thus requiring
a full 3D modeling).

The Freedericksz transition in a fully anchored TND is
modeled here as a bifurcation problem for the finite-thickness
liquid crystal with a Frank-Oseen energy, where the loading
parameter is the magnitude of the applied transverse electric
field. The continuum mechanics model uses a novel coupled
electromechanical variational principle for nematic elastomers
proposed by [21], where the Euler-Lagrange equations are the
mechanical equilibrium equations plus the Faraday law for
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the electric field. A remark is in order at this point about
our choice of the Frank-Oseen energy density for this work:
experiments in liquid crystals found the Frank-Oseen model
to be an adequate description of their energy density [22–24],
while the most efficient materials for the TND are MBBA [25]
and 5CB [26], with the parameters for the latter case serving
as the base case for our calculations.

The work is organized as follows: after the introduction
in Sec. I, we present in Sec. II a theoretical analysis of
the fully three-dimensional boundary-value problem for the
electromechanically coupled TND. This section is divided
into four subsections. Section II A gives the energy functional
based on the Frank-Oseen constitutive law and a quadratic
polarization energy. In Sec. II B, we present the principal
solution and derive the Euler-Lagrange equations and the
associated natural boundary conditions. The critical point on
the principal solution, i.e., the lowest electric-field strength
and the corresponding eigenmode, are given in Sec. II C.
The nondimensionalization of the problem parameters and
the coefficients of the Euler-Lagrange equations appear in
Sec. II D.

Next appear the results in Sec. III, which is divided into
three subsections. In Sec. III A, we derive the analytical
solution for the fully 3D boundary-value problem of a nematic
liquid crystal for zero twist; this solution is used to compare
our results with the existing literature on periodic Freedericksz
transitions and as a highly nontrivial check for the numerical
algorithm developed for the general case. For arbitrary values
of the TND twist angle, no analytical solution can be found,
and a mixed analytical and numerical technique, combining a
finite-element discretization for the thickness coordinate with a
Fourier transform for the remaining coordinates, is presented in
Sec. III B to solve the bifurcation problem at hand. The results
of our simulations are presented in Sec. III C. By scanning a
wide range of the liquid crystal’s material parameter space for
different values of the twist angle, we establish whether the
Freedericksz transition corresponds to a global or a local mode,
and we find the critical electric field and the corresponding
wave numbers. Finally, the main conclusions of our study are
discussed in Sec. IV.

II. THEORY

In this section, we present the fully 3D boundary-value
problem for the TND under full anchoring boundary con-
ditions, using the coupled electromechanical variational for-
mulation introduced by [21]. Based on the system’s energy
functional, we calculate its second functional derivative on the
principal solution and subsequently derive the Euler-Lagrange
equations and associated natural boundary conditions, govern-
ing the eigenvalue problem at the bifurcation point. Finally,
we introduce a set of dimensionless variables to simplify the
presentation of our results.

A. Energy functional

We consider a three-dimensional (3D) nematic-liquid-
crystal layer, of density ρ, which is infinite in the x1 and x2

directions while it is confined in the x3 direction by two parallel
plates at distance �, as seen in Fig. 1. The top plate is rotated by

FIG. 1. A typical twisted nematic device with a 90◦ twist angle.
In (a) the strength of the electric field is below its critical value and
the nematic molecules in each x3 = const plane are parallel to the
bounding plates, while in (b) the strength of the electric field is above
its critical value and the molecules in each x3 = const plane rotate
out of their plane, tending to align with the externally applied electric
field.

an angle �φ with respect to the bottom plate, thus introducing a
twist τ ≡ �φ/�. Usually in applications �φ = π/2, although
higher angles are also encountered (supertwisted devices,
�φ = 7π/3 or 3π/2, e.g., see [4]).

The free energy, ψ , per unit volume of an incompressible
nematic liquid crystal can be modeled as the sum of two
contributions (see [21]): the Frank-Oseen (FO) energy ψFO

of a cholesteric liquid crystal, and a polarization energy ψP

that is caused by the electric field:

ψ(n,n∇,p) = ψFO(n,p) + ψP (n,p), (1)

where

ψFO = 1
2k1(∇ · n)2 + 1

2k2[n · (∇ × n) + τ ]2

+ 1
2k3||n × (∇ × n)||2, (2)

ψP = 1

2ε0

[
χ−1(p · p) + (

χ−1
n − χ−1

)
(p · n)2

]
, (3)

where k1, k2, and k3 are positive constants [27], called in the
literature the splay, twist, and bend constants, respectively, of
the Frank-Oseen model, and τ is the twist of the unloaded
system (i.e., prior to the application of an electric field).
In (3), p is the polarization vector while χ and χn are
the electric susceptibility constants in directions parallel and
perpendicular, respectively, to the director vector n, and ε0 is
the electric permittivity of the free space.

The system’s total electric field e is the sum of the externally
applied electric field in the absence of the liquid crystal e0 plus
a perturbation ê, due to the presence of the polarizable liquid
crystal (e.g., see [28]):

e = e0 + ê. (4)

The total (perturbed) electric displacement d (̂d) is con-
nected to the polarization p and the above-defined total
(perturbed) electric field e (̂e) by

d = d0 + d̂ = ε0e + p; (d0 = ε0e0, d̂ = ε0̂e + p). (5)

Due to the absence of free electric charges,

∇ · d = 0; (∇ · d̂ = 0), (6)
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we introduce a vector potential α connected to the perturbed
electric displacement d̂ by

d̂ = ∇ × α. (7)

In addition to the liquid crystal’s free-energy density ψ defined
in (1), the system’s electric energy density ψe needs to be
added:

ψe = 1
2ε0e · e. (8)

In view of the absence of an electric field outside the
two bounding planes of the TND, the system’s total potential
energyP is the integral over the domain V ≡ R × [−�/2,�/2]
of the energy densities defined in (1) and (8) and takes the form
(for derivation details, see [21])

P =
∫

V

[
1

2
[k1(∇ · n)2 + k2[n · (∇ × n) + τ ]2

+ k3||n × (∇ × n)||2]

+ 1

2ε0

[
χ−1(p · p) + (

χ−1
n − χ−1

)
(p · n)2

+||∇ × α − p||2] − e0 · p

+ k

2�2ξ1
(n · n − 1)2 + 1

2ε0ξ2
(∇ · α)2

]
dV. (9)

The last two terms in the integrand of P are penalty terms,
where the small dimensionless positive constants (0 < ξ1,ξ2 <

< 1) are associated with the problem’s two constraints: (i) the
fact that the director n is a unit vector, i.e., ||n|| = 1, and
(ii) the need for a unique potential α in (7), which is hereby
imposed by the Coulomb gauge ∇ · α = 0. We have adopted
a penalty formulation of these constraints in view of the
numerical solution algorithm that is subsequently discussed.
The parameter k used for the definition of the dimensionless
penalty term ξ1 is a convenient norm of the Frank-Oseen
constants [to be defined in (22)].

At the interfaces between the bounding plates and the liquid
crystal, we assume strongly anchoring (essential) boundary
conditions for the director n, namely

n(x1,x2,−�/2) = (cos(�φ/2), − sin(�φ/2),0),
(10)

n(x1,x2,+�/2) = (cos(�φ/2), sin(�φ/2),0).

The equilibrium solutions for the TND are found by
minimizing the system’s potential energy P(n,p,α) in (9)
subject to the essential boundary conditions for n in (10). No
boundary constraints are imposed on α since the corresponding
natural boundary conditions (k × ê = 0) are compatible with
the fixed electric potential (voltage) difference between the
two end plates.

B. Principal solution

The equilibrium for the twisted nematic device is given by
the minimization of P , i.e., the vanishing of the first variation
of the potential energy:

P,v(v)δv = 0, v ≡ (n,p,α). (11)

An external transverse electric field (i.e., along the x3

direction, as shown in Fig. 1) is applied perpendicular to
the bounding plates with magnitude e0. For as long as the
strength of the applied electric field is below a critical value
(the sought-after Freedericksz transition value ec

0), all directors
n remain at their initial position. The obvious solution to
the above equation is termed the principal solution recorded
below, where all associated field quantities are denoted by a
superscript 0:

0
v =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0
n = (cos(τx3), sin(τx3),0),
0
p = (0,0,ε0e0χ/(1 + χ )),
0
α = (0,0,0).

(12)

The principal solution for the director vector is the initial
uniform helix of the nematic device about the x3 axis, where

all directors lie in planes parallel to the end plates (
0
n3 = 0), as

seen in Fig. 1(a). Notice that the polarization vector for that
solution has only an x3 component.

C. Critical electric field on the principal solution and the
corresponding eigenmode

At small values of the externally applied electric field, the

principal solution
0
v is stable since it is a local minimizer of

the energy; further increase in the electric field strength, and
specifically above a critical value ec

0, results in the principal
solution no longer being a minimizer of the potential energy.
A new bifurcated equilibrium solution emerges at ec

0, as can
be seen in Fig. 1(b). This bifurcation phenomenon is called the
Freedericksz transition.

The bifurcation condition, occurring at ec
0 along a particular

direction �v, called the critical mode, is found by the
vanishing of the second functional derivative of P evaluated
on the principal solution, namely(

P,vv

(
0
v
(
ec

0

)
,ec

0

)
�v

)
δv = 0; �v ≡ (�n,�p,�α),

δv ≡ (δn,δp,δα), (13)

where �v is the bifurcation eigenmode, and δv denotes
the arbitrary test functions corresponding to the problem’s
independent variables v.

The above equation takes, in view of (9), the following
explicit form:

(
P0

,vv�v
)
δv =

∫
V

(
k1(∇ · �n)(∇ · δn) + k

�2ξ1

(
�n · 0

n
)(

δn · 0
n
)

+ k2

[
�n ·

(
∇ × 0

n
)

+ 0
n · (∇ × �n)

][
δn ·

(
∇ × 0

n
)

+ 0
n · (∇ × δn)

]
+ k3

[
�n ×

(
∇ × 0

n
)

+ 0
n × (∇ × �n)

]
·
[
δn ×

(
∇ × 0

n
)

+ 0
n × (∇ × δn)

]
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+ 1

ε0

[
χ−1�p · δp + (

χ−1
n − χ−1

)(
�p · 0

n + 0
p · �n

)(
δp · 0

n + 0
p · δn

)

+ (∇ × �α − �p) · (∇ × δα − δp) + 1

ξ2
(∇ · �α)(∇ · δα)

])
dV = 0. (14)

From (14), the vanishing of the δp term gives �p in terms of �n and �α, namely

�p = χ

1 + χ
(∇ × �α) + χn − χ

(1 + χ )(1 + χn)

[
0
n · (∇ × �α)

]
0
n + χn − χ

(1 + χn)χ

(
0
p · �n

)
0
n. (15)

By replacing the above equation in (14) and using the principal solution in (12), we obtain after some algebra

(
P0

,uu�u
)
δu =

∫
V

(
k1(∇ · �n)(∇ · δn) + k2

[
0
n(∇ × �n)

][
0
n · (∇ × δn)

]

+ k3

[
0
n × (τ�n + ∇ × �n)

]
·
[

0
n × (τδn + ∇ × δn)

]
+ 1

ε0

[
1

1 + χ
(∇ × �α) · (∇ × δα) + (χ − χn)(1 + χ )

χ2(1 + χn)

(
0
p · �n

)(
0
p · δ

0
n
)

+ χ − χn

(1 + χ )(1 + χn)

[
0
n · (∇ × �α)

][
0
n · (∇ × δα)

]

+ χ − χn

χ (1 + χn)

{[
0
n · (∇ × �α)

](
0
p · δn

)
+

(
0
p · �n

)[
0
n · (∇ × δα)

]}]

+ k

�2ξ1

(
0
n · �n

)(
0
n · δn

)
+ 1

ε0ξ2
(∇ · �α)(∇ · δα)

)
dV = 0, (16)

where we have defined, after eliminating p, a new vector of unknowns u ≡ (n,α).

The above equation can be recast, using Cartesian coordi-
nates for all its field quantities, in the form

(
P0

,uu�u
)
δu =

∫
V

[
L∇n∇n

ijkl �ni,j δnk,l + Lnn
ij �niδnj

+L∇nn
ijk (�ni,j δnk + �nkδni,j )

+L∇αn
ijk (�αi,j δnk + �nkδαi,j )

+L∇α∇α
ijkl �αi,j δak,l

]
dV = 0, (17)

where the coefficients in the above equation are defined by

L∇n∇n
ijkl ≡ k1δij δkl + (k2−k3)

0
np

0
nqεpij εqkl+k3(δikδjl−δilδjk),

Lnn
ij ≡ k3τ

2δij + k

�2ξ1

0
ni

0
nj + ε0(e0)2(χ − χn)

(1 + χ )(1 + χn)
δi3δj3,

L∇α∇α
ijkl ≡ 1

ε0(1 + χ )

(
δikδjl−δilδjk+χ − χn

1 + χn

0
np

0
nqεpij εqkl

)

+ 1

ε0ξ2
δij δkl, (18)

L∇nn
ijk ≡ k3τ

(
0
nk

0
nqεqij − εkij

)
,

L∇αn
ijk ≡ e0(χn − χ )

(1 + χ )(1 + χn)
0
nrεrij δk3.

We note here that most of the coefficients are not constant,

i.e., they depend on x3, through
0
n(x3) according to (12) if the

twist is τ �= 0.

Integration by parts of (17) yields in view of the arbi-
trariness of δu [= (δn,δα)] the Euler-Lagrange equations for
the twisted nematic device, as well as the natural boundary
conditions. The governing equations for the system are, for
(x1,x2,x3) ∈ R2 × [−�/2,�/2],

Lnn
ik �ni − (

L∇n∇n
ijkl �ni,j

)
,l

+ L∇nn
ijk �ni,j − (

L∇nn
kli �ni

)
,l

+L∇αn
ijk �αi,j = 0,(

L∇α∇α
ijkl �αi,j

)
,l

+ (
L∇αn

kli �ni

)
,l

= 0. (19)

Expanding the above equations gives a system of six
governing equations for the six unknowns �u (components
of �n and �α); these equations form a homogeneous system
of partial differential equations with nonconstant coefficients,
which will be solved numerically for τ �= 0.

The natural boundary conditions for (x1,x2) ∈ R2, x3 =
±�/2 read (recall that the ±k are the normals to the bounding
surfaces of the TND)

L∇α∇α
i3kl �αk,l + L∇αn

i3k �nk = 0. (20)

An analytical solution of the above eigenvalue problem is
not possible, save for the special case of τ = 0. A combined
analytical and numerical technique will be introduced in the
next section to solve the general case τ �= 0.

D. Nondimensionalization

To simplify the numerical calculations and the presentation
of results, we define the following dimensionless quantities
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for the thickness (x3), wave number [ω ≡ (ω1,ω2)], electric
perturbation potential (α), and electric-field strength (ζ ); for
notational simplicity, henceforth we keep the same symbols
for the thickness, electric perturbation potential, and wave
numbers:

x3/� −→ x3, α
√

kε0 −→ α, ω� −→ ω, ζ ≡ e0�

√
ε0

k
,

(21)

and we parametrize the Frank-Oseen constants in (2),

k ≡ [(k1)2 + (k2)2 + (k3)2]1/2, ri ≡ ki/k, (22)

leading to the following expressions for the coefficients
introduced in (18):

L∇n∇n
ijkl = k

�2

[
r1δij δkl + (r2 − r3)

0
np

0
nqεpij εpkl

+r3(δikδjl − δilδjk)
]
,

Lnn
ij = k

�2

[
r3(�φ)2δij + 1

ξ1

0
ni

0
nj + ζ 2(χ − χn)δi3δj3

(1 + χ )(1 + χn)

]
,

L∇α∇α
ijkl = k

�2

[
1

1 + χ

(
δikδjl − δilδjk + χ − χn

1 + χn

0
np

0
nqεpij εqkl

)

+δij δkl

ξ2

]
,

L∇nn
ijk = k

�2

[
r3�φ

(
0
nk

0
nqεqij − εijk

)]
,

L∇αn
ijk = k

�2

[
ζ (χn − χ )

(1 + χ )(1 + χn)
0
nrεrij δk3

]
, (23)

where the quantities inside the brackets are dimensionless
with leading terms of O(1). Use of these dimensionless
quantities facilitates the numerical simulations. In particular,
the choice of (22) is motivated by the need to provide an
easy comparison of the anisotropic cases with the isotropic,
one-constant approximation k1 = k2 = k3 = k (midpoint of
the triangular domain used to plot the results). The optimal
magnitude for the dimensionless penalty terms ξ1 and ξ2 is
found to be in the order of 10−6.

III. RESULTS

We begin this section by deriving an analytical solution
for the three-dimensional nematic device in the absence of
twist (τ = 0), and we compare the results with the existing
literature for this case. We then describe the finite-element
method (FEM) used to solve the general case of arbitrary twist
(τ �= 0) numerically, and we present the results obtained.

A. Nematic liquid crystal with zero twist

In the absence of twist in the nematic device (τ = 0), this
problem can be solved analytically in view of the constant
coefficients of the governing differential equations in (19). A
further simplification resulting from setting τ = 0 in (12) and
(18) isL∇nn

ijk = 0. By taking into account the constraints �n1 =
0 (resulting from the unit norm of the director) and �αi,i = 0
(resulting from the Coulomb gauge), (19) simplifies into the
following set of four PDEs for (x1,x2,x3) ∈ R2 × [−1/2,1/2],

in terms of the four independent variables �n2, �n3, �α2,
and �α3:

r1(�n2,22 + �n3,32) + r2(�n2,33−�n3,23)+r3(�n2,11) = 0,

r1(�n2,23 + �n3,33) + r2(�n3,22 − �n2,32) + r3(�n3,11)

+(cn − c)[ζ (�α3,2 − �α2,3) + ζ 2�n3] = 0,

(c − cn)ζ�n3,3 + c(�α2,11 + �α2,22 + �α3,32)

+cn(�α2,33 − �α3,23) = 0,

(cn − c)ζ�n3,2 + c(�α3,11 + �α2,23 + �α3,33)

+cn(�α3,22 − �α2,32) = 0, (24)

where the following new constants have been introduced for
simplicity: c ≡ 1/(1 + χ ) and cn ≡ 1/(1 + χn).

The above homogeneous linear system is completed by the
following boundary conditions for (x1,x2) ∈ R2, x3 = ±1/2:

�n2 = 0, �n3 = 0; �α2,23 + �α3,33 + �α3,11 = 0,

�α2,3 − �α3,2 = 0. (25)

The above first two relations (involving �ni) are essential
boundary conditions due to the anchoring of the director at the
two end plates, while the last two relations (involving �αi) are
the nontrivial natural boundary conditions (modified with the
help of the Coulomb gauge to eliminate �α1).

The bounded (in R2 × [−1/2,1/2]) eigenmode [�n2(xi),
�n3(xi),�α2(xi),�α3(xi)] solution of the above linear system
can be put in the form

[�n2,�n3,�α2,�α3]

= [iN2(x3),N3(x3),A2(x3),iA3(x3)] exp [i(ω1x1 + ω2x2)].

(26)

Using the above representation in (24), one obtains the
following four linear, homogeneous systems of ordinary differ-
ential equations for V(x3) ≡ [N2(x3),N3(x3),A2(x3),A3(x3)],
where x3 ∈ [−1/2,1/2]:

r1[(ω2)2N2 + ω2N3,3] − r2[N2,33 + ω2N3,3]

+r3[(ω1)2N2] = 0,

r1[ω2N2,3 + N3,33] − r2[(ω2)2N3 + ω2N2,3] − r3[(ω1)2N3]

+ (cn − c)[ζ (ω2A3 − A2,3) + ζ 2�N3] = 0,

(c − cn)ζN3,3 + c{−[(ω1)2 + (ω2)2]A2 + ω2A3,3}
+cn[A2,33 − ω2A3,3] = 0,

(cn − c)ζω2N3 + c[(ω1)2A3 + ω2A2,3 − A3,33]

+cn[(ω2)2A3 − ω2A2,3] = 0, (27)

plus the boundary conditions for x3 = ±1/2:

N2 = 0, N3 = 0;

ω2A2,3 − A3,33 + (ω1)2A3 = 0, A2,3 − ω2A3 = 0. (28)

The above linear system (27) and its corresponding boundary
conditions (28) admit a general solution of the form

V(x3) =
4∑

I=1

[
ξS
I VI

S sinh(ρIx3) + ξC
I VI

C cosh(ρIx3)
]
, (29)
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where ξS
I and ξC

I are the eigenmode amplitudes, to be subse-
quently determined with the help of the boundary conditions
(28). The scalars ρI (roots of the system’s characteristic
equation) and the constants VI

S ≡ [NI
2s ,N

I
3c,A

I
2s ,A

I
3c] and

VI
C ≡ [NI

2c,N
I
3s ,A

I
2c,A

I
3s] satisfy

Q(ω1,ω2,ρI ) · VI
S = Q(ω1,ω2,ρI ) · VI

C = 0,

1 � I � 4 (no sum in I ), (30)

where the nonzero components of the 4 × 4 symmetric matrix
Q(ω1,ω2,ρ) are given by

Q11 = r1(ω2)2 + r3(ω1)2 − r2ρ
2,

Q12 = ω2ρ(r1 − r2) = Q21,

Q13 = 0 = Q31, Q14 = 0 = Q41,

Q22 = r1ρ
2 − r3(ω1)2 − r2(ω2)2 + (c − cn)ζ 2,

Q23 = −(c − cn)ρζ = Q32, (31)

Q24 = (c − cn)ρω2 = Q42,

Q33 = c[(ω1)2 + (ω2)2] − cnρ
2,

Q34 = −(c − cn)ω2ρ = Q43,

Q44 = c[ρ2 − (ω1)2] − cn(ω2)2.

A nontrivial solution for (30) is possible when

det[Q(ω1,ω2,ρ)] = 0. (32)

The above equation is a fourth-order polynomial in ρ2, which
can be put in the form

(G(ρ){[ρ2 − (ω2)2]cn − (ω1)2c} + ζ 2[ρ2 − (ω1)2−(ω2)2]c)

× [ρ2 − (ω1)2 − (ω2)2] = 0,

G(ρ) ≡
{
r1ρ

2 − r3(ω1)2 − r2(ω2)2

+ [ρω2(r1 − r2)]2

r2ρ2 − r3(ω1)2 − r1(ω2)2

}
(c − cn)−1. (33)

Consequently, there are eight roots, ±ρI , 1 � I � 4, which
are solutions of (32). The obvious root from (33), i.e., (ρ4)2 =
[(ω1)2 + (ω2)2]1/2, does not depend on ζ , and, as discussed
subsequently, it corresponds to eigenmodes with no physical
meaning. The remaining roots (which depend in general on
ζ ) can be either real or complex. Finding the dimensionless
critical electric field ζc requires using the only information not
yet taken into account, namely the boundary conditions (28).
Introducing (29) into (28) will result in a homogeneous, linear
system for the eight unknown amplitudes ξS

I , ξC
I ; 1 � I � 4;

finding conditions for a nontrivial solution to this system (i.e.,
a solution in which at least one of the amplitudes is nonzero)
will provide the sought-after critical electric field.

The 8 × 8 matrix resulting from using (29) in (28) can
be rewritten in block form of two 4 × 4 matrices MS and
MC , corresponding to ξS

I and ξC
I , respectively, thus giving

(after considerable algebraic manipulations) the sought-after

condition for the critical electric field by

det[MS(ω1,ω2,ζ )] = 0, det[MC(ω1,ω2,ζ )] = 0; (34)

MS
1J = (ρJ )2 − (ω1)2 − (ω2)2

[r2(ρJ )2 − r1(ω2)2 − r3(ω1)2]G(ρJ )
tanh(ρJ �/2),

MC
1J = (ρJ )2 − (ω1)2 − (ω2)2

[r2(ρJ )2 − r1(ω2)2 − r3(ω1)2]G(ρJ )
coth(ρJ �/2),

MS
2J = (ρJ )2 − (ω1)2 − (ω2)2

ρJ G(ρJ )
= MC

2J ≡ M2J ,

MS
3J = (ω1)2

ρJ

= MC
3J ≡ M3J ,

MS
4J = (ρJ )2 − (ω2)2

ρJ

= MC
4J ≡ M4J ,

where the quantity G(ρ) is defined in (33).
A word of caution here: as one can see from (33), one

of its roots, (ρ4)2 = (ω1)2 + (ω2)2, is independent of ζ , and
the corresponding eigenmodes with amplitudes ξS

4 and ξC
4 are

physically meaningless for they have zero components of the
director and the electric displacement. Setting ξS

4 = ξC
4 = 0,

one must satisfy two sets of four boundary conditions with two
sets of three amplitudes. Fortunately, one can show from (33)
and the definitions of the coefficients MIJ in (34) that

cζ 2M2J − cM3J + cnM4J = 0, 1 � J � 3, (35)

in which case (34) reduces to finding the determinants of two
3 × 3 matrices:

det
[
MS

IJ (ω1,ω2,ζ )
] = 0,

(36)
det

[
MC

IJ (ω1,ω2,ζ )
] = 0; 1 � I, J � 3.

The lowest ζ > 0 roots of the above two equations (36) are
denoted by ζ S

m(ω1,ω2) and ζC
m (ω1,ω2), respectively, and hence

the dimensionless critical electric field ζc is

ζc = min
(ω1,ω2)∈R2

[
ζ S
m(ω1,ω2),ζ C

m (ω1,ω2)
]
, (37)

where only the positive quadrant ofR2 needs to be investigated,
since the squares of the wave numbers appear in the governing
equations.

Further simplification of this result is possible, by assuming
r3 = 0 or equivalently ω1 = 0, since only the product of
these constants appears in the components of Q(ω1,ω2,ρ) in
(31). This simplification is relevant since our calculations for
r3 > 0 show that the minimum dimensionless electric field,
found using (37), always corresponds to ω1 = 0 (a result in
agreement with [21] for the 2D case). For this case, one can
see that (33) has another root that is independent of ζ , namely
(ρ3)2 = (ω2)2. The physically meaningful eigenmodes are now
the ones corresponding to the remaining two roots (ρ1)2 and
(ρ2)2 of (33), which satisfy

cnr1r2[ρ2 − (ω2)2]2 + c(c − cn)ζ 2[r2ρ
2 − r1(ω2)2] = 0.

(38)
Consequently from (34) and (36) one obtains the following

equations for the dimensionless lowest electric fields ζ S
m(0,ω2)
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and ζC
m (0,ω2), respectively:

ρ1 tanh(ρ1/2)

r2(ρ1)2 − r1(ω2)2
− ρ2 tanh(ρ2/2)

r2(ρ2)2 − r1(ω2)2
= 0,

(39)
ρ1 coth(ρ1/2)

r2(ρ1)2 − r1(ω2)2
− ρ2 coth(ρ2/2)

r2(ρ2)2 − r1(ω2)2
= 0.

By investigating the lowest ζ roots of the above two
transcendental equations [since ρ1 and ρ2 are functions of
ζ found from (38)], it can be shown that for adequately low
values of r2/r1, the critical wave number corresponds to ζc =
ζ S
m(0,ω2c), where ω2c > 0, thus indicating a finite-wavelength

critical mode, termed periodic Freedericksz transitions, as
found by [16] and discussed in detail in [17].

The analytical results for ζ S
m(ω1,ω2) and ζC

m (ω1,ω2) are used
to check the FEM calculations reported below.

B. Finite-element algorithm

The numerical solution technique for the eigenvalue prob-
lem (19) and (20) [plus of course the essential boundary
condition (10)] for the general case τ �= 0 is based on the
Fourier transform of �u in the x1,x2 directions (R2) and a
finite-element discretization along x3.

Denoting the Fourier transform of quantities �α(x1,x2,x3)
and �n(x1,x2,x3) by �A(ω1,ω2,x3) and �N(ω1,ω2,x3) and
using the Fourier-Plancherel identity, (17) yields

(
P0

,uu�u
)
δu =

∫
R2

[∫ +1/2

−1/2

(
L∇n∇n

i3k3 �Ni,3δNk,3 − iωaL∇n∇n
iak3 �NiδNk,3 + iωβL∇n∇n

i3kβ �Ni,3δNk + ωaωβL∇n∇n
iakβ �NaδNβ

+L∇nn
i3k (�Ni,3δNk + �NkδNi,3) + iωαL∇nn

iak (�NkδNi − �NiδNk) + Lnn
ij �NiδNj

+L∇a∇a
i3k3 �Ai,3δAk,3 − iωaL∇a∇a

iak3 �AiδAk,3 + iωβL∇a∇a
i3kβ �Ai,3δAk + ωaωβL∇a∇a

iakβ �AiδAk

+L∇an
i3k (�Ai,3δNk + �NkδAi,3) + iωaL∇an

iak (�NkδAi − �AiδNk)
)
dx3

]
dω1dω2 = 0, (40)

where a bar (f ) denotes complex conjugation of the quantity
involved (f ).

A sufficient condition for loss of positive definiteness of
the functional in (40) is the loss of positive definiteness of its
integrand in [−1/2,1/2], which corresponds to eigenmodes
of the type �u = �U exp [i(ω1x1 + ω2x2)]. A finite-element
discretization of �A,�N in the interval [−1/2,1/2] is used
to check the loss of positive definiteness of this functional
∀(ω1,ω2) ∈ R2, thus finding the lowest (critical) electric field
ec

0 at the onset of a Freedericksz bifurcation. For each pair
(ω1,ω2) ∈ R2, the interval [−1/2,1/2] is divided in N equal
segments (i.e., finite elements). A linear interpolation function
is then used for each resulting two-node element where
each node I has six degrees of freedom defined via the
column vector �UI ≡ [�NI

1 ,�NI
2 ,�NI

3 ,�AI
1,�AI

2,�AI
3].

The resulting functional in (40) can then be put in matrix
form:

(P,uu�u)δu = [�U]T · K(ω1,ω2,ζ ) · [�U], (41)

where [�U] = [�U1,�U2, . . . ,�UN+1] is the global 6(N +
1) column vector of the nodal degree of freedom, and K is the
corresponding [6(N + 1)] × [6(N + 1)] stiffness matrix, also
termed the stability matrix, which is Hermitian and therefore
has real eigenvalues.

In the absence of an electric field (ζ = 0), the stability
matrix K(ω1,ω2,0) is always positive definite. The sought-after
critical value of the electric field ζc is the lowest ζ > 0 root of
det K(ω1,ω2,ζ ) = 0 over all (ω1,ω2) ∈ R2, namely

det K(ω1,ω2,ζm) = 0, ζc = min
(ω1,ω2)∈R2

ζm(ω1,ω2). (42)

For a given (ω1,ω2) we find ζm, the lowest root of det K = 0,
by a straightforward procedure where ζ is increased away from
zero by �ζ = 10−1 followed by an examination of the sign

of the minimum eigenvalue of K and then using a bisection
method to increase the accuracy of ζm. In this way, ζm is
evaluated in a dense grid in the Fourier space domain (ω1,ω2) ∈
[−10,10] × [−10,10] using increments of �ωi = 10−3. Due
to symmetry K(ω1,ω2,ζ ) = K(−ω1, − ω2,ζ ) and thus only
half of the above interval is scanned; hence in all calculations
we evaluate ζm in the domain (ω1,ω2) ∈ [−10,10] × [0,10].
Although symmetry considerations can further reduce the
scanned domain to half, for uniformity and to better depict
the location of the critical eigenmode, in Fig. 2 we plot results
in the domain (ω1,ω2) ∈ [−10,10] × [0,10].

In the calculations reported here, we use dimensionless
penalty parameters ξ1 = ξ2 = 10−6 in order to impose the
unit length of the director vector n and the Coulomb gauge
condition, as discussed in the potential energy definition (9).
To avoid locking (and hence an overly stiff system), a standard
reduced integration scheme with one Gauss point per element
is used to integrate the Coulomb gauge part and the unit length
director constraint in the x3 integral appearing in (40). For the
remaining terms in that integral, the integration is carried out
using two Gauss points per element.

The mesh size (all calculations used a mesh of N = 40
equal length elements) as well as the value of penalty
parameters and the adopted integration scheme are selected
by comparing the numerically calculated ζm(ω1,ω2) to its
analytical counterpart for τ = 0 given by Eq. (36) with the
relative error required to be within less than 0.1%.

C. Results for the twisted nematic device

We start by presenting in Fig. 2 the ζm(ω1,ω2) contours for
the 5CB twisted nematic device (k1 = 6.2pN , k2 = 3.9pN ,
k3 = 8.2pN , χn = 17.5, and χ = 6) for four different values
of the twist angle �φ = 0, π/2, π , and 3π/2, with the
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FIG. 2. Contours of the lowest dimensionless electric field ζm at the onset of bifurcation, as a function of the dimensionless eigenmode
wave numbers ω1 and ω2, for four different values of the twist angle �φ calculated for a 5CB liquid crystal. Its lowest (critical) value ζc occurs
at the location indicated by a small (red) dot; notice that for �φ = 0,π/2, the critical electric field corresponds to a long-wavelength eigenmode
(ω1c,ω2c) = (0,0), while for �φ = π,3π/2, the minimum corresponds to a finite-wavelength eigenmode.

last value typical of a STND (see [4]). The lowest (critical)
value of the dimensionless electric field ζc occurs at the
location indicated by a small (red) dot; notice that for the
two lower values of the twist angle �φ = 0, π/2, the critical
electric field corresponds to a long-wavelength eigenmode
(ω1c,ω2c) = (0,0), in which case a simple 1D analysis (where
all field quantities depend solely on the thickness coordinate)
can give ζc. For the two larger twist angles �φ = π, 3π/2,
the minimum corresponds to a finite-wavelength eigenmode,

and hence a 3D analysis is necessary. Notice the additional
symmetry in the graphs of Fig. 2. For the case of twist angles
�φ = 0, π , there is a symmetry of ζm with respect to the
coordinate axes, since ζm is independent of the wave-number
sign. Indeed, as seen in the analysis for τ = 0, the governing
equations depend on the square of each wave number and
hence ζm(ω1,ω2) = ζm(−ω1,ω2) = ζm(ω1, − ω2). For the case
of twist angles �φ = π/2, 3π/2, there is a symmetry of ζm

with respect to the diagonals, since a rotation of the axes

ζc

ω1

ω2

ζc

ω1

ω2

FIG. 3. Dependence of the dimensionless critical electric field ζc (top) and the corresponding dimensionless eigenmode wave numbers
ω1 and ω2 (bottom) on the twist angle �φ for two different sets of Frank-Oseen constants. Notice that above a certain value of �φ, the
critical eigenmode changes from global to local (from infinite to finite wavelengths), as indicated by a dashed (red) vertical line. The electric
susceptibility constants (χn = 17.5 and χ = 6.0) are the same in both cases. Observe the critical electric field ζc(�φ) in the liquid crystal with
the lower bend constant k3/k1 = 0.1 (right) that drops below its lowest value in the global mode regime, e.g., ζc(3π/2) < ζc(0).
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FIG. 4. Gnomonic projection used in plotting the influence of
the three Frank-Oseen constants ki on the critical eigenmode and
corresponding electric field; the projection is motivated by the need
to provide an easy comparison of the anisotropic cases with the
isotropic, one-constant approximation k1 = k2 = k3 = k (midpoint
of the triangular domain).

by ±π/2 leaves the problem unchanged and ζm(ω1,ω2) =
ζm(ω2,ω1). For twist angles that are not integral multiples of
π/2, no such symmetry exists and hence we need to scan the
entire domain, (ω1,ω2) ∈ [−10,10] × [0,10].

The dependence of the dimensionless critical electric field
ζc (top) and the corresponding dimensionless eigenmode wave
numbers ω1, ω2 (bottom) on the twist angle �φ is presented
in Fig. 3 for two different sets of Frank-Oseen constants:
k2/k1 = 0.63,k3/k1 = 1.32 (5CB values, left) and k2/k1 =
0.63,k3/k1 = 0.10 (right). In all calculations, the electric
susceptibility constants are the same (χn = 17.5,χ = 6.0) and
correspond to 5CB. Notice that above a certain value of �φ,
the critical eigenmode changes from global to local (from
infinite to finite wavelengths) for both cases. For the 5CB
liquid crystal, the critical electric field ζc is a monotonically
increasing function of the twist angle �φ; hence the lowest
critical electric field for that liquid crystal occurs for �φ = 0.
In contrast, the liquid crystal with the lower bend constant
k3/k1 = 0.1 (right), after an initial increase of ζc(�φ) in the
region where the critical mode is global, shows a significant
drop in ζc(�φ) in the region where the critical mode is local;
this decrease is so important that for adequately high twist
angles, the critical electric field drops below its lowest value
in the global mode regime, e.g., ζc(3π/2) < ζc(0).

The influence of the dimensionless Frank-Oseen constants
k1, k2, and k3 on the critical eigenmode and corresponding di-
mensionless critical electric field are presented, respectively, in
Figs. 5 and 6. In all these calculations, the electric susceptibility
constants are χn = 17.5,χ = 6.0 and correspond to 5CB. The
results are plotted using the gnomonic projection as depicted in
Fig. 4; one-eighth of the surface of the sphere is thus mapped
on an equilateral triangle. This projection displays all great
circles as straight lines by casting surface points of the sphere
onto a tangent plane, each landing where a ray from the center
of the sphere passes through the point on the surface and then
onto the plane.

More specifically, Fig. 5 records the contours of �c ≡
[(ω1c)2 + (ω2c)2]1/2, corresponding to the critical dimension-
less electric field ζc, as functions of the dimensionless Frank-
Oseen constants ki , for four different values of the twist
angle �φ. The noncolored (white) area in the above graphs
corresponds to global (long-wavelength) critical eigenmodes

FIG. 5. Influence of the dimensionless Frank-Oseen constants k1,
k2, and k3 on the critical eigenmode. Contours of �c ≡ [(ω1c)2 +
(ω2c)2]1/2, corresponding to the critical dimensionless electric field ζc,
are presented in gnomonic projection (see the inset) as functions of ki

for four different values of the twist angle �φ. The noncolored (white)
area in the above graphs corresponds to global (long-wavelength)
critical eigenmodes �c = 0. Results for the Frank-Oseen constants
of the 5CB liquid crystal are indicated by a small (black) dot.

FIG. 6. Influence of the dimensionless Frank-Oseen constants
k1, k2, and k3 on the critical electric field. Contours of the critical
dimensionless electric field ζc are presented in gnomonic projection
(see the inset) as functions of ki for four different values of the twist
angle �φ. The unshaded (white) area in the above graphs corresponds
to global (long-wavelength) critical eigenmodes �c = 0, while the
shaded (gray) area corresponds to local (finite-wavelength) critical
eigenmodes �c > 0, with the boundary of the two regions depicted
by a dashed (red) line. Results for the Frank-Oseen constants of the
5CB liquid crystal are indicated by a small (black) dot.
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�c = 0. Results for the 5CB liquid crystal are indicated by a
small (black) dot.

The analytical results for the zero twist device (τ = 0)
presented in Sec. III A give a critical eigenmode with ω1c = 0
for all values of the Frank-Oseen constants, including the
case k3 > 0. This result is independently verified by the FEM
calculations. Consequently, since ω1 and r3 (≡ k3/k) appear
together as a product in (31), Fig. 5(a) shows, as expected,
�c = ω2c independent of the bend constant k3. For adequately
low values of the twist constant k2, the critical eigenmode
corresponds to a finite wave number �c = ω2c > 0 (periodic
Freedericksz transition found by the authors of [16] and
discussed in detail in [17]), which is a solution of (39). For
this case, the solution of (39) agrees with the FEM numerical
result.

Notice, by comparing the four different graphs in Fig. 5,
that the increase of twist angle �φ reduces the domain in
parameter space corresponding to a global critical eigenmode
(�c = 0). Calculations for the highest value of �φ = 3π/2
(typical of STND) show a local critical eigenmode �c > 0
for most of the parameter space investigated in Fig. 5(d). One
should also mention at this point the possibility of abrupt
changes in the critical wave numbers for small variations of
Frank-Oseen constants, as seen most prominently in Fig. 5(b)
for low values of k3/k.

The influence of the dimensionless Frank-Oseen constants
k1, k2, and k3 on the critical electric field is presented in
Fig. 6. Contours of the critical dimensionless electric field,
ζc, are presented as functions of ki for four different values
of the twist angle �φ. The unshaded (white) area in the
above graphs corresponds to global (long-wavelength) critical
eigenmodes �c = 0, while the shaded (gray) area corresponds
to local (finite-wavelength) critical eigenmodes �c > 0 with
the boundary of the two regions depicted by a dashed (red)
line. Results for the 5CB liquid crystal are indicated by a
small (black) dot.

The results in Fig. 6 show that for a given angle
of twist �φ, the dimensionless critical electric field ζc

increases with increasing k2 and k3, although far from
monotonically, as an observation of Figs. 6(b) and 6(c)
can show. For all angles of twist, the lowest critical load
occurs at the corner corresponding to the lowest values of
k2 and k3.

Having explored the influence of the Frank-Oseen pa-
rameters on the stability of the TND, our attention now
turns to the dependence of the critical electric field and
the corresponding eigenmode on the electric susceptibility
constants χ and χn in directions parallel and perpendicular
to the director n, respectively, with the results plotted in Fig. 7.
Contours of ζc as functions of χ and �χ ≡ χn − χ [since
the governing equation depends on this difference, as seen
from (18)] are plotted for three different values of �φ. The
unshaded (white) area in the above graphs corresponds to
global (long-wavelength) critical eigenmodes �c = 0, while
the shaded (gray) area corresponds to local (finite-wavelength)
critical eigenmodes �c > 0 with the boundary of the two
regions depicted by a dashed (red) line. In all calculations,
the Frank-Oseen constants are those of the 5CB liquid crystal,
while the small (black) dots indicate results where the electric
susceptibilities also correspond to 5CB.
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FIG. 7. Influence of electric susceptibility constants χ and χn on
the critical electric field. Contours of ζc are presented as functions of χ

and �χ ≡ χn − χ for different values of �φ. The unshaded (white)
area in the above graphs corresponds to global (long-wavelength)
critical eigenmodes �c = 0, while the shaded (gray) area corresponds
to local (finite-wavelength) critical eigenmodes �c > 0 with the
boundary of the two regions depicted by a dashed (red) line. In
all calculations, the Frank-Oseen constants are those of the 5CB
liquid crystal, while the small (black) dots indicate results where the
susceptibilities are also those of the 5CB.

The plots in Fig. 7 show that for fixed Frank-Oseen
constants, the critical electric field increases monotonically
with both χ and �χ , but it is considerably more sensitive
to increases of χ than to increases of �χ , particularly for
the lower values of χ . Moreover, these results show that
the dependence of the critical electric field on the electric
susceptibility is almost insensitive to the angle of twist �φ,
as one can observe by comparing the four different graphs
in Fig. 7, in contrast to the corresponding results on the
Frank-Oseen constants. Nevertheless, the trend of increasing
ζc with increasing �φ, for the same set of material parameters,
persists, as one can see by comparing the three different
graphs of Fig. 7. Also, increasing the twist angle results
in increasing the domain in susceptibility space where the
critical eigenmode is local, a trend already observed in
Fig. 5.

The calculations in Fig. 3 show that for certain values of the
Frank-Oseen constants, the critical electric field can decrease
with the angle of twist to the point that for substantially
large angles it can fall below its value for zero twist [usually
a local minimum in the ζc(�φ)]. To get a better idea of
this phenomenon, we are depicting in Fig. 8 the contours
of constant ζc(3π/2) − ζc(0) as functions of ki . Again, in
these calculations the electric susceptibility constants are
χn = 17.5,χ = 6.0, and they correspond to 5CB. The range
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FIG. 8. Influence of the dimensionless Frank-Oseen constants
k1, k2, and k3 on the dropping of the critical electric field for
the supertwisted nematic device (STND) presented in gnomonic
projection. Contours of the difference of critical dimensionless
electric field ζc(3π/2) − ζc(0) as functions of the ratios k2/k1 and
k3/k1. Results for the 5CB liquid crystal are indicated by a small
(black) dot.

of the Frank-Oseen parameters where ζc(3π/2) − ζc(0) < 0 is
indicated by gray shading.

Results in Fig. 8 show that lowering the bend constant
in liquid crystals is more effective than lowering their twist
counterpart (assuming a fixed splay constant) if one wants to
achieve a low critical electric field by producing a STDN out
of the liquid crystal at hand. The price to pay in achieving
this critical electric field reduction by using a large twist angle
�φ = 3π/2 is the most likely change of the critical mode from
global to local, as seen in Figs. 5(d) and 6(d).

The systematic investigation, based on 3D analysis, pre-
sented above for the influence of the Frank-Oseen and electric
susceptibility constants of TNDs on the critical (lowest)
electric field and corresponding eigenmode gives the range
of these parameters where the onset of bifurcation in these
devices (Freedericksz transition) is global or local in nature and
calculates the associated wavelengths for the latter case. These
findings could be useful in guiding liquid-crystal selection for
applications, since lowering the critical electric field reduces
the energy consumption of the device, but the presence of a
short-wavelength mode might need to be taken into account in
the design.

IV. CONCLUSION

The object of this investigation is a fully three-dimensional
analysis of the Freedericksz transition phenomenon in twisted
nematic devices (TNDs) from the standpoint of bifurcation
theory, using the recently proposed [21] coupled electrome-
chanical variational formulation.

More specifically, we investigate the stability of the prin-
cipal solution of the TND, consisting of a finite liquid-crystal
layer strongly anchored between two infinite parallel plates
and subjected to a transverse (i.e., normal to the plates) electric
field. By scanning a wide range of the liquid crystal’s material
parameter space, we establish whether the lowest electric field
corresponds to a global mode, with an eigenmode depending

solely on the layer thickness coordinate (and thus captured
by a 1D analysis), or to a local one (termed the periodic
Freedericksz transition), with an eigenmode that has finite
wavelengths in one or both directions parallel to the plate (and
thus requiring a full 3D modeling). In contrast to existing
analysis of TNDs that use perturbation methods involving 1D
or 2D approximations for the director field, the present 3D
model considers all possible bounded eigenmodes in order to
select the critical electric field.

For arbitrary values of the TND twist angle, no analytical
solution can be found, and a mixed analytical and numer-
ical technique, combining finite-element discretization for
the thickness coordinate with a Fourier transform for the
remaining coordinates, is used to solve the bifurcation problem
at hand. For the special case of zero twist, an analytical solution
is possible; this solution is used to compare our results with the
existing literature on periodic Freedericksz transitions and as a
highly nontrivial check for the numerical algorithm developed
for the general case.

Our calculations show that a device with a global critical
mode for low values of twist invariably shows a local critical
mode once the twist angle exceeds a certain level, depending
on the constitutive parameters of the liquid crystal. Also, a
monotonically increasing critical electric field as a function
of the twist angle is not always the case, as our calculations
have shown for liquid crystals with a low-twist Frank-Oseen
constant.

The systematic investigation, based on 3D analysis, pre-
sented above for the influence of the Frank-Oseen and electric
susceptibility constants of TNDs on the critical (lowest)
electric field and corresponding eigenmode gives the range
of these parameters where the onset of bifurcation in these
devices (the Freedericksz transition) is global or local in
nature and calculates the associated wavelengths for the latter
case. These results could be useful in guiding liquid-crystal
selection for applications, since lowering the critical electric
field reduces the energy consumption of the device, but
the presence of a short-wavelength mode might need to be
taken into account in the design. Moreover, the continuum
mechanics-based methodology introduced here is applicable
to a wider class of problems involving the stability of devices
involving liquid crystals (methodology that can be generalized
to include nematic elastomers; see [21]), problems that, in
addition to their theoretical interest, are at the heart of exciting
new technological developments.
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