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A B S T R A C T

The present study introduces a methodology that allows to combine 3D printing, experimental testing, numerical
and analytical modeling to create random closed-cell porous materials with statistically controlled and isotropic
overall elastic properties that are extremely close to the relevant Hashin-Shtrikman bounds. In this first study, we
focus our experimental and 3D printing efforts to isotropic random microstructures consisting of single-sized (i.e.
monodisperse) spherical voids embedded in a homogeneous solid matrix. The 3D printed specimens are realized
by use of the random sequential adsorption method. A detailed FE numerical study allows to define a cubic
representative volume element (RVE) by combined periodic and kinematically uniform (i.e. average strain or
affine) boundary conditions. The resulting cubic RVE is subsequently assembled to form a standard dog-bone
uniaxial tension specimen, which is 3D printed by use of a photopolymeric resin material. The specimens are
then tested at relatively small strains by a proper multi-step relaxation procedure to obtain the effective elastic
properties of the porous specimens.

1. Introduction

Porous materials are present in nature (e.g., rocks and geomaterials)
but can also be designed to allow for controlled stiffness of lightweight
structures. In the literature, one can recognize two main categories of
porous materials; materials with closed-cell porosity, i.e. non-inter-
connecting voids, and open-cell porosity, which comprises most lattice
and foam materials. In particular, this latter class of composites has
been extensively studied in an effort to adapt the physical properties of
their microstructure or micro-architecture [17] by controlling mor-
phological features of the internal geometry [15,20]. Such open-cell
porous materials find applications in high-stiffness lightweight struc-
tures [8,56], acoustic and vibration dampers [5,21,35], impact energy
absorbers [14], high electric capacitors [52] and filtration [2] among
others.

Specifically, in the context of open-cell porous materials, re-
searchers have manufactured beam or metal-sheet periodic cellular
materials by electro-discharge machining [42] or clamping. Due to the
strong manufacturing constraints, the design of controlled internal
geometry was limited to simple geometries [42,49]. In contrast to
conventional techniques, which are based on material removal, recent
additive manufacturing technologies allow for the construction of mi-
crostructures layer-by-layer by use of various types of processes such as

powder bed fusion [12,22,25], stereolithography [26] and photon li-
thography [38] spanning scales from nanometer to meter.

The development of this new manufacturing process has led to the
development of new methods for generating complex microstructures
that can be 3D printed. One such popular approach is based on topology
optimization methods among which is the ground approach [7] that
consists of finding the optimal structure using a discrete nodal de-
scription of the volume and minimizing a cost function of the boundary
problem with a finite set of structural elements, usually taken as beams
or voxels. Such materials are therefore optimal in a subset of micro-
structures resulting from that chosen element and the solution is de-
pendent on the boundary conditions. Nevertheless, when using this
methodology to create elastically-isotropic microstructures that can
achieve extremal elastic properties and approach known bounds, for
instance the Hashin-Shtrikman ones, such a task becomes less trivial. In
particular, Sigmund [46] has obtained such three-dimensional micro-
structures when assembling polyhedral regions connected by transver-
sely isotropic three-rank laminates. The proposed microstructure,
however, involves large scale variations and is therefore impossible to
produce by current additive manufacturing techniques that only allow
microstructures with similar length-scale orders.

Another approach, which is also popular in the literature, uses lat-
tice network topologies obtained by connecting closest neighbors of
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crystallographic-like structures such as the Face-Centered-Cubic (FCC)
[8]. These microstructures has been shown so far to deliver rather op-
timal mechanical properties in some specific directions due to the mi-
crostructural symmetries and under specific loads. In this context, re-
cent works [37,39,50] have recently designed almost-isotropic elastic
microstructures by imposing a group of constraints on lattice truss
networks. The resulting lattices were shown to lead to a fixed overall
Poisson's ratio and a fixed relative effective Young's modulus for a given
porosity which is found in many cases to be relatively far from the
upper Hashin-Shtrikman bounds. Furthermore, the specific combina-
tion of the crystallographic-based microstructures proposed in order to
fulfill the structural requirements have been numerically found by some
of these authors to give an increasing deviation from the elastic-iso-
tropy with increase of the relative density (i.e. decrease of porosity).

An alternative approach, that is at the heart of our present study,
focuses on transferring theoretical and virtual microstructures that are
very close to the Hashin-Shtrikman bounds numerically to fabrication
and experimental testing. Contrary to the aforementioned lattice ma-
terials, most of the theoretical bounds are valid for closed-cell porous
materials. Such works make use of minimization of energy principles
which lead ultimately to rigorous theoretical bounds. Briefly, Hill [27]
derived the first bounds based on Voigt and Reuss estimates that re-
spectively consider the strain and stress constant in the material. By
introducing a reference linear elastic homogeneous material and a
“constant” stress polarization in the microscopic equilibrium equations
of linear elasticity, Hashin and Shtrikman [24] and later Willis [53]
obtained rigorous bounds and estimates for the effective linear elastic
behavior for two- and N-phase isotropic and anisotropic materials, re-
spectively. Such bounds are known to be optimal for isotropic two-
phase microstructures as the effective bulk modulus is attained by the
[23] model of composite sphere assemblage (CSA) microstructure,
whereby both effective shear and bulk moduli can be attained by the
theoretical high-rank (6th rank) laminates [18], as well as the dilated
Poisson hyperplanes [32]. Despite the great theoretical value of such
microstructures, they inherently involve a large (or even infinite) range
of length scales. This, in turn, does not allow as such their manu-
facturing with the current state-of-the-art 3D printing or other known
manufacturing technology to-date.

This paper aims at introducing a methodology that allows to com-
bine 3D printing, experimental testing, numerical and analytical mod-
eling to create random closed-cell porous materials with statistically
controlled and “isotropic” overall elastic properties that are extremely
close to the Hashin-Shtrikman bounds. In this first study, we focus our
experimental and 3D printing efforts to isotropic random micro-
structures consisting of single sized (i.e. monodisperse) spherical voids
embedded in a homogeneous solid matrix. Those microstructures are
shown to have almost identical effective elastic properties with multiple
size (i.e. polydisperse) microstructures for volume fractions up to 30%
(see also [4]).

In summary, Section 2 describes briefly the Random Sequential
Adsorption (RSA) algorithm [9,34,43,45] used for generating virtual
periodic microstructures and presents the numerical homogenization
approach used to determine a representative volume element (RVE)
allowing for rigorous comparison between analytical, numerical and
corresponding experimental results independently of the applied
boundary conditions (i.e. periodic or affine etc). Section 3 describes the
process for assembling uniaxial tension specimens out of cubic porous
RVEs and assesses the accuracy of printing with the aid of microscopy
observations. Subsequently in the same section, an experimental setup
is proposed to measure the linear elastic properties of the porous spe-
cimens by a multi-step relaxation procedure [29]. In Section 4, we
examine the isotropy of the printing process for the pure matrix ma-
terials and discuss in detail the measurement sensitivity and effect of

the support material used during the 3D printing to obtain the spherical
voids. Subsequently, in Section 5, the effective experimental elastic
properties of the porous materials are probed by finite element (FE)
numerical estimates and the analytical Hashin-Shtrikman bounds. A
contour analysis of the local stress and strain fields is used to interpret
the influence of the microstructural features on the effective elastic
properties. One of the important outcomes of this study is that the 3D
printed porous material specimens are found to be very close to the
theoretical Hashin-Shtrikmann upper bounds for porosities up to 30%.
Next, the numerical tools are used to study virtual microstructures with
polydisperse (i.e. different size) voids for porosities up to 70% with very
promising outcome. The study is concluded with Section 7.

2. Generation of random isotropic porous materials

The particulate microstructures investigated in this study consist of
a random distribution of non-overlapping, identical spherical voids
with volume fraction between 1% and 30%. It is noted in passing that the
methodology here presented is of general applicability and can be ex-
tended to deal with polydisperse spheres or ellipsoids (e.g., see works of
[34] and [4]). In this section, we present briefly the approach used for
the generation of the multi-inclusion systems with increasing porosity
(the reader is referred to [45] and [34] for a more detailed discussion)
and then finite element (FE) simulations are carried out to define the
size of the RVE necessary for the experimental analysis.

2.1. RSA generation of isotropic random spherical inclusions

In this section, we construct the virtual microstructures of the pre-
sent study using the random sequential adsorption algorithm that was
initially implemented for 3D microstructures by Torquato and Rintoul
[43]. Following earlier work (see for instance [45] and [34]), the
centers of the spherical inclusions (here voids) are generated randomly
in a cubic cell of volume L3 and are rejected if the center-to-center
distance to any of the already allocated voids is less than a given limit.
To ensure an adequate finite element discretization, the minimum
distance adopted is 1.02 times the average diameter of the two pores.
Furthermore, since our microstructures are periodic, all voids that in-
tersect the cubic cell faces have to be periodically reproduced to the
opposite faces of the cube (see Segurado and Llorca [45]). Finally, a
pore that lies very close to the edge of the unit cell is also rejected if the
distance between its center and one of the cell's faces is in the range of
0.95 and 1.05 times its diameter D. These two conditions are sufficient
to obtain easy-to-mesh realizations. It is also worth noting that the
parameters controlling the rejection or not of a newly placed void can
be further reduced to allow the generation of larger volume fractions.
However, the present study requires a minimum spacing between voids
so that they can be realized properly by our 3D printer with a sufficient
precision (see discussion in section 5). For illustration purposes, Fig. 1
shows three such RVEs comprising monodisperse spherical voids of
increasing porosity =c {10,20,30}% with the number of pores N used for
their generation.

2.2. RVE size and related boundary conditions

The physical dimension of the cubic cell or equivalently the RVE
size is directly related to the applied boundary conditions. Numerical
studies on periodic unit-cells have shown [33,48] that the effective
elastic properties of random particulate materials can be obtained with
relatively small RVEs, i.e., for large values of the ratio D L/ , with D and
L denoting the diameter of the voids and the edge length of the cubic
cell, respectively (see Fig. 1). For spherical voids and cubic RVEs, this
ratio is given in terms of the number of voids N and their volume
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Nevertheless, in uniaxial experiments as is the case in the following
sections, the actual applied boundary conditions are not periodic (PBC)
neither statically uniform (SUBC) nor kinematically uniform (i.e.
average strain or affine) (KUBC). They are mixed SUBC-KUBC, i.e., part
of the specimen is subjected to displacement control and another is
stress-free. Therefore, we need to determine a cubic volume element
that is representative for our subsequent uniaxial tension analysis.
Following Suquet [48], this RVE needs to have a sufficiently large
number of voids, N, that behaves as if it were homogeneous in its bulk
and exhibits only a small boundary layer that is affected by the non-
periodic boundary conditions.

To address this non-trivial point, we define next our RVE by
studying numerically two sets of boundary conditions, the periodic
(PBC) and the uniform strain (KUBC) ones. The periodic boundary
conditions are defined such that the displacement field u x( ) is given by

= ⋅ +εu x x u x( ) ( ), (PBC).* (2)

Here, ε denotes the average strain in the RVE, while u x( )* is an
−L periodic displacement field with zero volume average that accounts

for the fluctuations of the field due to the inclusions/voids. For a
technical discussion of how to apply such periodic boundary conditions,
the reader is referred to [36] and Appendix B of [13].

Contrary to the PBC, for which the homogenized elastic properties
rapidly converge to the effective properties, the KUBC are known to be
an upper bound for the apparent elastic properties of voided materials.
Their deviation from the effective elastic properties is of the same order
as the one obtained by using the SUBC [30]. The KUBC consist in ap-
plying a uniform strain, such that

= ⋅εu x x( ) , (KUBC). (3)

In the present study, convergence towards an experimental RVE is
considered when (a) the effective properties obtained by the application
of the KUBC reach an asymptotic value that is less than 2% from those
corresponding to the PBC and (b) further increase of the number of

pores does not affect the KUBC result by more than 0.1 %. For this
purpose, a number of periodic cubic cells with gradually increasing
number of voids are generated using a fixed porosity c. This is
equivalent to decreasing the ratio between the characteristic size of the
heterogeneities and the size of the cubic cell and D L/ . For each pair c
and N, we create four different realizations to address the statistical
deviation of the RSA process. Subsequently, the microstructures are
discretized by use of ten-node tetrahedral quadratic elements (C3D10 in
Abaqus [1] using the automatic mesh generator NETGEN [44], which is
also capable of creating identical surface meshes at opposite faces of the
cell. This, in turn, allows for a direct implementation of the periodic
boundary conditions by elimination techniques (e.g., use the *Equation
command in Abaqus [1]).

2.3. Definitions for isotropy

The matrix phase is modeled by an isotropic linear elastic con-
stitutive behavior with Young's Modulus =E 1.4 GPa and Poisson's
ratio =ν 0.42 corresponding to those of the virgin matrix phase used
during the printing (a detailed discussion about the isotropy and
properties of the matrix phase is done in Section 3.2). The homogenized
stiffness tensor is computed from the average stress and strain fields
using the overall constitutive equation [28]

= ∼σ εx x( ) : ( ) (4)

where =ε εx( ) is the macroscopic imposed strain, ∼
 denotes the

overall stiffness tensor and the notation . is used to denotes volume
averages. In practice, adopting Voigt notation, each column of the
stiffness tensor ∼

 is computed by imposing a strain field in a particular
direction [33]. For example, imposing the overall strain field

≡ε ε( , 0,0,0,0,0)11 , we obtain six linear relations: =∼C σ ε/kl kl11 11 with
=kl 11,22,33,12,23,31. The computation of all six columns of ∼

 is done
by applying all six independent average strains, ε , as described in Kanit
et al. [33].

Due to the finite number of inclusions, the tensor ∼
 is not exactly

isotropic. Therefore, one needs to estimate the resulting deviation from
isotropy. To evaluate that deviation, an isotropic stiffness tensor, de-
noted ∼iso

 , is introduced as a projection of ∼
 along the fourth-order

Fig. 1. RVEs of unit volume L3 with N randomly distributed spherical particles of monodisperse sizes for a total porosity (a) =c 10% and =N 160, (b) =c 20% and
=N 275, (c) =c 30% and =N 400. (d–f) Representative meshes corresponding to the undeformed configuration of the representative cubic cells.
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deviatoric and hydrostatic tensors, i.e.,
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Here, κ͠ and ∼μ denote the isotropized bulk and shear moduli, and 

( =J δ δ(1/3)ijkl ij kl) and = −   are the isotropic projection tensors,
with  such that = +I δ δ δ δ(1/2)( )ijkl ik jl il jk , the identity tensor in the
space of symmetric fourth-order tensors, and δij (with =i j, 1,2,3) the
identity second-order rank tensor. Note that  and  satisfy the rela-
tions ⋅ =  , ⋅ =  , and ⋅ = ⋅ =    .

There are two possible approaches for a quantitative measure of the
deviation from isotropy; the geometrical approach which consists in
evaluating the deviation from isotropy of the RVE in a geometrical
sense (geometrical isotropy), and the mechanical approach, consisting in
assessing the gap from isotropy of the mechanical response (mechanical
isotropy), e.g. the effective stiffness tensor in the linear elastic context.
In this study, we use the notion of mechanical isotropy since the goal is
the evaluation of the effective elastic properties, and a deviation in
geometric anisotropy (which is inherently present in our unit-cells)
cannot be translated directly to deviation in mechanical isotropy.

Several authors (see for instance [11,19,41,47,55]) have proposed
methods which can be used to estimate the deviation from mechanical
isotropy. They differ from each other by the measure of the amplitude
of the stiffness tensor (represented in matrix form adopting Voigt no-
tation), as well as the number of the coefficients used in that measure.
The well-known measure of Zener's anisotropy ratio defined via

= −∼ ∼ ∼δ C C C2 /( )z 44 11 12 (using Voigt notation) takes only in consideration
particular components of the stiffness tensor that correspond to cubic
symmetry. Since our materials are random, we use instead the Frobe-
nius norm as a measure of the amplitude of the stiffness matrix, which
uses all components of ∼

. The deviation from isotropy of ∼
, denoted by

δiso, is then evaluated as a ratio of the Frobenius elastic distance func-
tion [40]

= −∼ ∼
∼δ ,iso

iso
F

F

 

 (6)

where = ⋅Tr( )F
T   , is the Frobenius norm of the tensor . The

value of =δ 0iso corresponds to exact isotropy. The RSA algorithm is
known to lead to very small deviation from isotropy when spherical
inclusions are used (but see corresponding results for ellipsoidal in-
clusions in Anoukou et al. [4]). In the present study, the maximum error
is found to be <δ 0.006iso and the deviation from =δ 1z which corre-
sponds to the isotropic case is less than 0.01. Therefore, the proposed
RVEs can be considered isotropic.

2.4. Converged RVEs

Using the above definitions and boundary conditions, we carry out
calculations to estimate the number of pores required for convergence
in the effective elastic properties or equivalently the size of the RVE
which is defined by the ratio D L/ in equation (1)2. It is noted here that
in addition to the converged RVE, a number of technical constraints
related to the 3D printing accuracy and the experimental equipment
have to be taken into account. Those constraints are discussed in detail
in the following section. We recall that convergence towards an ex-
perimental RVE is considered when (a) the effective bulk and shear
moduli obtained by the application of the KUBC reach an asymptotic
value that is less than 2% from those corresponding to the PBC and (b)
further increase of the number of pores does not affect the KUBC result
by more than 0.1%.

Specifically, Fig. 2 shows the evolution of the normalized effective
moduli, defined as the ratio of the effective moduli of the RVE over the
moduli of the matrix, for a porosity of =c 15% as a function of the

number of pores N. The periodic boundary conditions (PBC) converge
rapidly (i.e., for ∼N 30) to the effective elastic properties of the given
microstructure and show no substantial dispersion among the various
realizations. By contrast, the kinematically uniform boundary condi-
tions (KUBC) require a much larger number of voids for convergence, in
the order of =N 225. This, in turn, leads to a size ratio ∼D L/ 0.103, i.e.
a side length of the cube that is approximately ten times the diameter of
the void. Moreover, we observe that the KUBC loading leads to more
dispersion among the different realizations.

Similar calculations, as those discussed in the context of Fig. 2 for
porosity =c 15%, are carried out for the entire range of porosities
analyzed in this study allowing us to get a converged size ratio D L/ as a
function of c, as shown in Fig. 3. We observe that D L/ increases with c
and is of the order ∼D L/ 0.1. Overall a ratio ∼ ⋅ −D L/ 9.85 10 2 is suffi-
cient for a converged RVE (green area in Fig. 3). This implies that the
diameter of the voids should be less than ∼D 1.18mm for a cubic RVE
of side length =L 12mm in order to get converged effective elastic
properties for any porosity c (see right axis of Fig. 3). Instead, one can
use larger void diameters at larger porosities c, as shown by the yellow
area in Fig. 3 but it has to be taken case-by-case. The red regime, on the
other hand, indicates non-converged D L/ ratios. Note at last that the
converged ratios D L/ are also a function of the number of voids N in the
RVE, which are shown in the same figure as contours of equation (1)2

(dotted lines).

3. Additive manufacturing and experimental methods

In this section, we describe the additive manufacturing procedure
and experimental methods used to analyze the effective elastic prop-
erties of the pure matrix and porous materials. All test specimens are 3D
-printed using an acrylic photopolymer available in our EDEN 260VS
3D-printer purchased by Stratasys. The photopolymeric resin employed
for 3D-printing has the commercial name VeroWhitePlus and is selected
for its suitability to produce parts with very fine feature details, such as
our spherical void microstructures. The main aim of the experiments is
then the measurement of the effective Young's modulus and Poisson's
ratio of the 3D-printed random porous microstructures. Due to the
viscoelastic response of the VeroWhitePlus polymer, we measure the
material parameters for the basic (ground state) elasticity by means of a
tensile relaxation testing. Following the experimental methodology
presented in Hossain et al. [29], we carry out two trains of experiments,
namely (i) single- and (ii) multi-step relaxation tests, and we assess
their suitability for obtaining the basic elasticity data from the time-
dependent stress response.

3.1. Additive manufacturing of porous specimens

Specifically, our virtual test specimens have a dog-bone shape which
is designed to ensure uniaxial stress conditions (on average since our
porous specimens are heterogeneous) in the gage section. The ratio of
the length to the width is for all samples higher than 10 [54]. In order
to construct the virtual geometry of the porous samples, we adopt the
protocol shown in Fig. 4. We first assemble length-wise five re-
presentative cubic RVE cells of length =L 12mm (see discussion in
Section 3.2) in order to build the reduced uniform section of the test
specimens. The latter is enclosed between the heads of the sample
which, in turn, have a solid section thus allowing us to mount the
specimen onto the uniaxial machine. The physical dimensions of the
test specimens can be obtained from Fig. 4.

Next, we transform the 3D virtual model of our test specimens into a
stereolitography format (i.e. STL) for 3D-printing. This is done by em-
ploying the commercial software NETGEN to mesh the 3D-models with
four-node tetrahedral elements and subsequently export the latter to
STL. We note in passing that more often than not the exported 3D STL
models contain errors associated with the normal vectors defining the
facets of the internal voids surfaces. In fact, these normal vectors define
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the direction towards which material should not be printed. Thus, one
should correct the normal direction so that it points towards the center
of the sphere. In the present study, those normal vector directions are

corrected by use of the commercial software NETFABB (presently
CadVision).

Once a correct STL model is produced, we then fabricate the spe-
cimens using the 3D-printer EDEN 260VS by Stratasys. Our printer
employs a PolyJet technology that consists in building volume parts
through layer deposition of liquid photopolymerizable droplets (of
micrometric size) which are then cured with a UV light with no-addi-
tional post-curing. For the VeroWhitePlus resin used in this study, the
layer resolution is 16 μm whereas that of the jetting precision is 100μm,
as specified by the manufacturer (for more information go to: http://
www.stratasys.com). Furthermore, in order to overcome gravity con-
straints related to 3D objects such as that of a sphere, our 3D-printer
uses a support gel-like material to print the spherical void volumes
during layer deposition. As we will show in Section 4.3, this support
material has no influence on the measured effective response of the
porous composites. Moreover, it is non-toxic and is easily removed from
the specimens outer surface by water-jet cleaning after manufacturing.

We assess the dimensional accuracy of the 3D-printed porous mi-
crostructures by use of an optical microscope. Specifically, guided by
the results of the numerical RVE calculations in Fig. 3, we have in-
vestigated several void diameters spanning from =D 400μm to

=D 1200μm. In order to observe the microstructures under the mi-
croscope, we deliberately interrupted the 3D-printing process at arbi-
trary time steps and then resumed it after optical analysis. A set of
representative optical micrographs are shown in Fig. 5, with parts (b)

Fig. 2. Numerical results to determine the number of monodisperse spherical pores that lead to convergence for the different boundary conditions PBC and KUBC.
Normalized effective elastic moduli: (a) normalized bulk modulus κ κ/͠ m, (b) normalized shear modulus ∼μ μ/ m, (c) normalized Young's modulus ∼E E/ m and (d) Poisson's
ratio ν͠ for =c 15%. The matrix bulk, shear and Young's moduli are κm, μm and Em, respectively.

Fig. 3. (Left axis) Converged in terms of elastic properties pore diameter-to-
cube size ratio D L/ and (right axis) pore diameter (in mm) for a cube side length

=L 12mm as a function of the porosity c. Colored regions depict in red the non-
converged D L/ ratio, in yellow the converged D L/ ratio for given porosity and
in green the maximum pore size, i.e., D L/ that can be used to obtain converged
RVEs. Contours of equation (1)2 for different number of pores N are shown as
dotted lines. (For interpretation of the references to color in this figure legend,
the reader is referred to the Web version of this article.)

Fig. 4. (Top) Virtual testing sample generated by
assembling length-wise 5 cubic porous RVEs and by
adding gripping heads of solid material. (Left) A
zoom of the RVE which defines our gage section.
(Bottom) 3D printed testing sample after cleaning
support material from open pores and boundary
surface. (Right) A zoom of the 3D printed RVE
showing the size of the actual axial and transverse
gage sections in the experiment.
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and (c) corresponding to pore diameters of ∼ 1.2mm and ∼ 0.5mm,
respectively. Overall, Fig. 5 reveals that pores with circular section are
finely fabricated in both cases and can be manufactured with very good
dimensional accuracy within the range of size explored. In connection
with Fig. 3, D~1200μm corresponding to Fig. 5a and b is the minimum
pore size required by our numerical RVE analysis for =L 12mm, as
discussed in Section 2.4. Finally, it is worth mentioning that no addi-
tional micron-size porosity has been observed in the matrix phase as a
result of the printing process.

3.2. Experimental protocol

The tensile relaxation experiments are carried out at room-tem-
perature using a servo-hydraulic uniaxial apparatus. We measure the
load history with a 10 kN force transducer (accuracy ± 10N). In turn,
the axial and transverse strains are obtained simultaneously and in-
dependently by means of two clip-on gage extensometers. Specifically,
the former is measured with an MTS 632.13F-20 sensor (accuracy
± 0.0075mm) and the latter with an Epsilon 3475-025M-ST transducer
(accuracy± 0.1mm). It is important to note here that since we are in-
terested in measuring the effective properties of the porous materials,
the gage length for each extensometer was set equal to the character-
istic cubic RVE cell length, i.e. =L 12mm (see discussion in Section 2).
It is not the goal of the present study to measure the local strains in-
between the voids or any other local information.

For consistency with the numerical analysis, for each test, we use
four specimens to assess the degree of reproducibility of the experi-
mental results. We also note that in order to minimize the discrepancy
of the measurements, every test sample is printed individually and
experiments are conducted three days after the manufacturing process
(to prevent ageing of the polymer matrix). As reported by Barclift and
Williams [6], the relative distance between the samples as those are set
upon the building tray of the 3D-printer could be an additional source
of scattering in their elastic properties.

3.2.1. Single relaxation testing
A common approach in determining the time-independent equili-

brium response, i.e., the equilibrium stress state, in viscoelastic poly-
mers is to perform single-step relaxation tests under a constant applied
displacement. Such tests typically involve the application of a constant
displacement (leading to a constant overall strain) and then monitoring
the force decay over time.

The value that the stress reaches asymptotically at the end of the
holding time in single-step relaxation experiments corresponds to the
equilibrium stress. Therefore, it is the value of interest for the estima-
tion of the Young's modulus. We assess the suitability of this testing
method by carrying out three relaxation tests at different strain rates1

≡ = − −ε ε˙ ˙ {10 , 104 5, −10 }6 s−1 for the pure VeroWhitePlus material (i.e.
without voids) and by measuring the load history under an applied

constant nominal strain of ∼ 0.5%. Those single-step relaxation tests,
albeit useful to obtain the relaxation decay of the material and an ap-
proximate range of the linear response regime, are inappropriate to
provide the pure (i.e. without viscoelastic contributions) elastic mod-
ulus of the material.

3.2.2. Multi-step relaxation testing
In view of this, multi-step relaxation tests at various levels of de-

formation is an alternative to single-relaxation and can be employed to
determine the basic elasticity (slopes of the stress-strain response) of the
materials under study. In many practical cases, and particularly when
the amount of the viscous effects in the material are unknown, the
method proves more suitable and time-effective than the single-step
relaxation as discussed by Hossain et al. [29]. In the present study,
multi-step relaxation tests at = −ε̇ 10 5 are conducted. At each step a
displacement corresponding to an average axial strain increment of
0.1% is applied to the test specimen and the step-wise load history is
recorded. At each step, the holding time for relaxation is variable.
Specifically, we consider the material to be at its equilibrium state, and
therefore attaining its purely elastic response, when the difference be-
tween two consecutive force measurements, taken at 20min-time in-
tervals, is smaller than 10 N (which corresponds to the accuracy of our
load cell). Moreover, the tests are interrupted at a nominal strain of

=ε 0.7% and hence each test consists of seven relaxation steps. As we
will show in the next section, beyond this value of the nominal strain,
the stress-strain response of the polymer VerowhitePlus matrix starts
departing from linearity.

4. Experimental results for the matrix and support materials

In this section, we show detailed experimental results for the matrix
and support material following the procedure discussed in the previous
section. The experimental protocol is exactly the same for the porous
specimens and is not discussed independently.

4.1. Elastic moduli of the monolithic VeroWhitePlus matrix

Experimental results of the single-step relaxation tests for the
monolithic VeroWhitePlus matrix at different strain rates

= − −ε̇ {10 , 104 5, −10 }6 s−1 are reported in Fig. 6a and b. Data in Fig. 6a
provide quantitative measurements of the matrix strain rate sensitivity
as well as of its time-dependent response. The comparison of the curves
in Fig. 6a shows that the initial slope of the axial force-time response
decreases with decreasing strain rate, whereas not all three curves reach
to the equilibrium state within the holding time window, although they
all exhibit the tendency to reach the same asymptotic force value at
large times. For completeness, we report in the inset of Fig. 6a the
measured stress-strain response of the matrix at two different strain
rates = −ε̇ {10 5, −10 }6 s−1 and observe that they depart from linearity
after ∼ 0.7% strain. Therefore, in order to obtain the initial Young's
modulus one has to make sure that the overall applied strains remain
small, which makes experimental measurements extremely sensitive.

Fig. 5. (a) Optical image showing a cross-section of the macroscopic 3D printed specimen with the spherical pores for the assessment the printing accuracy.
Observations of representative 3D printed spherical voids of diameter (b) ∼D 1.2mm and (c) ∼D 0.500mm. A fairly good printing accuracy is observed in both cases.

1 Henceforth the () notation used to denote average measures is dropped for
simplicity and illustration purposes unless otherwise stated.
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On the other hand, Fig. 6b reveals that the Poisson's ratio, obtained as
the absolute value of the ratio between the transverse strain over the
axial strain, is strain-rate insensitive.

The results of the multi-step relaxation experiments at = −ε̇ 10 5 s−1

for the VeroWhitePlus matrix are reported in Fig. 7a. The effective
Young's modulus, ∼E (or Em for the pure polymer), is then evaluated as
the slope of the line connecting the equilibrium (fully relaxed) stress
points in the nominal stress-strain curve as shown in Fig. 6a. It is worth
mentioning that in the evaluation of the slope, we use six equilibrium
stress points, neglecting the one at zero strain, which can be very
sensitive to initial settings of the experimental setup (e.g., gripping of
the specimen, minor sliding between the heads and the machine and
sensitivity of the extensometers). Moreover, in agreement with previous
observations in Figs. 6b and 7 shows that at each relaxation step the
slope of transverse strain-axial strain curve is time-independent thereby
making the calculation of the Poisson's ratio straightforward. Finally, a
very small drop is observed for the transverse strain at each relaxation
step.

4.2. Isotropy of the 3D printed matrix material

Prior to testing the porous materials, we first investigate experi-
mentally the isotropy of the mechanical response of the 3D-printed pure
VeroWhitePlus matrix. This analysis is extremely important for our
study since the microstructural anisotropy (if any) could be easily at-
tributed to the intrinsic anisotropy of the polymer matrix. In order to
address this issue, we print the dog-bone specimens in all three different
directions with respect to the printer heads. For clarity, hereinafter e1
corresponds to the printing direction, i.e. the displacement direction of
the printer's heads, e2 and e3 are respectively the in-plane and out-of-
plane directions perpendicular to e1. We also note that e3 corresponds to

the direction of deposition of the sequential layers.
In Fig. 8, we report computed values of the Young's modulus and

Poisson's ratio for all three different printing directions. The elastic
parameters are obtained from multi-step relaxation experiments as
described in the previous section. As seen, the measured values of these
moduli are within the scatter of data and are independent of the
printing direction. The measured mechanical isotropy can partially be
explained by observation of Fig. 5a. In our 3D printer, the liquid
polymer droplets create a homogeneous solid material when coalescing
and overcome any apparent laminated microstructure that would result
from the 16μm layering process. Finally, our data provided experi-
mental evidence that the matrix material (VeroWhite) is statistically
homogeneous and exhibits an elastically isotropic behavior with a
Young's modulus = ±E 1400 120m MPa and a Poisson's ratio of

= ±ν 0.42 0.02m . These moduli correspond to a bulk modulus of
=κ 2920m MPa and a shear modulus of =μ 493m MPa.

4.3. Effect of support material

This section deals with the influence of the gel-like support material
used to overcome gravity issues while printing the internal spherical
void geometry. As anticipated, the support material can be easily re-
moved from the external surfaces of the 3D-printed parts by waterjet or
chemical NaOh solution if it is inside an open (or connected with the
surface) porosity. For closed-cell porosity, as is the case in the present
study, this material is trapped inside the structure.

Thus, the mechanical characterization of the proposed porous ma-
terials needs to account for the effect of this support material and ex-
amine if it behaves closely to a voided material. To that aim, specimens
with gage zone consisting of aligned cylinders in the direction of the
specimen thickness (see insets in 9) are printed and characterized in

Fig. 6. (a) Force measurements for single-step relaxation tests at different strain rates showing strong rate-dependence. Inset shows the corresponding axial stress-
strain response for strain rates = −ε̇ {10 5, −10 }6 s−1. (b) Axial versus transverse strain curve obtained for different strain rates showing that the Poisson's ratio is fairly
rate-independent. Inset shows the evolution of the applied strain as a function of time.

Fig. 7. Overall applied strain rate = −ε̇ 10 5 s−1: (a) Stress-Strain curves obtained during multi-step relaxation steps. The Young's modulus is obtained by the slope of
the curve that connects the fully relaxed stress states excluding the first point. (b) Axial versus transverse strain curve during the multi-step relaxation test. Slopes
during loading are found to be fairly independent of the level of the axial strain.
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two configurations; one where the support material has been removed
from the cylinders and the other one where the support material has
been retained. Results of the apparent overall Young's modulus2 for
these two structures are shown in Fig. 9. No significant difference is
found between the two configurations, indicating that the support
material has negligible elastic properties when compared with those of
the virgin matrix material (VerowhitePlus). This implies that the in-
clusions can be safely considered as voids in the remaining of the study.

5. Results for porous materials

In this section, we compare the theoretical Hashin-Shtrikman (HS)
bounds for isotropic porous materials, with numerical (FEM) calcula-
tions and the present experimental measurements. Since, the proposed
microstructures exhibit almost perfect isotropy by construction, direct
comparison of their elastic effective properties with the HS isotropic
bounds is meaningful in terms of moduli, such as the Young's modulus
and Poisson's ratio or equivalently the bulk and shear moduli. For
isotropic porous materials, the Hashin-Shtrikman bounds [24,53] are
given by
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− +
+ + +
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where κm and μm denote the bulk and shear moduli of the matrix phase,
respectively and c the volume fraction of the inclusion phase or porosity
in the present context. The corresponding effective Young's modulus, ∼E
and Poisson's ratio, ν͠ , are readily obtained by = +∼ ∼∼E κμ κ μ9 /(3 )͠ ͠ and

= − +∼ ∼ν κ μ κ μ(3 2 )/(6 2 )͠ ͠ ͠ , respectively. It is recalled at this point that
the HS homogenization bounds refer to infinitely polydisperse (i.e. in-
finite sizes of) voids. Nonetheless, as we will see later in Fig. 6, for
porosities up to =c 30% (see also [4]), the monodisperse and poly-
disperse results are almost identical. Moreover, we recall here that both

the FEM and experimental results correspond to four different realiza-
tions and samples, respectively, for each porosity.

Fig. 10 shows the effective (a) Young's modulus ∼E , (b) Poisson's
ratio ν͠ , (c) bulk modulus κ͠ and (d) shear modulus ∼μ as a function of the
porosity c. We observe that the experimental results for the directly
measured ∼E are in very good agreement with the numerical FE results,
which almost overlap with the HS bounds even for porosities as large as

=c 30%. The maximum deviation of the experimental ∼E from the HS
bound is 8% when =c 30%. Note, however, that the experimental scatter
has a similar range (i.e. in the order of 8%) for the various generated
porosities and statistical samples suggesting that a main factor for this
dispersion is the conditioning of the polymeric material during 3D
printing as well as measurement sensitivity resulting from the ex-
tensometers. It is noted that the FE results exhibit very small deviation
(less than 0.1%), and thus the corresponding scatter is not shown ex-
plicitly in the plots. In turn, the scatter in the experimental results of the
Poisson's ratio is larger and can be attributed principally to the sensi-
tivity of the extensometer. The effective bulk κ͠ (Fig. 10c), and shear, ∼μ
(Fig. 10d), moduli are computed from the mean value of the Poisson's
ratio and Young's modulus whereas their scatter is evaluated using the
scatter of the Young's modulus measures only. Similar to ∼E , both the κ͠
and ∼μ obtained by the experiments are very close to the theoretical HS
bounds.

It is relevant at this point to make a few important comments. In
particular, we recall that the Hashin-Shtrikman bounds are obtained by
setting a constant stress polarization in the inclusion phase [24,53],
which implies uniform stress and strain fields therein. That allows to
obtain the [16] exact solution for a dilute volume fraction. Never-
theless, this choice of uniform stress polarization is only approximate
for spherical or ellipsoidal inclusions and moderate to high volume
fractions [53]. This has the following two implications. First, spherical
voids cannot reach, even numerically, the HS bounds with increasing
porosity, since the fields cannot remain uniform inside the inclusions
due to strong interactions between them. Nevertheless, it is more than
interesting to observe in Fig. 10 that both the experimental and nu-
merical effective elastic moduli for spherical voids remain very close to

Fig. 8. Experimental results of (a) Young's modulus Em and (b) Poisson's ratio νm for the matrix phase with respect to the printing direction. The matrix is found to be
isotropic.

Fig. 9. Experimental results of the apparent
(a) Young's modulus and (b) Poisson's ratio
for the investigation of the effect of the
support material inside the voided phase. A
cylindrical-void specimen is specifically
fabricated in order to control the presence
or not of the support material. The support
material has negligible effect upon the
elastic properties.

2 Note that these structures are not representative and hence the measured
elastic properties are those corresponding to a structure and not a material.
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the theoretical HS bounds. Second, we recall that the 6-rank laminate
microstructures [18] and the infinite rank-laminates [31] do attain the
HS bounds primarily because the fields inside each phase of the mi-
crostructure are uniform and thus are in line with the constant stress
polarization assumption used in the HS bounds. It is however difficult
to-date to reproduce realistically such microstructures due to the many
length scales involved in their construction (but see Sigmund [46] to-
wards this direction).

We close this section by a brief discussion of the local fields ob-
tained by our FE calculations. Specifically, we show in the insets of
Fig. 10 strain contours for selected porosities =c {5%, 12%, 25%}. The
uniform distribution of voids avoids clustering and leads to rather
minimal stress and strain concentration in regions between the voids.
For porosities up to 10%, the local strain fluctuations induced by the
microstructural heterogeneities remain relatively small by comparison
to the overall applied strain ε (see colorbars). When increasing the
porosity, the denser packing of the voids creates more localized strain
zones with more pronounced strain fluctuations with respect to the
average strain. This implies significant interactions between voids,
which, in turn, lead to the deviation observed between the numerical

results and the theoretical HS bounds. Nevertheless, this deviation re-
mains very small (<4%) (see also [10]).

Finally, in connection with those last observations, it is important to
mention that in the FE calculations the local strains can reach values
that are almost twice that of the average strain applied, see for instance

∼ε ε/ 211 11 in the inset of Fig. 10a. This, in turn, implies that in the ex-
perimental results and usually for porosities higher than 20%, the am-
plitude of the local strain fields could exceed the range of validity of
linear elasticity in several regions of the unit-cell. This leads to a local
nonlinear response of the matrix phase, especially in our experiments
(see inset of Fig. 6a), which constitutes an additional reason for the
differences observed between the HS linear bounds or the FE and the
experimental measurements, especially for large porosities.

6. Estimates for higher volume fraction with polydisperse spheres

In this section, we study numerically and analytically the possibility
to extend the present study to larger porosities, at least up to =c 70%
(or relative density = − =ρ c1 0.3). That is impossible to achieve with
monodisperse distributions of voids, since they exhibit naturally a

Fig. 10. Normalized with the matrix properties effective (a) Young's modulus ∼E E/ m, (b) Poisson's ratio ν͠ , (c) bulk modulus κ κ/͠ m and (d) shear modulus ∼μ μ/ m as a
function of the porosity c. Comparison between the analytical HS bounds, FE monodisperse numerical estimates and experimental results.

Fig. 11. Periodic cubic cells of volume L3 with N random polydisperse spherical voids and porosity (a) =c 35% with 7 families and maximum size ratio (SRmax) of
=SR 1.50max , (b) =c 50% with 7 families and =SR 2.50max , (c) =c 70% containing 10 families of pores with 10 families and =SR 10max .
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interpenetration limit near ∼c 64% [51]. Nevertheless, using the pre-
sent RSA algorithm for polydisperse (i.e. various sizes of) voids (see
works of [34] and [4]), one can reach higher volume fraction rather
effortless.

Fig. 11 shows such three representative periodic RVEs comprising
random polydispesrse voids in volume fractions (a) 35%, (b) 50% and (c)
70%. For porosities up to =c 60%, we have used seven different families
(or sizes) of voids with a relative size ratio between the smallest and the
largest one set at a value of 2.5. Beyond that point, we use ten different
families of void sizes with maximum relative size ratio of 10. Currently,
the higher porosity RVEs lead to minimum void sizes that reach the
limits of our additive manufacturing capabilities and hence are not
presented here but are left for a future study.

Using the periodic boundary conditions (PBC) discussed in Section
2.2, we estimate the effective elastic properties for polydisperse por-
osities ∈c [0,70%]. The computed effective bulk and shear moduli are
compared to the Hashin-Shtrikman upper bounds in Fig. 12 as well as
the previously recorded FE monodisperse estimates. In this figure, we
observe a remarkably good agreement between the FE numerical esti-
mates and the HS bounds for the entire range of porosities even for 70%.
The maximum difference is found to be in the order of 5% for the shear
modulus at that maximum porosity. This result motivates further at-
tempts to reach such high volume fractions experimentally, noting
however that with such increase of porosity the interactions between
the voids become even more important. As a consequence, the material
between the inter-void spacing is expected to show higher strain fluc-
tuations with respect to the average applied strain and hence more a
pronounced nonlinear response in the real experiments.

7. Concluding remarks

In this work, we have presented numerically-aided additive manu-
facturing of random isotropic closed-cell porous materials with con-
trolled effective elastic properties. Specifically, the 3D printed speci-
mens were realized by use of the random sequential adsorption method
which was used to obtain random monodisperse spherical porous mi-
crostructures. A complete FE numerical study allowed to define a cubic
representative volume element (RVE) by combined periodic and kine-
matically uniform (i.e. average strain or affine) boundary conditions.
The resulting cubic RVE has been subsequently assembled to form a
standard dog-bone uniaxial tension specimen, which was 3D printed by
use of a photopolymeric resin material. The specimen was then tested at
relatively small strains (in the order of 0.7% nominal axial strain) by a
proper multi-step relaxation procedure to obtain the purely energetic
elastic moduli.

The 3D printed porous and non-porous specimens were extensively
analyzed in order to address the questions of isotropy due to the
printing procedure, as well as that due to the randomness of the mi-
crostructure. The overall experimental response of the RVEs was found

to be isotropic and reproducible allowing for a direct comparison with
the corresponding numerical estimates and the theoretical upper
Hashin-Shtrikman bounds.

We have shown that the proposed random monodisperse micro-
structures lead to almost optimal effective elastic properties experi-
mentally since they were shown to be in very close agreement (less than
8%) with the Hashin-Shtrikman bounds for porosities up to 30%. Even
that difference could be attributed to various factors such as the ex-
perimental measurement uncertainty, statistical deviations due to the
printing procedure and the RVEs. The possibility to extend the proposed
RVEs to higher porosities has also been investigated numerically by use
of polydisperse (i.e. different size) void microstructures, which were
shown to lie very close to the Hashin-Shtrikman bounds even up to
porosities of 70%. The additive manufacturing of such polydisperse
closed-cell high porosity RVEs is yet to be realized due to practical
constraints during the 3D printing process. An effort to overcome those
issues is in progress.

Finally, the great versatility of the random sequential addition al-
gorithm allows to extend the generation process to anisotropic micro-
structures. Those microstructures could involve ellipsoidal voids ran-
domly or unidirectionally dispersed in the RVE. They could be allowed
to overlap or simply connected via cylindrical (throat-type) voids.
These materials can also be used as test beds to a number of experi-
mental procedures involving dynamic and static measurements of
elastic moduli via wave dispersion and impact loads. Extension of the
present study to the nonlinear regime (nonlinear elastic and viscoelastic
[34] as well elasto-plastic [36]) is also straightforward and is left for a
future study. We close by noting that the present cubic RVEs can be
assembled in more complex macrostructures with varying porosities at
different regions allowing the optimization of both density and stiffness
[3].
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