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A B S T R A C T

This work investigates the primary sinusoidal bifurcation wrinkling response of single- and multi-layered
magnetorheological elastomer (MRE) film–substrate systems subjected to combined transverse applied mag-
netic fields and in-plane biaxial pre-compression. A recently proposed continuum model that includes the
volume fraction of soft-magnetic particles is employed to analyze the effect of the magnetic properties upon
the bifurcation response of the system. The analysis is built in a highly versatile manner using a finite-
element discretization approach along the direction of the applied magnetic field and Fourier expansions
along the infinite in-plane layer directions. This allows for a seamless investigation of various multi-layered
structures. First, we analyze the effect of biaxial pre-compression upon the critical magnetic field for a film–
substrate system and for various mechanical stiffness ratios. We observe a kink in the critical magnetic curves
and a reflection in the corresponding wave numbers as they cross the equi-biaxial pre-compression regime.
Subsequently, we consider a MRE film bonded to a MRE substrate and study the effect of the particle volume
fraction ratios in those two parts. As a result, we obtain sharp pattern transitions, i.e., long-to-short wavelength
changes with only minor perturbations of the applied pre-compression. The presence of a magnetic substrate
changes qualitatively and quantitatively the bifurcation response of the film–substrate system. Finally, we
carry out a data-mining exercise to minimize the critical magnetic field at bifurcation by using three different
topologies, i.e., a monolayer, a bilayer and a sandwich film. We find that the topologies resembling closely
the monolayer one lead to the lowest critical magnetic fields for a given biaxial pre-compression.
. Introduction

Recently, Psarra et al. [1] observed experimentally and numerically
hat a thin magneto-elastic film bonded on a soft non-magnetic sub-
trate exhibits wrinkling and crinkling instabilities under a combined
agnetic loading and uniaxial pre-compression. In particular, the film
as made from a magnetorheological elastomer (MRE) which consisted
f a soft silicone (shear modulus in the order of a few kPa) comprising
ron particles at a volume fraction of 𝑐𝚏 = 0.2 (i.e. 20vol%). The non-
rivial coupling between the magnetic and mechanical response led to
nteresting critical field modulation, which is otherwise impossible with
urely mechanical loads alone.

That work was inspired by earlier investigations of magneto-mecha-
ical instabilities on thin plates [2], rectangular beams [3] and sur-
aces [4] as well as by more recent theoretical [5] and experimental [1,
] studies. In these works, the authors used either purely phenomeno-
ogical functions for MREs with particle-chain microstructures or simple
nergy functions that had no particle–particle interactions included,
herefore making very difficult the possibility to explore the effects of

∗ Corresponding author.
E-mail addresses: matthias.rambausek@polytechnique.edu (M. Rambausek), konstantinos.danas@polytechnique.edu (K. Danas).

the properties of the constituent phases (such as particle volume frac-
tion, matrix stiffness, coupling effects etc.). Both of these studies were
also carried out under uniaxial plane-strain pre-compression loads.

In turn, by replacing iron with permanently magnetizable hard-
magnetic particles (e.g. NdFeB) [7,8], novel hard-magnetic magne-
torheological elastomers (hMREs) have been employed for controlling
the deformation of films [9–11]. In the larger context of coupled surface
pattern control, one may refer to Su et al. [12], Liu et al. [13], Zhao
et al. [14] and Su et al. [15].

In the context of purely mechanical loads, the classical problem
of a thin film bonded to a soft substrate in mechanics [16,17] has
shown a surprising richness in (secondary) instability-phenomena go-
ing beyond simple wrinkling such as complex surface-patterns [18–
24], creases [19,25–28], ridges [27] and folds [29–31]. Similar phe-
nomena occur in bending problems, where the non-uniformity of the
deformation is the main ingredient [32,33] leading to the observed
instabilities.

It is precisely this complexity in the mechanical setting as well
as the availability of more advanced constitutive magneto-mechanical
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models (such as the ones proposed in [34]) that motivate us to go
beyond the analysis of Danas and Triantafyllidis [5] and Psarra et al.
[1]. Specifically, we investigate the primary bifurcation problem of
one or more magnetorheological elastomer layers bonded on passive or
magnetorheological substrates using the coupled magneto-mechanical
energy of Mukherjee et al. [34] allowing to vary independently the
constitutive properties of the matrix and the particles in the MRE
materials. In this regard, we address in the present study the following
aspects:

• general in-plane mechanical loading such as biaxial and equi-
biaxial pre-compression,

• the complex magneto-mechanical interplay of material properties
such as mechanical stiffness of the polymer phase and iron-
particle volume fraction both in the film and the substrate,

• topology of the layers including multi-layered structures.

Specifically, we find interesting features resulting from the non-
trivial magneto-mechanical coupling, such as sharp pattern transitions
leading to significant wavelength amplitude increase with only minor
changes of the applied pre-compression, as well as bi-modal regimes
in the bifurcation diagrams for a MRE film on a MRE substrate. An
additional important outcome of the study lies in the characterization
of critical bifurcation states for biaxial pre-compressions and the tran-
sitions associated to the equi-biaxial states. While these key findings do
not necessarily imply that exactly the same patterns persist in the post-
bifurcation regime, they, nevertheless, open up interesting perspectives
regarding dynamic magneto-mechanical surface pattern switching and
control. Furthermore, given the vast range of possibilities resulting
from the numerous parameters and geometries that can be achieved, a
detailed knowledge of such primary bifurcation points allows to system-
atically explore the post-bifurcation response numerically and design
experimental studies similar to those carried out by Psarra et al. [6]. In
order to limit the possible material responses to a handful of parameters
that are also realizable experimentally, we focus in the present study
on isotropic MREs without magnetic hysteresis. For this, we employ
the material model presented recently by Mukherjee et al. [34] for
isotropic MREs, which includes explicitly the effect of the particle
volume fraction, the mechanical properties of the polymeric matrix
phase and the magnetic properties of the iron-particle phase. This
model is based on earlier computational and analytical homogenization
estimates [35–37] and has been extensively calibrated.

Following this introduction, we present the fundamental theory, the
governing variational principle and the generic stability problem as
well as the its discrete counterpart in Section 2 using a combination
of finite elements and Fourier expansions. Subsequently, Section 3
introduces the employed homogenization-guided continuum model for
the MREs at hand. This is followed by three results sections. The first
one, Section 4, is devoted to a thorough investigation of the critical
bifurcation states of a single MRE layer on a passive substrate subjected
to a transverse magnetic field and biaxial pre-compression. Section 5
extends these results to magnetic substrates revealing additional inter-
esting effects. Section 6 is concerned with multilayer MRE films and
the important question of the minimization of the critical magnetic
field over a wide range of parameters for single- and multilayer film
topologies. Finally, the study is concluded with Section 7.

2. Field equations, potential energy and bifurcation analysis

In this study we consider non-dissipative magneto-elasticity at finite
strains [38–41] in absence of body forces and free currents. In a
Lagrangian setting (coordinates 𝐗) the governing equations are given
as

Div𝐁 = 0, Curl𝐇(𝐅,𝐁) = 𝟎 (1)

and
Div𝐒(𝐅,𝐁) = 𝟎, Curl𝐅 = 𝟎 (2) w

2

where 𝐁 and 𝐇 denote the magnetic field and the magnetic ℎ-field
in the reference configuration, 𝐒 denotes the total first Piola–Kirchhoff
stress and 𝐅 is the deformation gradient. The former three are related
to their Eulerian (coordinates 𝐱) counterparts via

𝐁 = 𝐽𝐅−1 ⋅ 𝐛, 𝐇 = 𝐅T ⋅ 𝐡, 𝐒 = 𝐽𝝈 ⋅ 𝐅−T, (3)

with 𝐽 = det 𝐅 and 𝝈 being the total Cauchy-type stress. Moreover, we
may express 𝐁 and 𝐅 in terms of the Lagrangian vector potential 𝐀 and
the deformation map 𝝋 ∶ 𝐱 = 𝝋(𝐗) as

𝐁 = Curl𝐀, 𝐅 = Grad𝝋 (4)

such that (1)1 and (2)2 are fulfilled identically.
Subsequently, we consider an energy-density 𝑊 (𝐅,𝐁) ≡ 𝑊 (Grad𝝋,

Curl𝐀) per unit reference volume  such that the potential energy
becomes

(𝝋,𝐀) = ∫
𝑊 (Grad𝝋,Curl𝐀) d𝑉 . (5)

This leads to the variational problem

{𝝋∗,𝐀∗} = arg

{

inf
𝝋∈𝝋

inf
𝐀∈𝐀

(𝝋,𝐀)
}

(6a)

with

𝝋 = {𝝋 | 𝜑𝑖 ∈ 1, 𝜑𝑖 = 𝜑𝑖 on 𝜕𝜑𝑖
∪ 𝜑𝑖} (6b)

𝐀 = {𝐀 | 𝐴𝑖 ∈ 1, 𝐴𝑖 = 𝐴𝑖 on 𝜕𝐴𝑖
,Div𝐀 = 0 in }. (6c)

Here,  denotes the domain of the boundary value problem comprising
one or more bodies (𝑖), as well as the air  ′ =  ⧵

⋃

𝑖 𝑖, which
constitutes a magnetic material with vanishing mechanical properties.
Prescribed boundary values are indicated with an overline. In turn, the
constraint on Div𝐀 in (6c) describes the Coulomb gauge condition,
which ensures uniqueness of the solution for 𝐀 without affecting the
results for 𝐁. The stationary conditions in (6a) yield (1)2 and (2)1 as
well as the constitutive relations

𝐇 =
𝜕𝑊 (𝐅,𝐁)

𝜕𝐁
, 𝐒 =

𝜕𝑊 (𝐅,𝐁)
𝜕𝐅

. (7)

.1. The boundary value problem and the form of the principal solution

We discuss now the actual geometry under consideration, which, in
he more general case here, consists of a multi-layered structure  =
𝑖 𝑖. All layers, denoted by 𝑖, have uniform material properties and

re stacked along the 𝑋3 direction, while being of infinite lateral extent
𝑋1, 𝑋2 ∈ (−∞,∞)), as shown in Fig. 1. In addition, above and below
he structure lies free air space  ′. The homogeneous external magnetic
ield 𝐛∞ = (0, 0, 𝑏∞) is applied parallel to the out-of-plane (−∞ < 𝑋3 <

) direction. This corresponds to distant magnets perpendicular to the
ayers, again with infinite lateral extent. The structure is furthermore
ubjected to in-plane stretches along 𝑋1 and 𝑋2 and has an out-of-
lane support at its bottom. At the interfaces between the structure
nd the free space (air) and between individual layers, we consider
ontinuity of the displacement field and the traction vectors [5]. Note
hat we restrict the present study to isotropic materials but the pro-
osed methodology is easily extended to anisotropic materials of any
oupling, mechanical or not (see for example Danas et al. [42]).

The form of the principal solution for the previously-described
oundary value problem is domain-wise uniform1 and reads

𝐅 = 𝜆1𝐞1 ⊗ 𝐞1 + 𝜆2𝐞2 ⊗ 𝐞2 + 𝜆3𝐞3 ⊗ 𝐞3 in 𝑖, (8a)

= 𝜆1𝜆2𝑏
∞𝐞3, or 𝐛 = 𝑏∞𝐞3 in  , (8b)

1 This form of the principal solution is only valid if one assumes uniform
aterial properties for each layer as well as material symmetries that maintain

he corresponding geometric symmetries. That is the case in the present study
here the materials used in each layer are isotropic.
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Fig. 1. (a) The boundary value problem (BVP) consisting of a film bonded on a substrate. The film itself is also allowed to comprise more layers (see Fig. 2). The bottom part of
the structure is fixed along the 𝑋3 direction, while both the film and substrate extend to infinity in the lateral directions 𝑋1-𝑋2 (not explicitly shown in the sketch). The magnetic
field is applied along the direction 𝑋3 and the surrounding air (not explicitly sketched) extends to −∞ and +∞. (b) Cross-section of the film–substrate–air system.
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hereby 𝜆1 and 𝜆2 are constant throughout  because of the conti-
uity of the displacement field. Since the air domain has vanishing
echanical properties, the actual value of 𝐅 may take any form. A

onvenient choice that satisfies the continuity of displacements across
he film/free-space interface is

= 𝜆1𝐞1 ⊗ 𝐞1 + 𝜆2𝐞2 ⊗ 𝐞2 + 1𝐞3 ⊗ 𝐞3 in  ′. (9)

his point is further detailed in Section 2.2.1.
The system of equations is closed by the previously-mentioned

ontinuity of tractions across all interfaces. For the problem under
onsideration, there are no mechanical tractions along the direction
3 throughout the entire structure. Thus, following, Kankanala and
riantafyllidis [40] and Danas [43], the vanishing Eulerian mechanical
raction, 𝐭, across an interface defined by a normal 𝐧 separating two
rbitrary materials (including air which is a magnetic material) is given
y

= [[𝝈]] ⋅ 𝐧 = 𝟎. (10)

ere, [[𝝈]] is the jump of the total Cauchy stress along this interface.
sing the continuity of the magnetic field 𝐛 and the principal solution

8b), at the top and bottom free space  ′ (air) in Fig. 1b, the total stress
s simply equal to the Maxwell stress in air and thus reads

= 1
𝜇0

𝐛⊗ 𝐛 −
|𝐛|2

2𝜇0
𝟏

=
(𝑏∞)2

𝜇0

(

𝐞3 ⊗ 𝐞3 −
1
2
𝟏
)

in  ′, (11)

with 𝟏 denoting the second order identity tensor.
In turn, given the uniform principal solution for 𝐅 in (8a), the total

Cauchy stress in the film 𝚏 and the substrate 𝚜 is also uniform and
is given in terms of the energy densities 𝑊 (𝐅,𝐁) by use of (3) and (7).
Considering now the interface 𝜕𝐼𝚊𝚏 =  ′ ∩ 𝚏 with normal 𝐧 = 𝐞3 and
sing (10) leads to a single equation for 𝜆3 in the film, i.e.,

(𝑏∞)2

2𝜇0
−

𝑆33(𝜆1, 𝜆2, 𝜆3, 𝑏∞)
𝜆1𝜆2

|

|

|

|𝚏

= 0. (12)

gain, 𝑆33 is the component of the total first Piola–Kirchhoff stress in
he film as defined by (7). We recover a similar equation for 𝜆3 in the

substrate 𝚜, by using the traction continuity either at the interface
𝜕𝐼𝚏𝚜 = 𝚏 ∩ 𝚜 or at 𝜕𝐼𝚜𝚊 = 𝚜 ∩  ′ with normal 𝐧 = 𝐞3, i.e., we get

(𝑏∞)2

2𝜇0
−

𝑆33(𝜆1, 𝜆2, 𝜆3, 𝑏∞)
𝜆1𝜆2

|

|

|

|𝚜

= 0. (13)

emark 1. The above set of nonlinear algebraic equations may be
olved analytically or numerically depending on the nonlinearity of the
 {

3

onstitutive laws that are considered. In the present case, the solution
or 𝜆3 is carried out numerically since no analytical solution is possible
or the nonlinear magneto-mechanical constitutive laws considered in
he following section. In addition, the same procedure can be readily
xpanded for any number of layers along the 𝑋3 direction, as is the

case in the present study (see Fig. 2).

2.2. Bifurcation analysis

In this section, we discuss first the bifurcation analysis for the given
boundary value problem outlined previously and then present a novel
numerical approach allowing to address the bifurcation problem using
a combination of Fourier expansions and finite element discretization.

Of interest here is the stability of the principal solution 𝐠0 =
𝝋0,𝐀0} = 𝐠0(𝑏∞, 𝜆1, 𝜆2)2 presented in the previous section and more
recisely the onset of first bifurcation. As explained earlier, the prin-
ipal solution is obtained by minimizing the potential energy  in
5) with respect to the independent variables 𝐠, i.e., by solving 𝛿 ≡
,𝐠𝛿𝐠 = 0. We also mention here that the applied loads involve the
agnetic field as well as the two stretches independently, thus making

he loading space three dimensional.
At relatively small values of the applied magnetic and mechanical

oads, the principal solution 𝐠0 is stable, i.e. it is a local minimizer
f the potential energy satisfying (,𝐠𝐠(𝐠0)𝛿𝐠)𝛥𝐠 > 0, for arbitrary
erturbations 𝛥𝐠 ≠ 𝟎. As the applied loads increase, the film–substrate
tructure reaches a critical state, where the principal solution at hand
0 is no longer a local minimizer. Instead, non-uniform magnetic and
echanical fields may emerge in the layered structure. At that exact
oint, the second variation of the potential energy vanishes along a
articular direction 𝛥𝐠, which satisfies the condition

𝛿 ≡ (,𝐠𝐠(𝐠0)𝛿𝐠)𝛥𝐠

= ∫
{𝛿𝝋, 𝛿𝐀} 𝜕2𝑊 (Grad𝝋,Curl𝐀)

𝜕{𝝋,𝐀}2
|

|

|

|

|{𝝋0 ,𝐀0}
{𝛥𝝋, 𝛥𝐀} d𝑉 = 0. (14)

Here, 𝛥𝐠 are the bifurcation eigenmodes, and 𝛿𝐠 denote the arbi-
trary test functions corresponding to the independent variables of the
problem, 𝐠. Both 𝛥𝐠 and 𝛿𝐠 are admissible and thus have to satisfy

𝛥𝝋(𝐗) = 𝛿𝝋(𝐗) = 𝟎 for 𝐗 ∉ ( ∪ 𝜕), (15a)

𝛥𝜑3(𝐗) = 𝛿𝜑3(𝐗) = 0 for 𝑋3 = 0, (15b)

and

𝛥𝐀(𝐗) → 𝟎, 𝛿𝐀(𝐗) → 𝟎 for 𝑋3 → ±∞ (15c)

2 For simplicity in notation, we did not include the subscript 0 in the
𝑏∞, 𝜆 , 𝜆 } variables.
1 2
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Fig. 2. Sketch showing in two-dimensions the various film topologies considered in the present problem. We consider three topologies for the film; a monolayer with thickness
ℎ𝚏, a bilayer and a sandwich with the last two cases allowing for a varying thickness of the individual layers, ℎ𝚏,𝟷 and ℎ𝚏,𝟸 keeping the total film thickness ℎ𝚏 fixed. The structure
s fully defined by the ratio ℎ𝚏∕ℎ𝚝 with ℎ𝚝 denoting the total height of the film and the substrate together.
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Div𝛥𝐀 = Div 𝛿𝐀 = 0 everywhere. (15d)

he first condition on 𝛥𝝋 accounts for the fact that the energy in the
ree space is not affected by deformation such that 𝛥𝝋 is basically
rbitrary in that domain. By setting 𝛥𝝋 (and also 𝛿𝝋) to zero in the
ree space we just remove spurious singular modes from the system. The
econd condition (15b) reflects the rigid vertical support (see Fig. 2) of
he specimen.

.2.1. The discrete stability problem
Due to the material homogeneity and infinite extent in the lateral

irections 𝑋1-𝑋2 of the layered structure in Fig. 1, we employ a Fourier
xpansion of the primary fields 𝝋 and 𝐀 in the 𝑋1-𝑋2 plane. The Fourier
xpansion coefficients thus depend on 𝑋3. In what follows, we denote
he in-plane position vector as  = (𝑋1, 𝑋2) and the wave vector as
= (𝛺1, 𝛺2).
For a continuous spectrum, the perturbations of the primary fields

an be expressed3 as

𝛥𝝋(𝐗) = ∫

∞

Ω=𝟎
𝛥𝝋𝙲(Ω, 𝑋3) cos(Ω ⋅  ) + 𝛥𝝋𝚂(Ω, 𝑋3) sin(Ω ⋅  ) dΩ, (16a)

𝐀(𝐗) = ∫

∞

Ω=𝟎
𝛥𝐀𝙲(Ω, 𝑋3) cos(Ω ⋅  ) + 𝛥𝐀𝚂(Ω, 𝑋3) sin(Ω ⋅  ) dΩ. (16b)

Next, we discretize the above Fourier expansion coefficients in the
3 direction by use of a finite element (FE) discretization. This FE
iscretization allows for the multiplicative decomposition of the Fourier
oefficients into two factors, one depending on 𝑋3 and the other on Ω.

Thus, let 𝐍𝑖(𝑋3) denote the individual finite element basis func-
ions and {𝛥𝝋̂𝙲(Ω), 𝛥𝝋̂𝚂(Ω), 𝛥𝐀̂𝙲(Ω), 𝛥𝐀̂𝚂(Ω)} the global finite element
egrees of freedom per Fourier mode Ω. Then, we have for 𝛥𝝋𝙲, 𝛥𝝋𝚂,

𝛥𝐀𝙲 and 𝛥𝐀𝚂 the discrete counterparts (indicated with a subscript ℎ)

𝛥𝝋𝙲
ℎ(Ω, 𝑋3) =

𝑁
∑

𝑖=1
𝐍𝑖(𝑋3) ⋅ 𝛥𝝋̂𝙲(Ω) = 𝐍̂(𝑋3) ⋅ 𝛥𝝋̂𝙲(Ω) (17)

𝛥𝝋𝚂
ℎ(Ω, 𝑋3) =

𝑁
∑

𝑖=1
𝐍𝑖(𝑋3) ⋅ 𝛥𝝋̂𝚂(Ω) = 𝐍̂(𝑋3) ⋅ 𝛥𝝋̂𝚂(Ω) (18)

3 The same expansions are applied to {𝛿𝝋, 𝛿𝐀}. Also note that for the
urpose of the stability analysis it is quite common to employ the complex-
alued version of the Fourier transform or expansion. However, we developed
ur code mainly based on the real-valued formulation as given above. This
llowed us to verify our code with the method of manufactured solutions in a
traightforward way.
4

𝛥𝐀𝙲
ℎ(Ω, 𝑋3) =

𝑁
∑

𝑖=1
𝐍𝑖(𝑋3) ⋅ 𝛥𝐀̂𝙲(Ω) = 𝐍̂(𝑋3) ⋅ 𝛥𝐀̂𝙲(Ω) (19)

𝐀𝚂
ℎ(Ω, 𝑋3) =

𝑁
∑

𝑖=1
𝐍𝑖(𝑋3) ⋅ 𝛥𝐀̂𝚂(Ω) = 𝐍̂(𝑋3) ⋅ 𝛥𝐀̂𝚂(Ω). (20)

ere, 𝐍̂(𝑋3) collects all 𝐍𝑖(𝑋3) in an appropriate way. Next, we make
he transition to a finite element notation for which we gather the finite
lement basis functions 𝐍̂(𝑋3) and the trigonometric terms ‘‘cos’’ and
‘sin’’ such that

𝝋ℎ(𝐗) = ∫

∞

Ω=𝟎

(

𝐍̂(𝑋3) cos(Ω ⋅  ) 𝟎
𝟎 𝐍̂(𝑋3) sin(Ω ⋅  )

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐍̌(Ω, ,𝑋3)

⋅
(

𝛥𝝋̂𝙲(Ω)
𝛥𝝋̂𝚂(Ω)

)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝛥𝝋̌(Ω)

dΩ

= ∫

∞

Ω=𝟎
𝐍̌(Ω, , 𝑋3) ⋅ 𝛥𝝋̌(Ω) dΩ. (21)

nalogously, one has

𝐀ℎ(𝐗) = ∫

∞

Ω=𝟎
𝐍̌(Ω, , 𝑋3) ⋅ 𝛥𝐀̌(Ω) dΩ. (22)

iven the matrix 𝐍̌, we introduce next the matrices 𝐆̌, 𝐂̌ and 𝐃̌ such
hat

̌ (Ω, , 𝑋3) = Grad 𝐍̌(Ω, , 𝑋3) (23)

𝐂̌(Ω, , 𝑋3) = Curl 𝐍̌(Ω, , 𝑋3) (24)

nd

̌ (Ω, , 𝑋3) = Div 𝐍̌(Ω, , 𝑋3). (25)

ach of these matrices can be additively decomposed as

̌ = 𝐆̌𝙲(Ω, , 𝑋3) cos(Ω ⋅  ) + 𝐆̌𝚂(Ω, , 𝑋3) sin(Ω ⋅  ) (26)

𝐂̌ = 𝐂̌𝙲(Ω, , 𝑋3) cos(Ω ⋅  ) + 𝐂̌𝚂(Ω, , 𝑋3) sin(Ω ⋅  ) (27)

𝐃̌ = 𝐃̌𝙲(Ω, , 𝑋3) cos(Ω ⋅  ) + 𝐃̌𝚂(Ω, , 𝑋3) sin(Ω ⋅  ). (28)

Using the above definitions and by virtue of the 𝐿2-orthogonality of
rigonometric functions, we reformulate the bifurcation criterion (14)
n terms of the discrete fields as

∫

∞

Ω=𝟎

(

(𝛿𝝋̌)T (𝛿𝐀̌)T
)

⋅

{

∫

𝑋max
3

min

(

𝐆̌𝙲

𝐂̌𝙲

)T
⋅

(

𝜕2𝑊
𝜕𝐅2

𝜕2𝑊
𝜕𝐁𝜕𝐅

𝜕2𝑊 𝜕2𝑊

)

⋅
(

𝐆̌𝙲

𝐂̌𝙲

)

+ 1
𝜖

(

𝐃̌𝙲
)T

⊗ 𝐃̌𝙲 d𝑋3+

𝑋3 𝜕𝐅𝜕𝐁 𝜕𝐁2
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∫

𝑋max
3

𝑋min
3

⎛

⎜

⎜

⎝

𝐆̌𝚂

𝐂̌𝚂

⎞

⎟

⎟

⎠

T

⋅
⎛

⎜

⎜

⎝

𝜕2𝑊
𝜕𝐅2

𝜕2𝑊
𝜕𝐁𝜕𝐅

𝜕2𝑊
𝜕𝐅𝜕𝐁

𝜕2𝑊
𝜕𝐁2

⎞

⎟

⎟

⎠

⋅
⎛

⎜

⎜

⎝

𝐆̌𝚂

𝐂̌𝚂

⎞

⎟

⎟

⎠

+1
𝜖

(

𝐃̌𝚂
)T

⊗ 𝐃̌𝚂 d𝑋3

}

⋅
⎛

⎜

⎜

⎝

𝛿𝝋̌

𝛿𝐀̌

⎞

⎟

⎟

⎠

dΩ = 0. (29)

few comments are in order for the transition from (14) to (29):
irst, we note that the constant resulting from the non-vanishing in-
lane integration of the corresponding trigonometric functions has
een normalized to one, which renders (29) an expression of density
ith respect to lateral area. This avoids the problem of an infinite
nergy4 that would result from (14) due to infinite lateral extents of the
tructure. Second, by contrast to the continuous problem, the domain
f the integral in 𝑋3 direction in (29) is not R but (𝑋min

3 , 𝑋max
3 ). This

‘truncated’’ domain has to be large enough for a sufficient resolution of
he magnetic field perturbations far from the specimen. Third, the frac-
ion 1∕𝜖 is the ‘‘weight’’ of the penalty terms used to enforce Div 𝛿𝐀 = 0.

value of 𝜖 = 10−4 is found to be sufficient for the present purposes.
ote further that contrary to the usual two- and three-dimensional

inite element discretizations, these penalty terms do not need to be
nder-integrated in the present 1D FE problem. The same applies to the
olumetric energy contributions in the context of quasi-incompressible
aterials, as will be used later. Throughout the present work we

mploy Lagrange-type finite elements of polynomial degree two.
In (29), the quantity inside the curly braces defines the finite ele-

ent ‘‘stiffness’’ matrix of the system, denoted compactly by 𝐊(Ω, 𝐠0) ≡
(Ω,𝝋0,𝐀0) ≡ 𝐊(Ω, 𝑏∞, 𝜆1, 𝜆2). It is noted that the dependence of 𝐊
n Ω enters only via 𝐆̌C|S, 𝐂̌C|S and 𝐃̌C|S. By the short-hands 𝛿𝐠̌(Ω) =
𝛿𝝋̌(Ω), 𝛿𝐀̌(Ω)} and 𝛥𝐠̌(Ω) = {𝛥𝝋̌(Ω), 𝛥𝐀̌(Ω)}, we collect the degrees of
reedom of the eigenmodes and test functions, respectively, such that
29) compactly reads

∫

∞

Ω=𝟎
[𝛿𝐠̌(Ω)]T ⋅𝐊(Ω, 𝐠0) ⋅ 𝛥𝐠̌(Ω) dΩ = 0. (30)

For a given principal solution 𝐠0 and depending on the properties of
, Eq. (30) can be fulfilled under the following conditions,5 of which

he first is given by

𝛿𝐠̌(Ω)]T ⋅𝐊(Ω, 𝐠0) ⋅ 𝛥𝐠̌(Ω) > 0 ∀Ω ∈ [𝟎,∞) ∧ ∀𝛥𝐠̌, 𝛿𝐠̌ ≠ 𝟎 (31)

hat is, 𝐊(Ω, 𝐠0) is positive definite. Then we must have 𝛥𝐠̌(Ω) = 𝟎 ∀Ω.
he second case is characterized by

𝛿𝐠̌(Ω)]T ⋅𝐊(Ω, 𝐠0) ⋅ 𝛥𝐠̌(Ω) ≥ 0 ∀Ω ∈ [𝟎,∞) ∧ ∀𝛥𝐠̌, 𝛿𝐠̌ ≠ 𝟎 (32)

uch that

Ω𝚌 ∶ min
𝛥𝐠̌(Ω𝚌)≠𝟎

[𝛥𝐠̌(Ω𝚌)]T ⋅𝐊(Ω𝚌, 𝐠0) ⋅ 𝛥𝐠̌(Ω𝚌) = 0 (33)

hat is, 𝐊(Ω𝚌, 𝐠𝚌) ≡ 𝐊(Ω𝚌, 𝑏𝚌, 𝜆𝚌1 , 𝜆
𝚌

2) is positive semi-definite. In that case
he direction of 𝛥𝐠̌(Ω𝚌) is determined, but not the magnitude. Thus,
e have a nontrivial solution to (30). In the case that the integrand
f (30) is less than zero for some Ω, the positive integrands can be
ompensated by the negative ones such that the integral still vanishes.
his situation is already part of the post-bifurcation regime and thus
eyond the scope of the present study.

In the present case, we minimize the smallest eigenvalue of 𝐊(Ω, 𝐠0)
ver Ω, which we denote with 𝛬̄min(𝑏𝚌, 𝜆𝚌1 , 𝜆

𝚌

2) such that a critical state

4 This is normally not an issue for bodies of finite extent for which the fields
ecrease with distance such that the overall energy remains finite. However,
n the case of a periodic domain, which is infinite by construction, one has
o provide an energy divided by some reference length, area or volume,
espectively.

5 This is a standard argument (see, e.g., Triantafyllidis and Needleman [44])
nd thus often omitted. We nevertheless present it for completeness.
5

𝐠𝚌 ≡ {𝑏𝚌, 𝜆𝚌1 , 𝜆
𝚌

2} is defined by

̄min(𝑏𝚌, 𝜆𝚌1 , 𝜆
𝚌

2) = min
Ω

{

min
𝛥𝐠̌(Ω)≠𝟎

[𝛥𝐠̌(Ω)]T ⋅
𝐊(Ω, 𝑏𝚌, 𝜆𝚌1 , 𝜆

𝚌

2)

‖𝛥𝐠̌(Ω)‖2
⋅ 𝛥𝐠̌(Ω)

}

= 0,

(34)

where the normalization by ‖𝛥𝐠̌‖2 is introduced to obtain a well defined
eigenvalue problem with eigenvectors of unit magnitude. In a more
descriptive manner, given a set of stretches 𝜆1 and 𝜆2, (34) can be un-
derstood as an equation for the critical field 𝑏𝚌(𝜆1, 𝜆2). For this reason,
in the following results sections, we use the superscript ‘‘()𝚌’’ denoting
‘‘critical’’ only for 𝑏𝚌 but not to 𝜆1 and 𝜆2. Further details on the
boundary conditions for the discrete problem, the underlying algorithm
and the procedure for the identification of critical states are provided
in Appendix B. The resulting implementation has undergone rigorous
comparison with Hutchinson [26] and Audoly and Boudaoud [20]
in the purely mechanical setting. Moreover, for the case of isotropic
monolayer structures, our code has been benchmarked against the one
underlying the work of Danas and Triantafyllidis [5].

3. Constitutive models and geometric parameters

In this section, we specify the constitutive magneto-mechanical
models that we will use to resolve the previously discussed bifurcation
problem. The magnetorheological elastomers (MREs) considered in
the present study consist of randomly distributed magnetic (e.g. iron)
particles (denoted as phase 𝚙) in an elastomeric matrix (denoted as
phase 𝚖). The distribution of the particles is assumed to be uniform
and isotropic such that the overall response of the composite material
is isotropic. The magnetic response of the particles is idealized to be
free of hysteresis, which is a perfectly acceptable assumption for iron
particles [45]. The formulation of an appropriate macroscopic material
model for MREs is a difficult problem [46,47] and still under active
research. In the present study, we employ a continuum model [34] that
is guided by numerical [43] and analytical homogenization [35,36].
Due to its nature, the model features the particle volume fraction
𝑐 as a direct macroscopic material parameter. For completeness, we
summarize the employed model in the context of quasi-incompressible
media.

3.1. An analytical continuum model for isotropic MREs

Following [34], the energy density per unit referential volume of
the MRE has four contributions

𝑊 (𝐅,𝐁) = 𝛹𝚖𝚎𝚌𝚑(𝐼1, 𝐽 )+𝛹𝚖𝚊𝚐(𝐽 , 𝐼5)+𝛹𝚌𝚘𝚞𝚙𝚕𝚎(𝐽 , 𝐼5, 𝐼6)+𝛹𝚟𝚊𝚌(𝐽 , 𝐼5) (35)

where the magneto-mechanical invariants are defined as

𝐼1 = 𝐅 ∶ 𝐅 = tr 𝐂, (36)

𝐽 = det 𝐅 =
√

𝐼3 =
√

det 𝐂, (37)

𝐼5 = 𝐂 ∶ (𝐁⊗ 𝐁), (38)

6 = (𝐂 ⋅ 𝐁) ⋅ (𝐂 ⋅ 𝐁). (39)

ere, 𝐂 = 𝐅T ⋅ 𝐅 is the right Cauchy–Green tensor. For the purely
echanical contribution 𝛹𝚖𝚎𝚌𝚑(𝐼1, 𝐽 ), we use a quasi-incompressible

ariant of the family of models proposed by Lopez-Pamies et al. [35],
hich are valid and explicit for any incompressible matrix phase that

an be described by an energy density depending on 𝐼1 (and 𝐽 in the
uasi-incompressible approximation). In the present study, for simplic-
ty, we use a Neo-Hookean description for the polymeric matrix phase,
hich by addition of iron particles (assumed as mechanically rigid)

esults in a continuum description of the energy density of the MRE
hat reads

𝚖𝚎𝚌𝚑(𝐼1, 𝐽 ) =
𝐺𝚖 [𝐼1 − 3 − 2 ln 𝐽 ] +

𝐺′
𝚖 (𝐽 − 1)2. (40)
2 (1 − 𝑐)5∕2 2(1 − 𝑐)6
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In this expression, 𝐺𝚖 and 𝐺′
𝚖

denote the shear and bulk moduli of
the underlying matrix phase of the MRE. It is noted that the proposed
compressible part of the model is sufficiently robust for the quasi-
incompressible responses considered here. Specifically, we will set
henceforth 𝐺′

𝚖
= 105𝐺𝚖 for all materials considered in the present study

which corresponds to a quasi-incompressible response.
In turn, the purely magnetic contribution to the MRE response reads

as [34]

𝛹𝚖𝚊𝚐(𝐽 , 𝐼5) =

−
𝜒

2𝜇0(1 + 𝜒)
𝐼5
𝐽 2 21

⎡

⎢

⎢

⎣

𝑘, 2
𝑘
, 1 + 2

𝑘
,−

(

𝜒
𝜇0(1 + 𝜒)𝑚s

√

𝐼5
𝐽

)𝑘
⎤

⎥

⎥

⎦

, (41)

where 21 is the hypergeometric function, while the calibration expo-
nent was set to 𝑘 = 6. In general, there is no closed-form expression for
21. However, the first derivative of 𝛹𝚖𝚊𝚐 with respect to 𝐼5∕𝐽 2, which
s the one needed in the calculations, takes the simple explicit form

𝜕𝛹𝚖𝚊𝚐

𝜕(𝐼5∕𝐽 2)
= −

𝜒
2𝜇0(1 + 𝜒)

⎡

⎢

⎢

⎣

1 +

(

𝜒
𝜇0(1 + 𝜒)𝑚s

√

𝐼5
𝐽

)𝑘
⎤

⎥

⎥

⎦

−1∕𝑘

(42)

For a more detailed discussion of this point, we refer the reader to
Section 4.2.2 of Mukherjee et al. [34] where 𝑘 ∈ N+.

The magnetic saturation, 𝑚s, and the magnetic susceptibility, 𝜒 , of
the MRE are obtained in terms of the magnetic properties of the par-
ticles, i.e. the saturation magnetization 𝑚s

𝚙
and magnetic susceptibility

𝜒𝚙, and their volume fraction 𝑐 as

𝑚s = 𝑐 𝑚s
𝚙

(43)

and

𝜒 =
3𝑐(𝜇𝚙 − 𝜇0)

(2 + 𝑐)𝜇0 + (1 − 𝑐)𝜇𝚙
with 𝜇𝚙 = (1 + 𝜒𝚙)𝜇0. (44)

In turn, the magneto-mechanical coupling energy density has itself
two contributions, i.e.,

𝛹𝚌𝚘𝚞𝚙𝚕𝚎(𝐽 , 𝐼5, 𝐼6) = 𝛹6(𝐽 , 𝐼6) − 𝛹5(𝐽 , 𝐼5) (45)

with

𝛹𝑖(𝐽 , 𝐼𝑖) = 𝛽1
(1 + 𝜒)(𝜇0𝑚s)2

2𝜇0𝜒
ln

[

1 +
4
∑

𝑞=1

1
𝑐

(

5
4

𝜒
1 + 𝜒

)𝑞+1

×
(

𝑐
𝛽2(𝜇0𝑚s)2

𝐼𝑖
𝐽 2

)𝑞
]

, 𝑖 = 5, 6. (46)

The parameters 𝛽1 and 𝛽2 are given by

𝛽1 =
16
25

𝜇2
0(1 + 𝜒)(𝜈 − (1 + 𝜒)𝜇0)
𝜈𝜇0 𝜒(3(1 + 𝜒)𝜇0 − 2𝜈)

𝛽2 (47)

and

𝛽2(𝐺∗
𝚖
, 𝑐) =

{

𝛼1(𝐺∗
𝚖
) − 𝛼2(𝐺∗

𝚖
)

[

𝑐 𝛼3(𝐺∗
𝚖
)
]

, if 𝐺∗
𝚖
≤ 0.1

0.4055 − 0.5𝑐
[

1 − 0.67(15𝐺∗
𝚖
)
]

otherwise
(48)

with

𝜈 = 𝜇0 +
3𝑐(10 + 2𝑐 + 3𝑐2)(𝜇𝚙 − 𝜇0)𝜇2

0

5[(2 + 𝑐)𝜇0 + (1 − 𝑐)𝜇𝚙]2

+
3𝑐(1 − 𝑐)(5 + 3𝑐)(𝜇𝚙 − 𝜇0)𝜇0𝜇𝚙

5[(2 + 𝑐)𝜇0 + (1 − 𝑐)𝜇𝚙]2
, (49)

𝛼1(𝐺∗
𝚖
) = exp

[

−0.029 ln𝐺∗
𝚖
− 0.982

]

, (50)

𝛼2(𝐺∗
𝚖
) = exp

[

1.78(−0.32 ln𝐺∗
𝚖
) − 1.78

]

, (51)

𝛼3(𝐺∗
𝚖
) = exp

[

0.14 − 0.54 ln𝐺∗
𝚖

]

. (52)

Therein, the dimensionless parameter 𝐺∗
𝚖

is defined as

𝐺∗ = 𝐺 ∕𝐺𝚛𝚎𝚏 with 𝐺𝚛𝚎𝚏 = 1MPa (53)

𝚖 𝚖 𝚖 𝚖

t

6

Table 1
Geometric parameters.

Description Symbol Range

Film height to total height ratio ℎ𝚏∕ℎ𝚝 1/50
Sub-film height ratio within the film ℎ𝚏,𝟸∕ℎ𝚏,𝟷 0–10

whereas  denotes the Langevin function

(𝑥) = 1
tanh(𝑥)

− 1
𝑥
. (54)

For completeness, we recall that 𝛽1 allows to obtain the same ini-
ial magnetostriction as that resulting from the homogenized, implicit
odel of Lefèvre et al. [36]. On the other hand, 𝛽2 is calibrated to
umerical three-dimensional RVE calculations subjected to uniaxial
agnetic fields and zero mechanical tractions.

Finally, the vacuum contribution is written as

𝚟𝚊𝚌(𝐽 , 𝐼5) =
1

2𝜇0𝐽
𝐂 ∶ (𝐁⊗ 𝐁). (55)

For the non-magnetic elastic materials, we simply use the same
odel as for the magneto-elastic ones but with particle volume fraction

et to 𝑐 = 0. This readily leads to 𝛹𝚖𝚊𝚐 = 𝛹𝚌𝚘𝚞𝚙𝚕𝚎 = 0 and to 𝛹𝚖𝚎𝚌𝚑

ecoming just a Neo-Hookean solid, whereas 𝛹𝚟𝚊𝚌 remains unchanged.
inally, as a result of the vanishing mechanical properties in air, 𝛹𝚟𝚊𝚌

s the only term that survives in free space.

emark 2. It should be pointed out here that the material parameters
1 and 𝛽2 (as well as the rest of the mechanical and magnetic param-
ters in this section) can be regarded as free parameters that may be
sed to calibrate a given experiment or numerical calculation where
o information is given about the volume fraction of the particles.
n this case, the proposed model becomes a purely phenomenological
odel, which, however, has a very simple structure and a rather small
umber of parameters that can be identified in a modular manner. For
nstance, one can identify the purely mechanical (such as the shear
odulus) and magnetic parameters (such as 𝜒 and 𝑚𝚜 from indepen-
ent mechanical and magnetic experiments. Subsequently, 𝛽1 can be
dentified separately from 𝛽2 from the initial quadratic response of the
agnetostriction, while 𝛽2 by probing the saturated magnetostriction.

.2. Material and geometric parameters

In this section, we present the family of the analyzed geometries and
escribe in detail the corresponding material and geometric parameters
hat are varied in the following results sections.
Geometric parameters. With reference to Fig. 2, we consider, in

eneral, a thin film and an underlying substrate occupying the domains
𝚏 and 𝚜, respectively. We note further that in the present study,

he substrate, unlike all previous studies in the literature, may also be
agnetic and thus described by the fully-coupled magneto-mechanical
odel for MREs presented in the previous Section 3.1. This case is
iscussed in Sections 5 and 6.

We denote the total height of the body ℎ𝚝, the film thickness ℎ𝚏,
hus implying that the height of the substrate is ℎ𝚜 = ℎ𝚝 − ℎ𝚏. The
elevant parameter of the problem is the ratio ℎ𝚏∕ℎ𝚝 since the layers
xtend to infinity in both 𝑋1-𝑋2 directions. Nonetheless, for the sake
f keeping the number of parameters tractable, we will focus only on
hin films and set ℎ𝚏∕ℎ𝚝 = 1∕50, as shown in Table 1. With regard
o this point, it is important to mention that we have also analyzed
ifferent thicknesses of the MRE layer ℎ𝚏, while keeping the total height
𝚝 constant. For ratios ℎ𝚏∕ℎ𝚝 ≤ 1∕10, we did not observe any significant
ffect as discussed in more detail in Appendix A.

Finally, in an effort to reduce the corresponding critical magnetic
ield required to attain the bifurcation, we consider two additional
eometries, as shown in Fig. 2, by splitting the top thin layer 𝚏 in

𝚏,𝟷 𝚏,𝟸
wo sub-films,  and  , and with different topologies, such that
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Table 2
Model parameters.

Description Symbol Range

Magnetic properties

Magnetic permeability of vacuum 𝜇0 (μN ⋅ A−2) 0.4𝜋
Magnetic susceptibility of particles 𝜒𝚙 30
Saturation magnetization of particles 𝜇0𝑚s

𝑝 (T) 2.5

Mechanical properties

Shear modulus of film 𝐺𝚏 (kPa) 10–100
Shear modulus of sub-film layer 1 𝐺𝚏,𝟷 (kPa) 10–15
Shear modulus of sub-film layer 2 𝐺𝚏,𝟸 (kPa) 3–20
Shear modulus of substrate 𝐺𝚜 (kPa) 1–5

Particle volume fractions

Particle volume fraction in the film 𝑐𝚏 0–0.2
Particle volume fraction in sub-film layers 𝑐𝚏,𝟷, 𝑐𝚏,𝟸 0–0.2
Particle volume fraction in the substrate 𝑐𝚜 0–0.2

𝚏 ≡ 𝚏,𝟷 ∪ 𝚏,𝟸. Again, in addition to the distribution of the two
sub-films, i.e., their topology, the remaining relevant parameter is the
ratio between their two corresponding heights, ℎ𝚏,𝟸∕ℎ𝚏,𝟷, as defined in
Table 1.

It is noted that throughout all examples, we employ free-space
domains with a height of at least 100ℎ𝚏 above and below .

Material Parameters. The material parameters used in the subse-
quent result sections, attempt to examine the effect of the mechanical
shear moduli ratios, such as 𝐺𝚜∕𝐺𝚏, as well as the magnetic response
contrast, mainly determined by the particle volume fraction in each
phase, e.g., 𝑐𝚜∕𝑐𝚏. The two sub-films as well as the substrate may
be magnetic or not and are always chosen to be mechanically stiffer
than the underlying substrate. The complete set and range of material
parameters considered in the present study are summarized in Table 2.

Remark 3. The nonlinear saturation model used in Eq. (41) does
not allow for a non-dimensionalization of the material ratios for the
bifurcation response of the film–substrate block, as we will see later
in the context of Fig. 6. Moreover, it is important to notice that the
magnetic bifurcation response is not only affected by the ratio of the
shear moduli but also by the relative contrast between the magnetic
properties of the layers as well as the contrast between the mechanical
and magnetic parts of the energies. This implies that one needs to
explore a very large range of parameters to have a complete picture of
the effects. That is practically impossible. Nevertheless, we performed
extensive studies which revealed a number of interesting effects but
also far too many individual results to discuss each in detail. Thus, in
the following sections, we focus on combinations of parameters that
revealed novel and interesting phenomena.

Remark 4. It is important to clarify here that in the definition of the
material model in Section 3.1 and particularly in Eqs. (40) and (53),
the underlying shear modulus is that of the polymeric matrix phase 𝐺𝚖.
Using then equation (40), one can readily recover the effective shear
modulus6 as [35]

𝐺 =
𝐺𝚖

(1 − 𝑐)5∕2
or 𝐺𝚖 = (1 − 𝑐)5∕2𝐺. (56)

Again, with reference to Table 2, we use 𝐺 ≡ 𝐺𝚏 to denote the effective
shear modulus of the film, 𝐺 ≡ 𝐺𝚜 for the substrate and so on. In
turn, we use the notation 𝐺𝚖 ≡ 𝐺𝚏

𝚖
to denote the shear modulus of the

matrix phase in the film, 𝐺𝚖 ≡ 𝐺𝚜
𝚖

to denote the shear modulus of the
matrix phase in the substrate. In the following studies, we may choose
to work either with the effective shear modulus 𝐺 or the shear modulus

6 The expression for the effective shear modulus is valid in the incompress-
ble limit. In our analysis, we use an sufficiently large second Lamé modulus
nd thus the result (56) holds to a very good approximation.
7

Table 3
Default parameters for the monolayer topology.

Parameter 𝐺𝚏 (kPa) 𝑐𝚏 (−) 𝐺𝚜 (kPa) 𝑐𝚜 (−) ℎ𝚏∕ℎ𝚝 (−)

Value 10 0.2 3 0 1∕50

of the underlying polymer matrix 𝐺𝚖. The first option is of a more
theoretical interest and relevant to the existing literature, whereas the
second option allows to address experimental design questions similar
to those in [6].

In the following sections, we discuss first the case of a single MRE
layer on a passive substrate in Section 4. Subsequently, in Section 5, we
add particles in the substrate while keeping a single MRE layer at the
top. We finish by generalizing our analysis to multi-layered structures
in Section 6. Therein, we also attempt to respond to the question on
how to minimize the critical magnetic field by varying the various
material parameters and topologies at small pre-compression.

4. Results: single MRE layer on a passive substrate

This section deals with the single MRE monolayer topology in Fig. 2
bonded to a passive, non-magnetic substrate. Thus, we use 𝐺𝚏 and 𝑐𝚏

o denote the overall shear modulus and the particle volume fraction
n the MRE film. The set of parameters used in this example is given
n Table 3. They represent the default values from which we deviate
ne-by-one in the parameter studies that follow. The values of these
arameters correspond to the experimental ones discussed in [1] and
re used as such in the following sections unless specified otherwise.
he main quantities of interest are the critical magnetic field 𝑏𝚌 and the
urrent wave vector 𝝎, which is the observable one in an experimental
etup, defined component-wise as

1 = 𝛺1∕𝜆1 and 𝜔2 = 𝛺2∕𝜆2. (57)

oreover, for sufficiently thin films (with respect to the substrate) it is
nown that 𝝎ℎ𝚏 is the proper dimensionless quantity. In what follows,
e will mainly discuss cases where the film is indeed sufficiently thin
nd thus employ ‖𝝎‖ℎ𝚏 to characterize unstable modes. In most results
hat follow, we show bifurcation diagrams of the critical magnetic field
𝚌 and the critical wave number amplitude ‖𝝎‖ℎ𝚏 as a function of the

applied pre-compression 𝜆1 for given values of 𝜆2.

4.1. Effect of biaxial pre-compression

We begin with the analysis of a single MRE layer bonded to a passive
substrate with material parameters as summarized in Table 3 that is
subjected to a general in-plane biaxial pre-compression as described by
the two pre-stretches 𝜆1 ≤ 1 and 𝜆2 ≤ 1 and a superposed transverse
magnetic field. Fig. 3 shows the critical magnetic field 𝑏𝚌 and the
imensionless wave number ‖𝝎‖ℎf as a function of the prescribed
tretches (𝜆1, 𝜆2). The dashed lines correspond to fixed values of 𝜆2,
hile reducing 𝜆1 from 𝜆1 = 1 up to the point of a purely mechanical

nstability, that is when 𝑏𝚌 = 0. A first observation in Fig. 3a is the
onotonic reduction of the critical magnetic field with increase of
re-compression (decrease of 𝜆1). More interestingly, we observe for
he first time that the critical magnetic field generally decreases by
ncreasing the pre-compression in the second direction (decrease of
2), i.e. biaxial pre-compression. For example, the entire bifurcation
urve for 𝜆2 = 0.85 occurs at much lower magnetic fields for all 𝜆1

as compared to that for 𝜆2 = 1.
A special curve in Fig. 3 is the solid red line marking the locus

of equi-biaxial applied strains. These states are of theoretical interest
because the direction of the wave vector is undetermined for this load
case (only the magnitude is determined) such that the actual pattern of
the instability can only be determined by exploring the post-bifurcation
regime [23]. In particular, we observe in Fig. 3a that the 𝑏𝚌 curves
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Fig. 3. Effect of biaxial pre-compression for a MRE monolayer film on a passive substrate. (a) Bifurcation diagram of the critical magnetic field 𝑏𝚌 and (b) critical wave number
‖𝝎‖ℎ𝚏 as a function of the stretch 𝜆1 for several values of the second stretch 𝜆2 (different colors). The solid (red) line depicts the locus of equi-biaxial states, i.e., 𝜆1 = 𝜆2. As
the bifurcation lines cross the solid line a sharp transition is observed. The symbols serve to denote a sinusoidal mode along 𝑋1 (𝜔2 = 0) or 𝑋2 (𝜔1 = 0) directions as explicitly
ketched in the insets. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 4. Effect of biaxial pre-compression for a MRE monolayer film on a passive substrate. Contour plots corresponding to (a) the bifurcation diagram of the critical magnetic
field 𝑏𝚌 and (b) the critical wave number ‖𝝎‖ℎ𝚏 as a function of the stretches 𝜆1 𝜆2. In both plots, the curvature of the contours is concentrated in the vicinity of the equi-biaxial
locus (red line). Note that due to a limited resolution of the 𝜆1-𝜆2 space, the local accuracy of the shown contours varies.
exhibit a kink when crossing an equi-biaxial state. Similarly, in Fig. 3b,
the equi-biaxial locus acts as a reflection for the amplitude of the wave
numbers, leading to a sharp transition as one goes from 𝜆1 > 𝜆2 to 𝜆1 <
𝜆2. We emphasize here that, as indicated by the insets, by traversing the
equi-biaxial locus, the actual wave vector changes direction: for 𝜆1 < 𝜆2
we always obtain 𝝎 = (𝜔1, 0), whereas the converse is true for 𝜆1 > 𝜆2.
This allows to plot both types of modes (𝜔1, 0) and (0, 𝜔2) in terms of the
mplitude ‖𝝎‖. The actual mode in action is indicated by the markers
nd the insets.

In order to have a more complete vision of the critical magnetic
ields and the corresponding wave vectors, we show, in Fig. 4, contour
lots of the iso-lines of 𝑏𝚌 and ‖𝝎‖ℎ𝚏, respectively, as functions of 𝜆1
nd 𝜆2. Interestingly, the contours of 𝑏𝚌 appear to be straight lines,
gain traversing the equi-biaxial case with a kink. While this is not
xactly the case for ‖𝝎‖ℎ𝚏, curvature is still concentrated in the vicinity
f the equi-biaxial line as can be seen in Fig. 4b.

We conclude the discussion of this first representative case with
ig. 5, where we plot 𝑏𝚌 over the components of 𝝎ℎ𝚏. This reveals
 r

8

clearly that in the special equi-biaxial case 𝜆1 = 𝜆2, 𝜔1ℎ𝚏 and 𝜔2ℎ𝚏

satisfy the equation of a circle, wherein the amplitude ‖𝝎‖ℎ𝚏 remains
constant, as shown by the dotted lines.

4.2. Effect of the shear modulus of film

In this section, we investigate the net effect of the shear modulus of
the film 𝐺𝚏 upon the magneto-mechanical bifurcation response of the
structure while keeping the ratio 𝐺𝚜∕𝐺𝚏 constant, i.e. 𝐺𝚜 changes with
𝐺𝚏. In turn, the effect of biaxiality remains similar to the discussion
done in Section 4.1 and thus we fix for simplicity 𝜆2 = 1. The values of
the shear moduli considered are given as7

𝐺𝚏 ∈ {10, 50, 100, 200, 500, 103, 5 × 103} kPa and 𝐺𝚜∕𝐺𝚏 = 0.3, (58)

7 Here we go beyond the range for 𝐺𝚏 and 𝐺𝚜 in Table 2 to reveal the full
ange of the effect of their absolute value.
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Fig. 5. Effect of biaxial pre-compression for a MRE monolayer film on a passive
ubstrate. A 3d line plot of the critical magnetic field 𝑏𝚌 over the normalized wave
umbers 𝜔1ℎ𝚏 and 𝜔2ℎ𝚏. The dotted line corresponds to the equi-biaxial loading for
hich there is no unique value for 𝝎 but 𝝎 instead fulfills the equation of a circle with
𝝎‖ = 𝜔𝚌.

hile keeping 𝑐𝚏 = 0.2. This implies that the magnetic properties of the
RE film do not change with 𝐺𝚏 but 𝐺𝚜 changes such that 𝐺𝚜∕𝐺𝚏 is
aintained. This leads to an identical critical bifurcation response in

he absence of a magnetic field, as easily observed in Fig. 6a, where
ll curves coincide for 𝑏𝚌 = 0. By contrast, in the same figure, we
bserve that the 𝑏𝚌 is strongly dependent upon the value of 𝐺𝚏, an
ffect that was missed in earlier studies (see for instance [5] which
tudied values in the order of 1MPa). Interestingly, we find that the
ritical magnetic field behaves as 𝑏𝚌 ∼

√

𝐺𝚏 for low values of 𝐺𝚏,
s clearly shown by the inset in the same figure, but deviates for
arger ones. The explanation derives from the fact that for large 𝐺𝚏 the

saturation response of the MRE film plays an important role leading to
this vertical asymptotic response of 𝑏𝚌. As can be seen from the inset
in Fig. 6b, the critical magnetization curves 𝑚𝚌 for 𝐺𝚏 ≥ 200 kPa reach
the saturation magnetization 𝑚s at finite pre-compressions 𝜆1 < 1. As a
consequence, no magneto-mechanical bifurcations can be obtained past
that saturation point. This leads to the steep increase of 𝑏𝚌 in part (a)
of this figure. Moreover, this nonlinear magnetization response breaks
down the scaling of 𝑏𝚌 with 𝐺𝚏 (see inset in Fig. 6a). The saturating
response does not affect significantly 𝑏𝚌 for lower 𝐺𝚏 < 200 kPa since
the bifurcation actually occurs at much lower magnetic fields.

On the other hand, in Fig. 6b, the critical wave vector amplitude is
fairly insensitive to the value of 𝐺𝚏 alone, while it is mostly affected
by the ratio 𝐺𝚜∕𝐺𝚏, as we will see in the next Section 4.3.

We note that the strong effect of 𝐺𝚏 upon the bifurcation response of
the film–substrate structure has significant implications on experiments
and on potential applications as a result of the very narrow range of
pre-compressions that affects 𝑏𝚌 for large 𝐺𝚏 > 500 kPa. In turn, for
ofter MRE films, the bifurcation response spans the entire range of
re-compressions leading to an important effect of 𝜆1 upon 𝑏𝚌.

We close this section by recalling that the work of Psarra et al. [6]
sed a MRE film of 𝐺𝚏 = 10 kPa and very similar values were obtained
xperimentally for the bifurcation response. This makes the present
tudy highly relevant for actual experimental design, even though no
ost-bifurcation response is resolved. This observation is mainly due
o the super-critical character of the post-bifurcation response in the
resent cases as discussed extensively in [1].

.3. Effect of substrate-to-film shear modulus ratio

In this section, we investigate the effect of mechanical stiffness ratio
𝚜 𝚏 𝚜
∕𝐺 upon the magneto-mechanical bifurcation response keeping 𝐺 l

9

ixed. For this, we consider the following values

𝚜∕𝐺𝚏 ∈ {0.1, 0.2, 0.3, 0.4} with 𝐺𝚜 = 3 kPa, (59)

keeping with 𝑐𝚏 = 0.2 (i.e. the magnetic properties of the film do
not change) and 𝜆2 = 1. The rest of the values are the ones defined
in Table 2. Also, we note that 𝐺𝚜∕𝐺𝚏 remains sufficiently below the
value of 0.575 beyond which the mechanical response tends to become
imperfection sensitive [48] and thus the practicality of the present
bifurcation analysis gradually breaks down since the post bifurcation
(real) response and pattern can be substantially different that predicted
by the bifurcation analysis discussed in Section 2.2. In Fig. 7a, we
observe as expected that over a wide range of pre-compressions, a lower
ratio 𝐺𝚜∕𝐺𝚏 yields a lower critical magnetic field 𝑏𝚌. This is easily
explained by observing that the purely mechanical instability (i.e., at
𝑏𝚌 = 0) occurs at lower pre-compressions (i.e. larger 𝜆1) for smaller
𝐺𝚜∕𝐺𝚏. In the purely mechanical case, the ratio of shear moduli alone
determines the bifurcation point in the 𝜆1 axis. By contrast, at smaller
pre-compressions, i.e. values of 𝜆1 > 0.95, the critical curves inter-
cross leading to a lower critical magnetic field 𝑏𝚌 for larger 𝐺𝚜∕𝐺𝚏.
Furthermore, in Fig. 7b we observe a significant effect of the shear
modulus ratio on the wave numbers ‖𝝎‖ℎ𝚏. In particular, a higher
𝐺𝚜∕𝐺𝚏 leads to a larger ‖𝝎‖ℎ𝚏. In practice, this implies a larger number
of wrinkles with increasing shear moduli ratio. Nonetheless, the range
of changes of the wave number for a given moduli ratio is quite limited.

4.4. Effect of magnetic properties via the particle volume fraction in the film

In this section, we examine the effect of the particle volume fraction
in the film, and consequently of its magnetic properties. For simplicity,
we set a value for the shear modulus of the underlying matrix phase of
the film, 𝐺𝚏

𝚖
and vary 𝑐𝚏. Thus, the key parameters are

𝑐𝚏 ∈ {0.1, 0.15, 0.2, 0.25}, 𝐺𝚏
𝚖
= 5.72 kPa. (60)

This value for 𝐺𝚏
𝚖

is obtained by use of relation (56) and motivated by
the experimental study of Psarra et al. [1], where the film modulus was
found to be 𝐺𝚏 = 10 kPa for 𝑐𝚏 = 0.2. Again, we keep 𝐺𝚜 = 3 kPa and
𝜆2 = 1.

Fig. 8a shows a significant effect of the particle volume fraction 𝑐𝚏

upon the critical magnetic field 𝑏𝚌. Specifically, increase of 𝑐𝚏 leads to
n overall decrease of both the critical magnetic field 𝑏𝚌 and the critical
re-compression at 𝑏𝚌 = 0. This is explained by the fact that increase
f 𝑐𝚏 leads to increase of the magnetic susceptibility 𝜒 of the MRE film
nd hence bifurcation appears at lower magnetic fields. The mechanical
tiffening effect resulting from the increase of 𝑐𝚏 is in turn counteracted
y the simultaneous decrease of 𝐺𝚜∕𝐺𝚏. The latter leads to a lower
ritical pre-compression in the purely mechanical case (i.e. 𝑏𝚌 = 0).

The corresponding results for the wave number in Fig. 8b are
ualitatively similar to the ones presented in the previous sections.
n particular, increase of 𝑐𝚏 leads to lower wave numbers (i.e. fewer
rinkles), whereas the range of changes of the wave number for a given
article volume fraction is quite limited.

Finally, in Fig. 8c, we show 𝑏𝚌 as a function of the particle volume
raction in the film 𝑐𝚏 for a fixed 𝜆1. The main result here is clear
eduction of 𝑏𝚌 with the increase of 𝑐𝚏. As expected, the lowest values
or 𝑏𝚌 occur for the highest pre-compression 𝜆1.

. Results: a single MRE layer on a MRE substrate

In this section we first highlight the effect of magnetic particles
n the substrate by varying their volume fraction 𝑐𝚜 for uniaxial pre-
ompression, i.e., 𝜆1 ≤ 1 and 𝜆2 = 1. Subsequently, we present two
elected cases that explore a large range of biaxial pre-compression

oading states with 𝜆1 ≤ 1 and 𝜆2 ≤ 1.
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Fig. 6. Effect of the shear modulus on the bifurcation behavior of a MRE monolayer film layer bonded on a passive substrate. While varying 𝐺𝚏, the ratio of moduli and the
particle volume fraction of the MRE film are set to 𝐺𝚜∕𝐺𝚏 = 0.3 and 𝑐𝚏 = 0.2, respectively. Bifurcation diagrams of (a) the critical magnetic field 𝑏𝚌 and (b) the critical wave
number ‖𝝎‖ℎ𝚏. The inset in (a) shows the critical field 𝑏𝚌 scaled with 1∕

√

𝐺𝚏. The inset in (b) depicts the normalized critical magnetization 𝑚𝚌∕𝑚s.

Fig. 7. Effect of the substrate-to-film shear modulus ratio on the bifurcation behavior of a MRE monolayer film layer bonded on a passive substrate. Bifurcation diagrams of (a)
the critical magnetic field 𝑏𝚌 and (b) the critical wave number ‖𝝎‖ℎ𝚏. The ratio of moduli has a significant effect on both the critical field 𝑏𝚌 and the corresponding wave numbers
‖𝝎‖ℎ𝚏.

Fig. 8. Effect of the particle volume fraction in the MRE layer on the bifurcation behavior. Bifurcation diagrams of (a) the critical magnetic field 𝑏𝚌 and (b) the critical wave
number ‖𝝎‖ℎ𝚏. (c) shows a cross-plot of 𝑏𝚌 as a function of the particle volume fraction 𝑐𝚏 for selected stretch states 𝜆1.

10
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Fig. 9. Effect of the substrate particle volume fraction for a MRE layer on a MRE substrate. While varying 𝑐𝚜, the parameters 𝐺𝚜 = 3 kPa, 𝐺𝚏 = 10 kPa and 𝑐𝚏 = 0.1 are fixed.
ifurcation diagrams for the critical magnetic field 𝑏𝚌 (a) and the critical wave vector amplitude ‖𝝎‖ℎ𝚏 (c). Subplot (b) depicts a cross-plot of 𝑏𝚌 as a function of the ratio of
olume fraction 𝑐𝚜∕𝑐𝚏 for several values of 𝜆1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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.1. Effect of particle volume fraction in the substrate

In this section, we add magnetic particles both in the substrate
nd the film at different volume fractions 𝑐𝚜 and 𝑐𝚏, respectively.
he addition of particles evidently changes both the mechanical and
agnetic properties of the film and substrate materials in a nonlinear
anner (see studies of Lopez-Pamies et al. [35], Keip and Rambausek

49], Danas [43], Lefèvre et al. [36]). Nonetheless, in order to keep
he analysis tractable, we decide to vary only 𝑐𝚜 and fix the rest of the
aterial properties as

𝚜 ∈ {0, 0.05, 0.1, 0.15, 0.2}, 𝑐𝚏 = 0.1, 𝐺𝚏 = 10 kPa, 𝐺𝚜 = 3 kPa, (61)

uch that 𝐺𝚜∕𝐺𝚏 = 0.3 independently of the variation of 𝑐𝚜. For this to
e achieved, one needs to change the shear modulus of the underlying
olymer matrix in the substrate 𝐺𝚜

𝚖
by using Eq. (56) accordingly. In

ractice, that can be achieved by changing the ingredients allowing the
olymerization of the matrix (see for instance [50]).

We commence our discussion with Fig. 9a and particularly the
urely mechanical bifurcation point corresponding to 𝑏𝚌 = 0 and
1 ≈ 0.78. Departing from that point, the increase of the magnetic
ield (for a fixed 𝜆1) stiffens the substrate material. The stiffening effect
s more significant with the increase of the particle concentration 𝑐𝚜

n the substrate due to its larger volume [43,49]. Note, in turn, that
he purple curve (see also inset) corresponding to 𝑐𝚜 = 0 leads to the
owest critical magnetic field 𝑏𝚌 near the purely mechanical bifurcation
egion. Nevertheless, for lower pre-compressions (i.e. larger 𝜆1) and
arger magnetic fields, the substrate with the highest volume fraction
𝚜 = 0.2 inter-crosses the rest of the curves, leading to the lowest 𝑏𝚌

mong all cases studied here. This effect is shown clearly in Fig. 9b,
here for a given value of 𝜆1, we show the cross-plot of 𝑏𝚌 as a function
f the ratio 𝑐𝚜∕𝑐𝚏 with 𝑐𝚏 = 0.1. Therein, we observe a non-monotonic
ehavior of 𝑏𝚌 at lower pre-compressions exhibiting a maximum that
oughly lies near 𝑐𝚜∕𝑐𝚏 ∼ 1. This implies that the more magnetic the
ubstrate is, the more unstable the structure becomes — especially at
ower pre-compressions.

In turn, Fig. 9c shows the corresponding wave numbers ‖𝝎‖ℎ𝚏 as
function of 𝜆1. For large 𝑐𝚜 where the substrate is more magnetic

han the film, a very low wave number ‖𝝎‖ℎ𝚏 < 0.1 is obtained
mplying a rather long-wavelength wrinkling mode. By contrast, when
he 𝑐𝚜∕𝑐𝚏 < 1, the wave number is very high implying significant
umber of wrinkles in the structure. This difference is shown in the
nset sinusoidal sketch for two such representative points indicated
irectly on the graph. An additional impressive result is the sharp
ncrease of ‖𝝎‖ℎ𝚏 for the cases 𝑐𝚜∕𝑐𝚏 ≥ 1. This simply suggests that, in
ractice, a small additional pre-compression can lead to a very sharp
ncrease of the number of wrinkles and a drop of 𝑏𝚌 in the structure
nd thus a pattern switching with marginal energy changes. Such an
11
ffect requires further studies in the post-bifurcation regime to test its
alidity in practical cases but even so it shows a promising mechanism
or pattern switching.

.2. Effect of biaxial pre-compression

In connection with the previous section, we investigate the effect
f biaxial pre-compression by varying 𝜆2 ≤ 1 for two cases; one where
𝚜 = 𝑐𝚏 = 0.2 in Fig. 10 and a second with 𝑐𝚜 = 0.2 and 𝑐𝚏 = 0.1 in
ig. 11. This allows to show a qualitative transition of the bifurcation
esponse obtained by considering a substrate that is more magnetic
han the film.

Specifically, Fig. 10a, corresponding to 𝑐𝚜 = 𝑐𝚏 = 0.2, shows a
eduction of the critical magnetic field 𝑏𝚌 with the increase of the
iaxial pre-compression, i.e., decrease of 𝜆2. This decrease is smooth
nd shows a concave character similar to the one for the passive
ubstrate, discussed in Fig. 3. It should be mentioned that the as one
rosses the equi-biaxial pre-compression regime (denoted with a thick
ontinuous line on the graph), 𝑏𝚌 curves show a sharp transition and
change of the direction of the wrinkling mode. This sharp transition

s more clear in Fig. 10b for the corresponding wave number ‖𝝎‖ℎ𝚏.
As already noted in the context of Fig. 5, for 𝜆1 = 𝜆2, the amplitude
of the wave number is defined but not the exact ratio. For that a post-
bifurcation analysis is required and is left for a future study. Finally,
we note that the change of the wave number and hence the number of
potential wrinkles in the specimen vary more significantly for 𝜆2 = 1
as a function of 𝜆1 than for 𝜆2 = 0.85.

By contrast, as shown in Fig. 11, as one decreases the particle
volume fraction of the film to 𝑐𝚏 = 0.1, while keeping that of the
substrate to 𝑐𝚜 = 0.2 (i.e. 𝑐𝚜∕𝑐𝚏 = 2), a qualitative difference is
observed both for the critical magnetic field 𝑏𝚌 and the corresponding
wave number ‖𝝎‖ℎ𝚏. In particular, from Fig. 11b, one may extract
two regimes; regime 𝐈 and 𝐈𝐈 delimiting the long and short wavelength
surface pattern response, respectively. The boundary separating those
two regimes is point-by-point transferred also to Fig. 11a showing the
critical magnetic field 𝑏𝚌.

As can be directly observed in Fig. 11a, the transition between
regime I (long wavelengths) and II (short wavelengths) only occurs
for critical fields 𝑏𝚌 ∼ 0.3 T, while it is not present for significant pre-
compression such as 𝜆2 = 0.8.8 Specifically, in regime I, we observe
a very low sensitivity of 𝑏𝚌 to 𝜆1 leading to a response that is mainly
governed by the magnetic properties of the film and substrate. Note that
a slight kink is still found for the bifurcation curves crossing the equi-
biaxial locus. In turn, regime II is characterized by an extremely sharp

8 One might reach regime I by allowing 𝜆1 > 1 but such loadings were not
considered in the present study to keep the analysis in contact with potentially
simple experimental setups.
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Fig. 10. Effect of biaxial precompression of a MRE monolayer film bonded to an equally magnetic but mechanically softer MRE substrate. The key parameters are 𝑐𝚜 = 𝑐𝚏 = 0.2,
𝐺𝚏 = 10 kPa and 𝐺𝚜 = 3 kPa. (a) Bifurcation diagram of the critical magnetic field 𝑏𝚌 and (b) the critical wave number amplitude ‖𝝎‖ℎ𝚏 as a function of the stretch 𝜆1 for several
values for 𝜆2. As the bifurcation lines cross the equi-biaxial locus (solid red line) one observes a kink in the graphs leading also to a change of direction of the critical modes as
indicated by the insets and the markers. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 11. Effect of biaxial precompression of a MRE monolayer film bonded to a magnetically dominant but mechanically softer MRE substrate. The key parameters are 𝑐𝚜 = 0.2 = 2𝑐𝚏,
𝐺𝚏 = 10 kPa and 𝐺𝚜 = 3 kPa. (a) Bifurcation diagram of the critical magnetic field 𝑏𝚌 and (b) the critical wave vector amplitude ‖𝝎‖ℎ𝚏 as a function of the stretch 𝜆1 for several
values for 𝜆2. The Roman numbers 𝐈 and 𝐈𝐈 denote a magnetically governed long-wavelength and a mechanically governed long-to-short wave-length regime. The markers for
𝜔1 = 0 and 𝜔2 = 0 indicate the respective direction of the critical mode.
increase of 𝑏𝚌 starting from the purely mechanical bifurcation point
for a given biaxial 𝜆1 − 𝜆2 pair. This sharp increase of 𝑏𝚌 implies that,
in an actual experiment operated near that regime, it is very difficult
to obtain wrinkling at low magnetic fields since one would need an
extremely precise control of the pre-compression device in this case.
Thus, in practice it might be favorable to operate an experiment near
the transition from I to II where the sensitivity of 𝑏𝚌 with respect to
the pre-compression is important. In this context we remark that the
curves for 𝜆2 ∈ [0.825, 0.9] exhibit the most tractable behavior.

Fig. 11b shows a number of interesting features for the correspond-
ing critical wave number ‖𝝎‖ℎ𝚏. First of all, regime 𝐈 corresponds
to wave numbers ‖𝝎‖ℎ𝚏 ∼ 0.05, which translates to wavelengths in
the order of 100ℎ𝚏, i.e. spanning the size of a typical specimen [6].
This regime is the magnetically dominated regime in connection with
Fig. 11a. The transition of ‖𝝎‖ℎ𝚏 to regime II is extremely sharp (almost
jumps) thus offering the possibility for pattern switching with only
minor changes in the applied pre-compression 𝜆1. The maximum values
of ‖𝝎‖ℎ𝚏 corresponding to the purely mechanical bifurcation response
12
reach values as high as ‖𝝎‖ℎ𝚏 = 0.8. This implies, in turn, that regime II
is dominated by the mechanical properties of the film/substrate block
and more specifically by the mechanical stiffness ratio 𝐺𝚜∕𝐺𝚏. With
the application of the magnetic field, ‖𝝎‖ℎ𝚏 evolves from the short
wavelength response to the long wavelength one in a rapid manner
leading to a parallel sharp increase of 𝑏𝚌 in Fig. 11a. The analysis of
the post-bifurcation response is expected to clarify further the physics
for such a ‘‘modulated’’ response. Even so, a precise control of 𝜆1,
albeit being a very difficult task as explained previously, can lead to
an interesting pattern switching with minimal energetic requirements.

6. Results: Multi-layered structures and data-mining for mini-
mization of critical magnetic field

In this section, we implement an extensive data-mining exercise in
an attempt to obtain combinations of structures that allow to reach a
minimum critical magnetic field 𝑏𝚌. It should be noted here that in
addition to the geometrical nonlinearities induced by the sinusoidal
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Fig. 12. Effect of biaxial pre-compression for a MRE bilayer film on a passive substrate with representative parameters 𝑐𝚏,𝟷 = 0.2, 𝑐𝚏,𝟸 = 0, ℎ𝚏,𝟸 = ℎ𝚏,𝟷, 𝐺𝚏,𝟷 = 15 kPa, 𝐺𝚏,𝟸 = 10 kPa,
𝐺𝚜 = 3 kPa and 𝑐𝚜 = 0. Bifurcation diagrams for (a) the critical magnetic field 𝑏𝚌 and (b) the critical wave number amplitude ‖𝝎‖ℎ𝚏 as a functions 𝜆1 for several values of 𝜆2. The
solid red line marks the locus of critical states for biaxial pre-compression, across which the direction of the critical mode changes as indicated by the insets and the markers.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
bifurcation modes, the magneto-mechanical response of the materials
under study is also nonlinear.

Specifically, we consider a film comprising two layers denoted with
suffixes ‘‘𝚏, 𝟷’’ and ‘‘𝚏, 𝟸’’ with two different topological settings; a
bilayer and a sandwich film, as shown in Fig. 2 and defined in Tables 1
and 2. With reference to this figure, we discuss first a representative bi-
layer film topology resting on a non-magnetic substrate. Subsequently,
we perform a large scan of several parameters such as the mechanical
shear moduli ratio 𝐺𝚏,𝟸∕𝐺𝚏,𝟷, 𝑐𝚏,𝟸∕𝑐𝚏,𝟷, ℎ𝚏,𝟸∕ℎ𝚏,𝟷 and 𝑐𝚏 together with
𝑐𝚜 and 𝐺𝚜 and all considered topologies, i.e., monolayer, bilayer and
sandwich film on a substrate.

6.1. Bilayer with one non-magnetic and slightly softer layer

In this section, for illustration purposes, we discuss the bilayer film
topology, introduced in Fig. 2, with 𝑐𝚏,𝟷 = 0.2 and 𝑐𝚏,𝟸∕𝑐𝚏,𝟷 = 0.0,
i.e., the second layer is non-magnetic. The overall shear moduli for
the individual layers are set to 𝐺𝚏,𝟷 = 15 kPa and 𝐺𝚏,𝟸 = 10 kPa. The
underlying substrate is non-magnetic (𝑐𝚜 = 0) and has a shear modulus
𝐺𝚜 = 3 kPa. We observe in Fig. 12a that the qualitative bifurcation
diagrams for 𝑏𝚌 are similar to those presented in the previous examples.
Rather interestingly, increase of pre-compression along 𝑋2 (i.e., smaller
𝜆2) leads to decrease of the critical magnetic field to fairly small values
of 𝑏𝚌 < 0.15 T for all 𝜆1. In turn, contrary to all previously studied
cases in this work, in Fig. 12b, we observe a reverse response of ‖𝝎‖ℎ𝚏.
Specifically, we observe that increase of the pre-compression (decrease
of 𝜆1), leads to decrease of the corresponding amplitude of the wave
number.

Furthermore, we point out that we conducted simulations of the
bilayer and monolayer topologies over a wide range of parameters.
Therein, we observe similar overall responses and transitions across the
equi-biaxial state as for the monolayer topology underlining their fun-
damental nature. The agreement between the bilayer and the sandwich
topologies for comparable set of parameters was found to be very close
leading to responses such as the one described in Fig. 12.

6.2. Minimizing the critical magnetic field for the case of only slight pre-
compression

This section presents a data-mining exercise with the goal of mini-
mizing the critical magnetic field 𝑏𝚌 by choice of the various topologies

and material parameters at hand. For this purpose, an extensive scan of
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Table 4
Range of parameters for the minimization of 𝑏𝚌.

Parameter Monolayer Bilayer/Sandwich

𝐺𝚏,𝟷 (kPa) 10 10
𝑐𝚏,𝟷 (−) 0.1–0.2 0.1–0.2
𝐺𝚜 (kPa) 1–3 1–3
𝑐𝚜 (−) 0–0.2 0
𝐺𝚏,𝟸 (kPa) – 6.7–13.3
𝑐𝚏,𝟸 (−) – 0–0.2
ℎ𝚏,𝟸∕ℎ𝚏,𝟷 (−) – 1/10–10

several geometric and model parameters is carried out. For tractability
of the results and given the observations in the previous subsection,
we focus on a single pair of stretches (𝜆1, 𝜆2) = (0.975, 1.0). The slight
bias in the biaxiality is enforced to avoid the special equi-biaxial case
and thus allowing for easier experimental reproduction, in silico or in
realitas.

The range of parameters considered is summarized in Table 4. The
magnetic parameters of the particles are kept at the same values as in
the previous sections (see also Table 2).

In the following, we first investigate the effect of each topology
upon the minimum critical magnetic field 𝑏𝚌 for a given set of param-
eters, whereby we keep 𝐺𝚏 = 𝐺𝚏,𝟷 = 10 kPa and 𝐺𝚜 = 3 kPa. After that,
we study the effect of reducing the shear modulus of the substrate to
𝐺𝚜 = 1 kPa, while still keeping 𝐺𝚏 = 𝐺𝚏,𝟷 = 10 kPa.

Fig. 13 shows collective data for a given passive substrate material
with 𝐺𝚜 = 3 kPa.

In the case of the monolayer MRE film, we also vary the particle
volume fraction in the substrate 𝑐𝚜, whereas for the bilayer and sand-
wich films we set 𝑐𝚜 = 0 but instead vary 𝑐𝚏,𝟸, i.e. the particle volume
fraction of the second film phase. Thereby, we excluded the results for
equally magnetic layers, which closely resemble the monolayer case.
The scatter of 𝑏𝚌 in Fig. 13 is extremely wide (ranging from values be-
tween 0.26 T to 0.85 T) and demonstrates that several other parameters
significantly affect the critical loads for bifurcation. In particular, we
observe that certain combinations of parameters lead to a minimal criti-
cal field. Interestingly, all topologies yield practically identical minimal
values near 𝑏𝚌 ≈ 0.26 T. In Table 5, we report the parameter sets leading
to a minimum 𝑏𝚌 for all three topologies, e.g., monolayer, bilayer and
sandwich. By close observation, we can observe that all three topologies
are able to provide the smallest obtained critical magnetic field. It
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Fig. 13. Minimizing the critical field 𝑏𝚌 for mono- and multilayer MRE films. The plot
shows a wide range of results which is caused by the many possible combination of
parameters.

Table 5
Parameter sets for minimal critical field 𝑏𝚌 at (𝜆1 , 𝜆2) = (0.975, 1.0) for 𝐺𝚜 = 3 kPa.

Monolayer with 𝐺𝚏 = 10 kPa and 𝐺𝚜 = 3 kPa

𝑏𝚌 (T) ‖𝝎‖ℎ𝚏 𝑐𝚜 (−) 𝑐𝚏 (−)

0.256 0.72 0 0.2
0.291 0.71 0.05 0.2
0.323 0.67 0.1 0.2
0.347 0.32 0.2 0.2
0.348 0.58 0.15 0.2

Bilayer with 𝐺𝚏,𝟷 = 10 kPa, 𝐺𝚜 = 3 kPa and 𝑐𝚜 = 0

𝑏𝚌 (T) ‖𝝎‖ℎ𝚏 𝑐𝚏,𝟷 (−) 𝐺𝚏,𝟸 (kPa) 𝑐𝚏,𝟸 (−) ℎ𝚏,𝟸∕ℎ𝚏,𝟷 (−)

0.259 0.76 0.2 6.7 0 0.1
0.261 0.74 0.2 6.7 0.1 0.1
0.261 0.77 0.1 6.7 0.2 10
0.263 0.77 0.2 13.3 0 0.1
0.263 0.80 0.2 6.7 0 0.2

Sandwich with 𝐺𝚏,𝟷 = 10 kPa, 𝐺𝚜 = 3 kPa and 𝑐𝚜 = 0

𝑏𝚌 (T) ‖𝝎‖ℎ𝚏 𝑐𝚏,𝟷 (−) 𝐺𝚏,𝟸 (kPa) 𝑐𝚏,𝟸 (−) ℎ𝚏,𝟸∕ℎ𝚏,𝟷 (−)

0.261 0.77 0.1 6.7 0.2 10
0.261 0.76 0.2 6.7 0 0.1
0.262 0.74 0.2 13.3 0 0.1
0.263 0.73 0.2 6.7 0.1 0.1
0.263 0.72 0.2 13.3 0.1 0.1

is, nonetheless, very difficult to extract a general rule of thumb for
reaching such a low value. As we see for example in Table 5 for the
sandwich topology, an interchange of particle volume fraction in the
two layers forming the sandwich leads to similar responses.

Remarkably, all of these nearly optimal cases closely resemble the
optimal monolayer structure, i.e., there is no substantial benefit by the
use of multilayer films. In turn, we conclude that the film must be
as magnetic as possible. As a result, the best performing multilayer
topologies are those where the magnetically dominant layer almost
completely covers the total volume of the film. This observation in-
creases the relevance of the parameter studies for monolayer films
in Section 4, which render fairly general guidelines for optimizing
the critical field. The data for the monolayer case in Table 5 fur-
thermore documents that structures with a magnetic substrate do not
reach optimal results in terms of 𝑏𝚌. A similar observation is also true
for the bilayer and sandwich topologies and thus 𝑐𝚜 = 0 in those
cases. On the other hand, a magnetic substrate gives several other
interesting effects such as pattern switching and for a large range of
pre-compressions mechanically independent response, as discussed in
the previous sections.
 a
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Fig. 14. Effect of shear modulus of the substrate for mono- and multilayer MRE films.
The drop of shear modulus translates into a drop of the minimal critical field 𝑏𝚌 from
0.26 to 0.15 T.

able 6
arameter sets for minimal critical field 𝑏𝚌 at (𝜆1 , 𝜆2) = (0.975, 1.0) for 𝐺𝚜 = 1 kPa.
Monolayer with 𝐺𝚏 = 10 kPa and 𝐺𝚜 = 1 kPa

𝑏𝚌 (T) ‖𝝎‖ℎ𝚏 𝑐𝚜 (−) 𝑐𝚏 (−)

0.151 0.55 0 0.2
0.172 0.55 0.05 0.2
0.184 0.32 0.2 0.2
0.190 0.52 0.1 0.2
0.195 0.06 0.2 0.1

Bilayer with 𝐺𝚏,𝟷 = 10 kPa, 𝐺𝚏,𝟸 = 3 kPa, 𝐺𝚜 = 1 kPa and 𝑐𝚜 = 0

𝑏𝚌 (T) ‖𝝎‖ℎ𝚏 𝑐𝚏,𝟷 (−) 𝑐𝚏,𝟸 (−) ℎ𝚏,𝟸∕ℎ𝚏,𝟷 (−)

0.153 0.60 0.2 0 0.1
0.153 0.59 0.2 0.1 0.1
0.155 0.63 0.2 0 0.2
0.155 0.61 0.2 0.1 0.2
0.155 0.69 0.1 0.2 10

Sandwich with 𝐺𝚏,𝟷 = 10 kPa, 𝐺𝚏,𝟸 = 3 kPa, 𝐺𝚜 = 1 kPa and 𝑐𝚜 = 0

𝑏𝚌 (T) ‖𝝎‖ℎ𝚏 𝑐𝚏,𝟷 (−) 𝑐𝚏,𝟸 (−) ℎ𝚏,𝟸∕ℎ𝚏,𝟷 (−)

0.155 0.59 0.2 0 0.1
0.156 0.57 0.2 0.1 0.1
0.156 0.67 0.1 0.2 10
0.160 0.61 0.2 0 0.2
0.160 0.59 0.2 0.1 0.2

Fig. 14 discusses the effect of the substrate shear modulus 𝐺𝚜,
which is found to have a decisive effect upon 𝑏𝚌 irrespective of other
parameters.9

As expected, decrease of 𝐺𝚜 leads to decrease of 𝑏𝚌 from 0.26 to
0.15 T as well as of ‖𝝎‖ℎ𝚏 (see Table 6 and compare with Table 5). The
best performing sets of parameters per film topology are summarized
in Table 6.

It is mentioned here that we have deviated from the parameters in
Table 4 by setting 𝐺𝚏,𝟸 = 3 kPa in expectation of additional effects.
Surprisingly, this change does not have any significant influence on
computed 𝑏𝚌 compared with that for 𝐺𝚏,𝟸 = 6.7 to 13.3 kPa. However,
what can be observed is a more pronounced difference in the wave
numbers in the order of 10% between cases where ℎ𝚏,𝟸∕ℎ𝚏,𝟷 < 1 and
cases where ℎ𝚏,𝟸∕ℎ𝚏,𝟷 > 1.

9 This effect is related to those discussed in Figs. 6 and 7, where the latter
lso discussed the ratio 𝐺𝚜∕𝐺𝚏 with 𝐺𝚜.



M. Rambausek and K. Danas International Journal of Non-Linear Mechanics 128 (2021) 103608

a
w
m
f
n
o
t
b
s
s
b
T
u
e

f
a
m
v
m
t
t
o
l
c
t
o

o
i
m
a
o
f
s

d
m
t
r
c
f
t
c
o
e
w
a
s
o
i

o
t
a
e
d
e
t
t
l
p
m
v
a
i
w

d
c
l
a
I
n
f
r

C

S
i

D

c
i

A

R
r
M
b

7. Conclusion

In this work we investigate the stability, or loss of stability, of single-
and multilayer magnetorheological elastomer (MRE) films bonded to
soft passive or MRE substrates. The magnetic properties of the layers
and the substrate are varied with the aid of a recently proposed explicit,
analytical, homogenization-guided constitutive model for MREs [34],
which includes explicitly the particle volume fraction as a continuum
parameter. In turn, the boundary value problem considers layers that
are infinite in the in-plane directions. This allows using a finite element
discretization in the out-of-plane direction combined with a classical
Fourier-approach in the lateral directions for the determination of the
sought critical states. It is important to mention that the finite element
approach is versatile and very accurate in the present context allowing
to deal with a multitude of various multi-layer-type topologies in a very
convenient manner. For instance, by simply changing the discretization
and the material properties in each layer, the analysis is readily carried
out since mechanical and magnetic continuity is treated in a straightfor-
ward manner by the finite element formalism. This allowed us to carry
out a very large number of calculations and examine various multilayer
topologies with varying material properties. As a result, a data-mining
exercise has led to optimal critical magnetic fields for all topologies
considered.

In the first set of examples, we discuss a representative MRE layer on
a soft passive (i.e. non-magnetic) substrate under general biaxial pre-
compression states. Specifically, we find that biaxial pre-compression
leads to a significant reduction of the critical magnetic field when
compared to that for uni-axial pre-compression. Moreover, we observe
a sharp transition in the bifurcation response – both in the critical
magnetic field and corresponding amplitude of the wave numbers –
by crossing the purely equi-biaxial stretch state. This transition leads
lso to a change of the direction of the wave vector. In the sequence,
e explore the effect of the various material parameters such as the
echanical stiffness of the film and substrate as well as the volume

raction of the magnetic particles in the film leading to different mag-
etic properties. Specifically, we show that the mechanical stiffness
f the film alone (as this is described by the shear modulus due to
he considered quasi-incompressibility) has significant effects on the
ifurcation response. Specifically, as the film becomes mechanically
tiffer, the range of pre-compressions that enable an unstable response
hrinks to a very narrow band lying very close to the mechanical
ifurcation. This effect has been missed in the study of Danas and
riantafyllidis [5] and simply indicates that softer films such as the one
sed in [1] have a very wide range of unstable response which can be
fficiently modulated by the applied pre-compressions.

Another key result is the characterization of the effect of the volume
raction of magnetic particles contained in the MRE film, since they
ffect strongly the magnetic properties of the film as well as the
echanical ones. Specifically, we find that increase of the particle

olume fraction in the film leads to a monotonic decrease of the critical
agnetic field for all pre-compressions applied in this work (at least up

o volume fractions examined, i.e., 40vol% but only 25vol% shown in
he present study). This implies that the parallel increase in stiffness
f the film with the addition of more particles, which would otherwise
ead to increase of the critical magnetic field, is not sufficient to over-
ome the significant increase of magnetic susceptibility. In addition,
his decrease of the critical magnetic field is accompanied by a decrease
f the corresponding wave number.

The second set of results investigates for the first time the influence
f a magnetic substrate at the same time with a magnetic film. This
s achieved by varying the magnetic particle volume fraction in those
aterials allowing for a relative effect of the corresponding mechanical

nd magnetic responses. We find for instance, that a maximum value
f the critical magnetic field is obtained when the particle volume
raction in the film and the substrate is fairly equal, while the film is
till three to four times stiffer mechanically than the substrate. More
15
interestingly, we observe a very strong effect of the substrate particle
volume fraction on the critical magnetic fields and wave numbers that
was not observed for any other parameter before. For a magnetically
ominant substrate, one could clearly distinguish a mechanically and
agnetically governed regime both in the critical magnetic field and

he corresponding wave numbers. Within the mechanically governed
egime, the critical magnetic field is very sensitive to the level of pre-
ompression, whereas in the magnetically governed regime, the critical
ield is, in comparison, almost independent of the pre-compression. The
ransition between the two regimes is accompanied with very sharp
hanges (almost a jump) in the wave numbers within a small range
f pre-compression. The quantitative changes in the wave numbers are
xtremely pronounced spanning very long wavelength to very short
avelength response of the surface pattern. This last effect could be
possible candidate mechanism for magneto-mechanical surface-pattern
witching with minimal energy input. Nonetheless, a very precise design
f the magneto-mechanical device is required to control accurately the
mposed magnetic loads and pre-compression.

The third and final set of results is concerned with the optimization
f the critical magnetic field for given pre-stretches and for three different
opologies, e.g., a monolayer, a bilayer and a sandwich film bonded to
substrate (see Fig. 2 for a graphical representation). The optimization

xercise is achieved in terms of a data-mining exercise allowing to
eal with both the geometrical nonlinearities due to the sinusoidal
igenmodes as well as the nonlinear magneto-mechanical response of
he constituents. For the cases investigated, we find as a main result
hat the minimum critical field is obtained for single-layer and single-
ayer-type topologies. In connection with this, a large number of key
arameters is varied allowing to show that a very large range of critical
agnetic fields can be reached by arbitrarily changing the particle

olume fraction in the film, the mechanical stiffness of the constituents,
s well as the various topologies of the layers inside the film. Also, it
s shown that an intuitive approach to the problem cannot lead to a
ell-designed experimental device for surface patterning.

From a more general perspective, many of the multilayer structures
iscussed in the present study might exhibit interesting features at some
ritical state and in particular in the post bifurcation regime. Nonethe-
ess, the very large number of geometric and material parameters makes

full post-bifurcation numerical or experimental study prohibitive.
n turn, the present bifurcation results allow to select interesting and
on-intuitive cases for further investigations and prepare the ground
or experimental and numerical studies exploring the post-bifurcation
egime.
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Fig. A.15. Effect of the relative film thickness on the bifurcation behavior for mono- and multilayer MRE films bonded onto a passive substrate. The reference thickness for the
monolayer is the total height of the film–substrate structure, that is ℎf. For the multiphase films we employ thickness of film itself as reference. The parameters for the monolayer
film are 𝐺f = 10 kPa, 𝑐f = 0.2. For the bilayer and the sandwich films we have 𝐺f,1 = 10 kPa, 𝐺f,2 = 3 kPa and 𝐺s = 1 kPa.
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Appendix A. Effect of film thickness for single- and multilayer
topologies

We know from the literature in the purely mechanical response of
a film/substrate system, that, given a substrate that is much thicker
than the film, the actual film thickness does not affect the bifurcation
behavior. This is the reason why we have mainly focused on thin films
in the main part of the study. For completeness, however, we provide in
this appendix a small study where we increase the film thickness up to
values similar to the thickness of the substrate as shown in Fig. A.15a.
We study a similar effect in the context films with bilayer and sandwich
structure, as shown in Fig. A.15b and c, respectively.

We emphasize that in Fig. A.15 the reference thickness for the
monolayer is the total height of the film–substrate structure, that is ℎ𝚏,
whereas for multilayer films (see Fig. 2) the total film thickness serves
as a reference. The choices of the shear moduli for the monolayer are
𝐺𝚏 = 10 kPa and 𝐺𝚜 = 3 kPa, while we for the multilayer cases employ
𝐺𝚏,𝟷 = 10 kPa, 𝐺𝚏,𝟸 = 3 kPa and 𝐺𝚜 = 1 kPa. By virtue of these values,
a very thin film phase ‘‘1’’ (ℎ𝚏,𝟸∕ℎ𝚏,𝟷 ≫ 1 ⇔ ℎ𝚏,𝟷∕ℎ𝚏 ≪ 1) corresponds
to the monolayer setting because in that case the substrate does not
play a role any more. Conversely, if the thickness of the monolayer
increases, the rigid vertical support of the substrate acts against the
vertical displacement of the magnetic layer and thus increases the
critical magnetic field. Another interesting observation in Fig. A.15 is
that a slightly magnetic substrate increases the critical magnetic field.
Furthermore, a magnetic second film phase decreases 𝑏𝚌 when ℎ𝚏,𝟸∕ℎ𝚏,𝟷

is significant. This can be explained by the corresponding increase of
the effective magnetic properties of the multilayer films. This is in
agreement with Fig. 13, where we show different sets of parameters
yielding a critical field 𝑏𝚌 close to the best minimum obtained.

Appendix B. Scanning for critical states

In this section, we detail the procedures employed for finding
the critical bifurcation states. At the very heart of the procedure is
the computation of the minimal eigenvalue of 𝐊 (see (34)). For this
peration, we use the iterative eigenvalue solver package ARPACK [51]

provided by scipy [52]. Since we aim for eigenvalues close to zero, we
let ARPACK compute the ten smallest eigenvalues10 using a shift-invert
pectral transform in ‘‘normal’’ mode and shift parameter 𝜎 = 0. From

these, we then select the smallest eigenvalue denoted 𝛬min(Ω, 𝑏∞, 𝜆1,
2) and by that (approximately) solve the inner minimization problem
n (34).

10 Computing the ten eigenvalues closest to zero turns out to be a good
ompromise between the computational effort and the probability of missing
ny negative eigenvalue. Given that we usually start from a stable state and
terate towards loss of stability, this issue is not of major concern.
16
The boundary conditions of the discretized fields in the eigenvalue
problem are essentially the same as for the continuous problem (15)
with some minor differences. Specifically, due to the finite extent of
the domain in the 𝑋3, we have

𝛥𝝋ℎ(𝐗) = 𝟎 𝑋3 for 𝑋3 ∉ ( ∪ 𝜕) (B.1a)

nd

𝐀ℎ(𝐗) = 0 for 𝑋3 = 𝑋min
3 ∨ 𝑋3 = 𝑋max

3 (B.1b)

hich can be applied on the actual finite element degrees of freedom in
direct manner. Note that due to the orthogonality of the trigonometric

unctions, these conditions have to be fulfilled per mode. Thus, they are
pplied in the eigenvalue problem of (34) for each Ω. In addition, we
emove the coefficients of the zero-modes similar to the corresponding
roblems with reduced dimensionality, i.e.,

𝜑̌𝑖 = 0 if 𝜔𝑖 = 0 (B.2)

and

𝛥𝐴̌𝑗 = 𝛥𝐴̌𝑘 = 0 if 𝜔𝑖 = 0 (𝑖 ≠ 𝑗 ≠ 𝑘). (B.3)

Moreover, since sin(0) = 0, we set the sin-coefficients 𝛥𝐀̂s(𝟎) = 𝛥𝝋̂s(𝟎) =
0. For 𝜔1 → 0 or 𝜔2 → 0, we face the problem that the system becomes
umerically under-constrained. This particular case corresponds to very
arge wavelengths (quasi-rigid modes) and are excluded from the do-
ain of admissible Ω since they lead to numerically singular systems

or sufficiently small ‖Ω‖. Since arbitrarily long (but not infinite)
avelength modes are not of practical interest in the present study their
xclusion does affect the present results. An example of such a case is
he vanishing mechanical stiffness of the substrate phase. In [5], this
ase is shown to lead to a zero critical magnetic field and zero wave
umber. Such limiting theoretical cases are not studied in the present
tudy. Instead, minor modifications in the present problem can readily
llow their investigation.

The next step is to minimize the smallest eigenvalues 𝛬min(Ω, 𝑏∞,
𝜆1, 𝜆2) over the entire domain of Ω. This is a delicate problem since
we expect several local minima and thus have to do global optimization
in two dimensions in general. However, for the purely mechanical case
and not too complicated materials11 general (𝛺1, 𝛺2) are only expected
nder equi-biaxial loading, i.e. when 𝜆1 = 𝜆2. Moreover, in this case
here is a set of solutions for Ω which forms a circle ‖Ω‖ = const [18].
n the other hand, if 𝜆1 < 𝜆2 ≤ 1, then Ω = (𝛺1, 0) and vice versa. In

uch a setting, the search for Ω is only in one dimension. However, it
s not cautious to extend this by assumption to the case of MREs under
agneto-mechanical loading. Therefore, we employ the ‘‘Simplicial
omology Global Optimization’’ (SHGO) algorithm [54] included in

11 Under special conditions this does not hold [53].
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Algorithm 1: Scanning and high-level solution strategy
Data: The routines find_crit_b (see Algorithm 2) and find_crit_𝜆1 (analogous to find_crit_b)
Data: The sets 𝜆1 and 𝜆2

Data: The domains 𝛺1 and 𝛺2

Data: The upper bound 𝑏max on 𝑏
Data: Tolerance for critical eigenvalue 𝑡𝑜𝑙𝛬
Result: The set of critical states found 𝚌

1 𝚌 ← ∅
2 𝑏eq ← 𝑏max

3 foreach 𝜆2 ∈ 𝜆2 do
4 𝑏 ← [0,min(2𝑏eq, 𝑏max)]
5 foreach 𝜆1 ∈ 𝜆1 do
6  ← find_crit_b(𝜆1, 𝜆2,𝑏,𝛺2 ,𝛺2 , 𝑡𝑜𝑙𝛬)
7 if  = 𝑁𝑖𝑙 then break
8 (𝑏𝚌, 𝛺𝚌

1 , 𝛺
𝚌

2 ) ← 
9 if ‖𝛬(Ω𝚌, 𝑏𝚌, 𝜆1, 𝜆2)‖ < 𝑡𝑜𝑙𝛬 then
10 // Case of totally valid result
11 𝚌 ← 𝚌 ∪ {(𝑏𝚌, 𝜆1, 𝜆2, 𝛺𝚌

1 , 𝛺
𝚌

2 )}
12 𝑏 ← [0,min(2𝑏𝚌,max(𝑏))]
13 if 𝜆1 = 𝜆2 then 𝑏eq ← 𝑏𝚌

14 else
15 // Case of unstable lower bound of 𝑏

16 𝜆1 ← [𝜆1, 𝜆2]
17 foreach 𝑏 ∈ {0, 0.1max(𝑏),… , 0.4max(𝑏)} do
18  ← find_crit_𝜆1(𝑏, 𝜆2,𝜆1 ,𝛺1 ,𝛺2 , 𝑡𝑜𝑙𝛬)
19 if  = 𝑁𝑖𝑙 then break
20 (𝜆𝚌1 , 𝛺

𝚌

1 , 𝛺
𝚌

2 ) ← 
21 if ‖𝛬(Ω𝚌, 𝑏, 𝜆𝚌1 , 𝜆2)‖ > 𝑡𝑜𝑙𝛬 then continue // skip invalid result
22 𝚌 ← 𝚌 ∪ {(𝑏, 𝜆𝚌1 , 𝜆2, 𝛺

𝚌

1 , 𝛺
𝚌

2 )}
23 𝜆1 ← [𝜆𝚌1 , 𝜆2]
24 end
25 end
26 end
27 end
scipy for two-dimensional but also one-dimensional searches for Ω.
In both cases we opt for a sampling via Sobol sequences [55] with 20
points by default for minimization in two dimensions (Ω) and 40 points
for minimization in one dimension (𝛺1 or 𝛺2).

We remark that finding the global optimum with the SHGO basically
depends on the sampling of the function that is minimized. In a number
of tests we found that 20 or 40, respectively, Sobol points offer a good
compromise between computational cost and probability in finding
the global optimum. Another possibility is to employ the simplicial
sampling of SHGO combined with a sufficient number of refinements
of the initial sampling. For our test cases, four sampling iterations
lead to sufficient performance. However, a fifth iteration significantly
increased the computational effort without changing results. Interest-
ingly, the global optimization in two dimensions often lead to a better
performance even if the actual solution is the same as for the one-
dimensional search. One possible reason for this is that two local
minima in one dimension could actually be connected in the plane such
that less global sampling points are needed right from the beginning.
As an internal (local) solver we used ‘‘COBYLA’’ to which we passed
on the bounds given to SHGO. Tolerances were set to 1 × 10−8. The
results of this ‘‘second’’ minimization shall be denoted Ωmin(𝑏∞, 𝜆1, 𝜆2)
and 𝛬̄min(𝑏∞, 𝜆1, 𝜆2) = 𝛬min(Ωmin(𝑏∞, 𝜆1, 𝜆2), 𝑏∞, 𝜆1, 𝜆2).

Being in possession of a procedure yielding {Ωmin(𝑏∞, 𝜆1, 𝜆2), 𝛬̄min

(𝑏∞, 𝜆1, 𝜆2)}, we either choose {𝜆1, 𝜆2} and search for 𝑏∞ or choose
{𝑏∞, 𝜆𝑖} and search for 𝜆𝑗 such that 𝛬̄min = 0 by scipy’s ‘‘brentq’’
root-finding algorithm, which is a modified version of the classical
method [56]. In both cases the result is a critical state (𝑏𝚌, 𝜆𝚌1 , 𝜆

𝚌

2). Also
for this algorithm, we set all tolerances to 1 × 10−8, whereby our tests
17
cases have not been sensitive to the precise values of these tolerances.
Algorithm 1 summarizes the high-level scanning and solution strategy.

We close this section with some remarks concerning the scanning
procedure:

• For the two-dimensional search with SHGO we work in the log-
arithmic frequency space. This leads to better sampling of the
search domain. Otherwise, the range of reasonably small fre-
quencies is tendentiously undersampled. By contrast, we did not
observe significant differences between standard and logarith-
mic search in one dimension. This is probably caused by larger
number of sampling points required in this case.

• In case of unexpected results, e.g., a detected change in sign of
𝛬min but 𝛬̄min > 𝑡𝑜𝑙𝛬, we repeat the procedure with an increased
number of global sampling points in SHGO. This is a quite heuris-
tic but nonetheless simple and efficient implementation detail and
thus is not reflected in any line of the Algorithm 1 or Algorithm
2.

• As another implementation detail, we perform additional checks
for possibly missed instabilities. For this purpose, we compute
𝛬̄min for four equidistant ‘‘check points’’ within the search interval
for 𝑏𝚌 or 𝜆𝚌1, respectively. In case of a negative 𝛬̄min the search for
the critical load is repeated with new bounds derived from these
‘‘check points’’. Again, we did not analyze further the necessity of
these checks in our production runs.

• Both Algorithm 1 and Algorithm 2 are independent of our choice
for SHGO and brentq.
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A

𝑏

Algorithm 2: Routine for finding the critical applied magnetic field.
Data: The number of sub-intervals 𝑛

1 Function find_crit_b(𝜆1, 𝜆2,𝑏,𝛺1 ,𝛺2 , 𝑡𝑜𝑙𝛬)
2 𝛥𝑏 ← [max(𝑏) − min(𝑏)]∕𝑛
3 Ω ← 𝛺1 × 𝛺2

4 // Check lower bound of 𝑏 (four cases)
5 if 𝛬((0, 0),min(𝑏), 𝜆1, 𝜆2) < 0 then return (min(𝑏), 0, 0)
6

7 𝛺pre
1 ← arg min

𝛺1∈𝛺1
𝛬((𝛺1, 0),min(𝑏), 𝜆1, 𝜆2)

8 if 𝛬((𝛺pre
1 , 0),min(𝑏), 𝜆1, 𝜆2) < 0 then return (min(𝑏), 𝛺pre

1 , 0)
9

10 𝛺pre
2 ← arg min

𝛺2∈𝛺2
𝛬((0, 𝛺2),min(𝑏), 𝜆1, 𝜆2)

11 if 𝛬((0, 𝛺pre
2 ),min(𝑏), 𝜆1, 𝜆2) < 0 then return (min(𝑏), 0, 𝛺pre

2 )
12

13 Ωpre ← arg min
Ω∈Ω

𝛬(Ω,min(𝑏), 𝜆1, 𝜆2)

14 if 𝛬(Ωpre,min(𝑏), 𝜆1, 𝜆2) < 0 then return (min(𝑏), 𝛺pre
1 , 𝛺pre

2 )
15

16 // Find critical states. Split interval in danger of missing unstable states.
17 foreach 𝑖 ∈ {1, 𝑛} do
18  ← 𝑁𝑖𝑙
19 𝛤 𝑏 ← [min(𝑏) + (𝑛 − 1)𝛥𝑏,min(𝑏) + 𝑛 𝛥𝑏]

20 𝑏c,0 ← arg
{

sol
𝑏∈𝛤 𝑏

{𝛬((0, 0), 𝑏, 𝜆1, 𝜆2) = 0}
}

21 if 𝑏c,0 ∈ 𝛤 𝑏 ∧ ‖𝛬((0, 0), 𝑏c,0, 𝜆1, 𝜆2)‖ ≤ 𝑡𝑜𝑙𝛬 then
22  ← (𝑏c,0, 0, 0)
23 𝛤 𝑏 ← [min(𝑏) + (𝑛 − 1)𝛥𝑏, 𝑏c,0]
24 end

25 (𝑏c,_,Ωc,_) ← arg[𝑏,Ω]
{

sol
𝑏∈𝛤 𝑏

{ min
Ω∈Ω

𝛬(Ω, 𝑏, 𝜆1, 𝜆2) = 0}
}

26 if 𝑏c,_ ∈ 𝛤 𝑏 ∧ ‖𝛬(Ωc,_, 𝑏c,_, 𝜆1, 𝜆2)‖ ≤ 𝑡𝑜𝑙𝛬 then
27  ← (𝑏c,_, 𝛺c,_

1 , 𝛺c,_
2 )

28 𝛤 𝑏 ← [min(𝑏) + (𝑛 − 1)𝛥𝑏, 𝑏c,1]
29 end

30 (𝑏c,1, 𝛺c,1
1 ) ← arg[𝑏,𝛺1]

{

sol
𝑏∈𝛤 𝑏

{ min
𝛺1∈𝛺1

𝛬((𝛺1, 0), 𝑏, 𝜆1, 𝜆2) = 0}
}

31 if 𝑏c,1 ∈ 𝛤 𝑏 ∧ ‖𝛬((𝛺c,1
1 , 0), 𝑏c,1, 𝜆1, 𝜆2)‖ ≤ 𝑡𝑜𝑙𝛬 then

32  ← (𝑏c,1, 𝛺c,1
1 , 0)

33 𝛤 𝑏 ← [min(𝑏) + (𝑛 − 1)𝛥𝑏, 𝑏c,1]
34 end

35 (𝑏c,2, 𝛺c,2
2 ) ← arg[𝑏,𝛺2]

{

sol
𝑏∈𝛤 𝑏

{ min
𝛺2∈𝛺2

𝛬((0, 𝛺2), 𝑏, 𝜆1, 𝜆2) = 0}
}

36 if 𝑏c,2 ∈ 𝛤 𝑏 ∧ ‖𝛬((0, 𝛺c,2
2 ), 𝑏c,2, 𝜆1, 𝜆2)‖ ≤ 𝑡𝑜𝑙𝛬 then

37  ← (𝑏c,2, 0, 𝛺c,2
2 )

38 𝛤 𝑏 ← [min(𝑏) + (𝑛 − 1)𝛥𝑏, 𝑏c,2]
39 end
40 if  ≠ 𝑁𝑖𝑙 then break
41 end
42 return 
43 end
• It is worth mentioning that we have also tried to employ SHGO
for directly minimizing ‖𝛬‖ over (𝑏,Ω) instead of (inner) mini-
mization combined with (outer) root finding. However, this did
not work for us.

lgorithm parameters. We employ by default:

𝜆1 = 𝜆2 = {1.0, 0.975,… , 0.7}, (B.4)

𝛺1 = 𝛺1 = { 2𝜋
200ℎf ,

2𝜋
1ℎf }mm−1, (B.5)

max = 1.0 and (B.6)
18
𝑡𝑜𝑙𝛬 = 1 × 10−9, (B.7)

where ℎt and ℎf are described in Table 1.
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