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Micro Abstract
Liquid crystals are best known for their extensive applications, among many others, in flat display
technology. The underlying mechanism is an electro-mechanical coupled phenomenon, followed by an
electric field driven instability. This is also known as Freedericksz Transition (FT), where the system
evolves with a new stable bifurcated configuration. In this work, through a mixed analytical/numerical
study, we present the strong influences of bilayer structure and material constants on the FT.
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Introduction

Liquid Crystal (LC) continua consist of elongated rodlike polarized molecules with a preferred
average direction, known as directors. They have tremendous importance to the applications in
the display technology in the form of LCDs. Responses of such materials are deeply connected
with the multi-field coupling of mechanical, electrical, magnetic or thermal fields. The Twisted
Nematic Device (TND) is the most widely used for LCDs, and it is the objective of the present
investigation.

The TND consists of a liquid-crystal layer anchored between two parallel plates. One of the
plates is rotated with respect to the other by an angle ∆φ. In the absence of a transverse (i.e.,
normal to the bounding plates) electric field, all the directors are parallel to the bounding plates
and form helices that rotate the light by ∆φ, allowing its passing through the two polarized
end plates . When the applied transverse electric field exceeds a critical value, the directors
suddenly acquire a transverse component. This phenomenon, termed the Freedericksz transition,
is responsible for the change of polarization direction in the light, which prevents its passage
through the device.

The Freedericksz transition was discovered in the late 1920s [3], while TND was reported in
the 1970s [6]. The continuum mechanics modeling of the free energy for liquid crystals was
introduced in [2, 5], while the full theory for the time-dependent behavior of these materials was
subsequently introduced in [1, 4]. Recently Sfyris et al. [7] found that global modes (eigenmode
depending only the layer thickness) of Freedericksz transition are typical for low values, while
local modes (eigenmode with finite wavelengths) appear at large values of the twist angle. In this
work, we investigate the influences on such global/local modes in the presence of two different
LC layers.

1 Energy Functional for LC System

The free energy Ψ of nematic liquid crystal can be modeled as the sum of two contributions: the
Frank-Oseen energy ΨF−O of a liquid crystal and the electrostatic energy:

Ψ(n,∇n,d) = ΨF−O(n,∇n) + Ψ∗d(n,d) (1)
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Here k1, k2 and k3 are positive constants, called the splay, twist and bend constants, respectively,
of the Frank-Oseen model, χ and χn are the electric susceptibility constants in the parallel and
perpendicular direction respectively to the director vector n and ε0 is the electric permittivity of
the free space. The quantity τ = ∆φ/L is the twist (∆φ) per unit thickness (L). The potential
of the system is then written as:
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and d = ∇ × α. Equilibrium

equation and jump conditions are given by

∇ ·
[
∂(∇n)Ψ

]
− ∂nΨ = 0,

[[
∂(∇n)Ψ

]]
ν = 0 (2)

1.1 Principal Solution and Bifurcation

The principal solution v ≡ (n,d) is obtained from the equilibrium equation ∂vP(v)δv = 0 and
can be written as

0
v =


0
n = (cos (τx3), sin (τx3), 0)

0
d = (0, 0, d0)

. (3)

For a small value of electric displacement, below a critical value of dc0, the solution for n is
stable and remains helix. However, further increasing the strength of d0, the system becomes
unstable, and new equilibrium solution emerges at dc0. This bifurcation phenomenon is known as
Freedericksz transition. The bifurcation condition at dc0 along a particular direction ∆v, called
the critical mode, is found by vanishing the second functional derivative of P evaluated at the
principal solution: [

∂2v vP(
0
v)∆v

]
δv = 0. (4)

Above equation eventually takes the following form:∫
V
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Note that all the coefficients, L s, are the functions of {k1, k2, k3,
0
n(τx3)}. We calculate the

eigenmodes numerically by a Fourier-Plancherel transformation of ∆v in the x1 − x2 plane and



an finite element discretization in the x3 direction. We then write after considering eigenmodes
of the type ∆v(x1, x2, x3) = ∆V (x3) exp(i(w1x1 + w2x2))∫

V
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I
]
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]
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Note that, ∆v = {∆n1,∆n2,∆n3,∆α1,∆α2,∆α3} and ∆V = {∆N1,∆N2,∆N3,∆A1,∆A2,∆A3}.
A sufficient condition for loss of positive definiteness of the above equation is the loss of positive
definiteness of the integrand in [−l/2, l/2]. The lowest critical field dc0 is thus selected as to onset
a Freedericksz bifurcation. The resulting matrix, after discretization, takes the following form:∫

V

[
I
]
dV = [∆U ]t ·K(ω1, ω2, d0) · [∆U ] = 0, (8)

where, [∆U ] is the global column vector and ∆U is its complex conjugate. The desired critical
field dc0 is the lowest d0 > 0 root of detK(ω1, ω2, d0) = 0, ∀ω1, ω2 ∈ R2, i.e.,

detK(ω1, ω2, d0) = 0, dc0 = min
ω1,ω2∈R2

d0(ω1, ω2). (9)
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Figure 1. Predictions of the (a) critical electric field dc and (b) the wave numbers ω1 and ω2 for varying
twist for a single layer 5CB system.

2 Bilayer LC structure

We consider two layers where the thicker layer is E7 LC and occupying 90% of the thickness.
Single layer E7 LC does not exhibit Freedericksz transition due to its low electrical susceptibility.
However, adding a thin layer of 5CB, Freedericksz transition is observed of the overall system.
For the sandwich system, we need to consider additional relations. The continuity of the director
vector n in the plane of separation and the interface condition

[[
∂(∇n)ψ

]]
ν = 0 give

τ (1)L1 + τ (2)L2 = ∆φ, k
(1)
2 τ (1) = k

(2)
2 τ (2). (10)

The solution for such a system is presented in Fig. 2

Conclusions

We investigate the instability of the principal solution of the TND, consisting of two liquid-
crystal layers strongly anchored between two infinite parallel plates and subjected to a transverse
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Figure 2. Length of 5CB =0.1 and length of 7E=0.9. (a) Critical electric displacement field and (b) wave
numbers.

electric field. For arbitrary values of the TND twist angle a mixed analytical and numerical
technique, combining finite-element discretization and a Fourier transform, is used to solve
the bifurcation problem. We calculate the global and local (finite wavelength) bifurcation (the
Freedericksz transition) of the sandwiched system. We found that a thin layer of a 5CB system
with comparatively low electric susceptibility LC system (7E) can exhibit finite wavelength at
zero twist (Fig. 2). However, a high electric susceptible 5CB single layer does not show any
finite wavelength at zero twist (Fig. 1).
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