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Résumé :

Cette texte porte sur l’étude du comportement des élastomères renforcés avec des particules ferri-

tiques sous chargements mécanique et magnétique et spécifiquement sur la proposition d’un principe

variationnel augmenté pour traiter le problème d’homogénéisation périodique. Ces matériaux montre

de couplage magnéto-mécanique et ils peuvent se déformer dans de grandes proportions grâce à la

présence de la matrice polymérique.

Abstract :

In this study, we propose an augmented variational principle that is able to simulate the magnetoe-

lastic response of magnetorheological elastomers (MREs). These materials are ferromagnetic particle

impregnated rubbers whose mechanical properties are altered by the application of external magnetic

fields. In addition, these composite materials can deform at very large strains due to the presence of

the soft polymeric matrix.

Mots clefs : Mots clefs Magnetoelasticity, homogenization, finite strains

1 Magnetostatics

We consider a magnetoelastic deformable solid that occupies a region V0 in the reference configuration

(and V) with boundary ∂V0 (and ∂V) of outward normal N (and n) in the undeformed stress-free

(current) configuration. Material points in the solid are identified by their initial position vector X in

the undeformed configuration V0, while the current position vector of the same point in the deformed

configuration V is given by x = χ(x). Motivated by the usual physical arguments, the mapping χ is

required to be continuous and one-to-one on V0. In addition, we assume that χ is twice continuously

differentiable, except possibly on existing interfaces (e.g., due to the presence of different phases) inside

the material. The deformation gradient F at X is defined then by

F = Gradχ, J = detF > 0, ∀X ∈ V0 ∪ ∂V0, (1)
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where Grad denotes the gradient operator with respect to X in the reference configuration. In addition,

the reference density of the solid ρ0 is related to the current density ρ by ρ0 = ρJ . Time dependence

in not considered here. In a general setting, the deformation gradient F maybe discontinuous across

material interfaces (e.g., between consecutive layers in a laminate composite) or boundaries and thus

is required to satisfy the jump conditions [[F]] = G ⊗ N. The vector G should be determined from the

solution of the problem.

In pure magnetics and in the absence of deformation (F = I), the magnetic field b, the h−field h and

the magnetization per unit current volume are related via

b = µ0(h + m) in V, b = µ0h in R3 \ V, (2)

where V is the volume in the current configuration and R3 \ V is used to define the region occupied by

the air/aether. This equation is used to identify one out of the three vector fields when one vector field is

used as an independent variable and the other one is given by a constitutive equations, e.g., h = f(b).

In general, and in pure mathematical terms, one could choose any of the above as an independent

variable. Note, however, that b and h are a priori Eulerian quantities that need to satisfy differential

constraints and boundary conditions, i.e., the Maxwell field equations (with no current density) and

interface/boundary conditions

divb = 0 and curlh = 0, in V,

[[b]] · n = 0 and [[h]]× n = 0, in ∂V, (3)

where “div” and “curl” are operators with respect to x and n is the unit normal to ∂V in the current con-

figuration. In turn, magnetization m, which is also a Eulerian quantity by definition through equation

(2), does not need to satisfy any differential constraints or interface conditions. Therefore, depending on

the problem at hand, the choice of m as an independent variable could be advantageous, especially when

discontinuous magnetization fields are present inside the material (e.g., in the resolution of magnetic

domain walls or in analytical homogenization since this could allow for piecewise constant approxi-

mations of the fields [1]). On the other hand, in the present context of magnetoelasticity where large

strains are of interest, m does not have a unique Lagrangian counterpart, contrary to b and h and thus

is less convenient, albeit perfectly valid (see for instance the works by [2] and [3]).

In this regard, at large strains where F is finite, the fields b and h can be pulled back from V to V0 to

their Lagrangian forms, denoted by B and H, respectively, such that

B = JF−1b, and H = FTh. (4)

2 Local Constitutive behavior

In this section, we define constitutive laws for the coupled magnetomechanical response of the materi-

als under study. The interest in this study is the modeling of composite materials which can be either

magnetoelastic or purely elastic. In this regard, it is convenient to characterize their constitutive behav-

iors in a Lagrangian formulation by free energies W (X,F,B). These functions are suitably amended in
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order to include the contribution of the Maxwell stress and read [4]

W (X,F,B) = ρ0Φ(X,F,B) +
1

2µ0J
F B · F B, (5)

where Φ(X,F,B) is a specific free-energy density to be defined below, while the second term in the

above equation is considered so that the total first Piola-Kirchhoff stress S and the Lagrangian h-field

H are simply given by

S =
∂W

∂F
(X,F,B), H =

∂W

∂B
(X,F,B). (6)

Next, we consider that the composite material comprises r = 1, ..., N (magneto)elastic phases occupy-

ing a subdomain V
(r)
0 in the reference configuration so that the local potential W is re-written simply

as

W (X,F,B) =

N∑

r=1

θ
(r)
0 (X)W (r)(F,B). (7)

In this expression, θ(r)0 (X) denote characteristic functions occupied by phase r and take values θ(r)0 (X) =

1 if X ∈ V
(r)
0 and zero otherwise.

In the case of periodic composites these functions are periodic and are fully determined by the unit cell

occupying a domain V#
0 by [5]

θ
(r)
0 (X) =

∑

q1,q2,q3∈Z

θ
(r)
0 (X + q1L1 + q2L2 + q3L3), X ∈ V#

0 . (8)

Here, the unit cell is assumed to be a parallelepiped defined via the lattice vectors Li (i = 1, 2, 3) in

the reference configuration. Even though the scope of the present study does not involve the study of

instabilities, it is relevant to mention that the solution of the problem could be periodic on a larger unit

cell qV#
0 (with q = (q1, q2, q3)), especially if bifurcated solutions are present but such work is left for

a future study. Nonetheless, in the present study, we focus on the evaluation of the effective response

of magnetoelastic composites before bifurcation and thus the smallest unit cell V#
0 suffices.

3 Local Constitutive behavior

In this section, we define the homogenization problem insisting on the following important points. In

order to be able to understand the underlying micro-mechanisms leading to the deformation of a com-

posite material lying inside a uniform magnetic field and of course neglecting any boundary layer/corner

effects present in a standard BVP, one needs to consider the following steps in the context of periodic

homogenization:

• First, we need to write down the Lagrangian magnetic field B as

B = B + B̃ (9)

Here, B denotes the average magnetic field and B̃ a perturbation field due to the presence of a

magnetizable body.
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• Next, we subtract from the total energy the effective energy term:

Wmaxw =
F B · F B

2µ0J
. (10)

where F corresponds to the average deformation gradient and and J = detF. The last equation

corresponds to the effective magnetic energy in the air (ether medium). This energy results in

a Maxwell stress term which serves to model the attraction forces between the two magnetic

poles. Since in a realistic situation the two magnetic poles are unmovable and fixed while at the

same time are not in contact with the boundary of the solid, the corresponding traction does not

contribute to the deformation of the magnetizable body lying between the magnets. While in a

standard BVP such geometric configuration is readily taken into account by standard boundary

conditions and by the presence of the air between the magnets and the body, in the present case

of periodic homogenization we have to take this term out beforehand. In any other case, this

would lead to a fictitious stressing of the magnetizable (or any non-magnetizable) body as if

the magnets were attached on the boundary of the solid exerting an additional stressing to the

body due to their mutual attraction1 . While the homogenization problem itself is well-posed and

one could homogenize and subtract this energy afterwards, this would not allow for a correct

interpretation of the micro-deformation mechanisms observed during the numerical simulation.

• Finally, considering again a realistic experimental configuration, one has to apply the Eulerian

part of the magnetic field b instead of the Lagrangian one, B. The reason is well explained by

Brown and Eriksen in the sense that the macroscopic average magnetic field b is the one created

by the magnets and is present ab initio without the presence of the magnetizable body. Then, the

periodic magnetizable body will induce a perturbation field B̃ which will be periodic with zero

average. In other words, if one is sitting in a given point the average (background) field does not

change with the deformation of the magnetizable body and thus constitutes (by nature) a Eulerian

measure. This has significant implications in the resulting deformation of the periodic medium

as well as the relevant periodic boundary conditions since one has to apply

b =
1

J
F B = const (11)

and not B 6= const. This last expression constitutes a nonlinear constraint on the average vari-

ables F and B. Of course this last constraint is convenient to be applied during the homogeniza-

tion process since it leads to a non-proportional loading in the F-B space. Again, if this is not

done during the numerical simulation, one could scan the entire F-B space and then pick only

the points that satisfy equation (11). Nonetheless, in this case, one will not be able to directly

observe the underlying micro-deformation mechanisms that lead to the overall magnetostriction

of the composite.

1It is interesting to note in this case, that in the context of electro-active polymers, this term needs not be taken out of
the energy if the deformation results due to electrodes attached on the body since they deform with its boundary while the
attractive forces between the electrodes contribute to the deformation of the body itself.
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Considering the above three conditions, one could write the the variational formulation (neglecting the

body forces)

W̃ (F,B) = min
ũ,Ã

1

|qV#
0 |

∫

qV
#
0

W
(

F +Gradũ,B +CurlÃ
)
dV −

1

2µ0J
F B · F B +

1

2µ0ξ

∣∣F B − J b
∣∣2 ,

(12)

where ũ and B̃ = CurlÃ are qV#
0 -periodic fields such that the deformation gradient and magnetic

fields are given by F = F + Gradũ and B = B + CurlÃ. In addition, ξ → 0 is simply penalizing the

constraint (11). The addition of µ0 in the last term is done in order for this term to be in the same order

of magnitude as the other terms in the variational principle.

4 Results

Figure 1 shows representative results for the average response of a rectangular periodic unit-cell with

external aspect ratio wd = L2/L1 = 0.5 comprising circular rigid magnetizable inclusions forming

chains along the x2 direction (see inset in the same figure). The composite is subjected to a magnetic

field in the x2 direction together with F 12 = F 21 and σmech
11 = σmech

22 = 0 (where the superscript

mech serves to denote the purely mechanical part). In the context of Figure 1a, we observe a monotonic

increase of the average magnetization m2/ms with increase of the volume fraction c. On the other hand,
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Figure 1: Macroscopic response of a rectangular periodic unit-cell with external aspect ratio wd = 0.5 compris-
ing circular rigid magnetizable inclusions forming chains along the x2 direction. The composite is subjected to
a magnetic field in the x2 direction, zero overall mechanical traction. (a) Average magnetization and (b) average
magnetostriction as a function of the normalized average Eulerian magnetic field b/µ0ms for various particle
volume fractions c = 5, 10, 15, 20, 25, 30, 35vol%.

in Fig. 1b, the corresponding average magnetostriction exhibits a markedly non-monotonic response

with increase of the volume fraction c. For instance, we observe that c = 25% leads to a maximum

attained straining at b/ρ0ms = 0.5. In contrast, as we increase further the volume fraction to c = 35%

the overall magnetostriction reduces dramatically lying between the curves for c = 5% and c = 10%.

This can be explained by the fact that increase of c leads to a substantially stiffer mechanical response

of the composite which dominates over the stronger magnetic interaction of the particles in that case.

It should be noted that if the additional terms were not considered in the above described variational



22ème Congrès Français de Mécanique Lyon, 24 au 28 Août 2015

principle, the resulting magnetostriction would be monotonic with respect to the volume fraction c

(which is consistent with an experiment of a dielectric elastomeric composite covered with electrodes

at the top and bottom surface).
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