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A new constitutive model for elasto-plastic (rate-independent) porous materials subjected to general
three-dimensional finite deformations is presented. The new model results from simple modifications
of an earlier model of Kailasam and Ponte Castafieda (1997, 1998) [40,41] so that it reproduces the exact
spherical and cylindrical shell solution (composite sphere and composite cylinder assemblage) under
purely hydrostatic loadings, while predicting (by calibration) accurately the void shape evolution accord-
ing to the recent “second-order” model of Danas and Ponte Castafieda [17]. Furthermore, the present
model is based on a rigorous homogenization method which is capable of predicting both the constitutive
behavior and the microstructure evolution of porous materials. The microstructure is described by voids
of arbitrary ellipsoidal shapes and orientations and as a result the material exhibits deformation-induced
(or morphological) anisotropy at finite deformations. This is in contrast with the well-known Gurson [32]
model which assumes that the voids remain spherical during the deformation process and thus the mate-
rial remains always isotropic. The present model is implemented numerically in a finite element program
where a three-dimensional thin-sheet (butterfly) specimen is subjected to a combination of shear and
traction loading conditions in order to examine the effect of stress triaxiality and shearing upon material
failure. The ability of the present model to take into account the nontrivial evolution of the microstruc-
ture and especially void shape effects leads to the prediction of material failure even at low stress triax-
ialities and small porosities without the use of additional phenomenological damage criteria. At high
stress triaxialities, the present model gives similar predictions as the Gurson model.

© 2012 Elsevier Ltd. All rights reserved.
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1. Introduction

A critical mechanism of ductile failure in metals is more often
than not the nucleation, growth and eventual coalescence of voids
and microcracks as a result of the applied loading conditions
[38,27]. On the other hand, it is worth mentioning a few exceptions
[28] such as extremely pure materials where fracture occurs due to
the extreme shearing and subsequent rupture of grains as a result
of high shear strains and dislocation saturation. In general, how-
ever, the presence of pores (i.e., porosity) is an undesirable and
uncontrollable fact that could be due to pre-existing porosity in
the metallic (matrix) phase or nucleation of pores in the neighbor-
hood of impurities which are brittle and thus tend to fracture even
at small strains.
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It has been known for many years that the stress triaxiality, de-
noted here by X and defined as the ratio of the mean stress to the
von Mises equivalent or effective deviatoric stress, is at least one of
the critical parameters controlling ductile failure especially at high
triaxialities. This is a direct consequence of the significant growth
rate of the voids at large triaxialities (due to high tensile hydro-
static stresses), which lead to the coalescence of neighboring voids
and final fracture of the solid.

Nonetheless, recent experiments [4,5,47,21,20] suggest that a
new, different mechanism should come into play at low triaxiali-
ties. Indeed, in these studies, it has been found that a second load-
ing parameter, the Lode parameter, L (or equivalently Lode angle,
0) also plays a significant role in ductile failure at low triaxialities.
The Lode parameter is a function of the third invariant of the stress
deviator and is used to distinguish between the different shear
stress states in three dimensions (3-D). At low triaxialities, careful
experimental observations [7,5,10] strongly suggest that, void
elongation and rotation, which is dependent on the specific shear
stress state and leads to a deformation-induced morphological
anisotropy during the deformation process, becomes the dominant
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mechanism leading to the failure of the material. Therefore, mod-
eling of material failure should also take into account void shape
effects.

Modeling of the aforementioned mechanisms, such as void
growth and change of void shape and void orientation, has been
the subject of numerous studies in the literature over the last forty
years. The well-known Gurson [32] model (and its modifications
by Tvergaard [63]) has been the first complete and analytical mod-
el which is based on a micromechanical analysis of a spherical shell
(based on an earlier work of Rice and Tracey [58]), assumed to re-
main spherical even for general loading conditions (i.e., the solid
remains isotropic even at large shearing strains). Even though this
assumption is entirely consistent with the void growth mecha-
nisms observed under pure hydrostatic stress states, it becomes
less adequate with the addition of shear loads, since such loads
can induce significant morphological anisotropy due to changes
in void shapes. In an attempt to circumvent this drawback, several
modifications of the original Gurson model have been proposed in
later studies. Specifically, making use of a confocal spheroidal shell,
Gologanu et al. [29-31] proposed a model for porous materials
with aligned spheroidal voids that are subjected to axisymmetric
stress states aligned with the voids symmetry axis (see also later
works by Garajeu et al. [26], Benzerga [6], Benzerga et al. [8], Flandi
and Leblond [24], Monchiet et al. [49], Vincent and Monerie [66]
for random distribution of cracks and the review article Benzerga
and Leblond [9] for a complete set of references). Nonetheless,
spheroidal void shapes are a consequence of axisymmetric loading
conditions that are aligned with the symmetry axis of the void.
Thus, these models are unable to handle more general loading con-
ditions including general void shape changes and void rotation un-
der non-aligned loadings and finite deformations (but see Leblond
and Gologanu [44] who have reported work in progress along these
lines albeit without considering the underlying evolution of
microstructure).

In contrast to these micromechanical single-shell approaches,
more general constitutive models for porous ductile materials
capable of accounting for pore shape and orientation evolution—
under general three-dimensional loading conditions—have been
developed by Ponte Castafieda and Zaidman [57], Kailasam et al.
[42,43] and Kailasam and Ponte Castafieda [40] for porous elasto-
plastic materials. These models make use of the “variational”
(VAR) linear comparison homogenization method of Ponte Castafi-
eda [52] (see also Willis [69], Michel and Suquet [46], Suquet [61]
and Suquet [62] who interpreted the variational method as a “se-
cant” method), together with the estimates of Ponte Castafieda
and Willis [56] for porous linear-elastic materials with “ellipsoi-
dal” microstructures (i.e., particulate microstructures containing
orthotropic distributions of ellipsoidal pores), to generate corre-
sponding estimates for the macroscopic response of elasto-plastic
porous materials. They are supplemented by evolution laws for
microstructural variables corresponding to the porosity, average
pore shape and orientation, which are obtained from the homoge-
nization analyses in a self-consistent fashion [57,41]. The varia-
tional nonlinear homogenization method has also been extended
to include strain hardening elasto-plastic behavior for the matrix
material, and implemented numerically in large-scale, structural
finite element programs by Kailasam et al. [39] and Aravas and
Ponte Castafieda [3].

While these models are quite general, they tend to give overly
stiff predictions at high triaxialities and small porosities. However,
this limitation has been removed, at least for isotropic matrix sys-
tems, in recent work by Danas and Ponte Castafieda [17,18], mak-
ing use of the more accurate “second-order” linear comparison
homogenization method of Ponte Castafieda [54,55], and building
on earlier works by Danas et al. [15], Danas et al. [16] and Danas
[14]. The resulting model, which will be referred to here as the

SOM model, is also capable of handling general ellipsoidal particu-
late microstructures and general three-dimensional loading condi-
tions, including those leading to pore rotation, while remaining
quite accurate at large stress triaxialities and recovering the Gur-
son model for purely hydrostatic loadings and spherical or cylin-
drical pores. In a recent work by Danas and Ponte Castafieda
[19], where the SOM model has been extended to account for elas-
to-plastic behavior with strain-hardening of the matrix phase, it
has been shown that it is able to predict material failure even at
very low positive stress triaxialities as a result of an extreme void
elongation that leads to void collapse and loss of the loading
carrying capacity of the solid (see also Tvergaard [65] in two-
dimensions).

In view of the above described methods, it is useful to identify a
few major differences between the Gurson-type micromechanical
models and the nonlinear homogenization methods. A major
strength of the nonlinear homogenization models lies in the fact
that they describe representative volume elements and thus take
into account—albeit in an approximate manner through at most
two-point correlation functions—void-void interactions [35],
which can become significant at strong nonlinearities (e.g., plastic-
ity), even at tiny volume fractions. On the contrary, the microme-
chanical models are based on an approximate limit analysis of a
single spherical or confocal spheroidal shell subjected often to uni-
form strain boundary conditions. This obviously neglects any void
interactions of neighboring voids in the solid except in very dis-
tinct cases that the single shell model can be identified with a com-
posite material. Such cases are the composite sphere or cylinder
assemblage of Hashin [33] which is valid only for purely hydro-
static loadings and the “confocal spheroids” of Gologanu et al.
[29,31] which are valid only for a unique axisymmetric loading
which depends on the shape of the spheroid (in the limit that
the spheroid becomes a sphere one recovers the composite sphere
assemblage and the relevant loading is purely hydrostatic). An
additional, but not least, advantage of the homogenization meth-
ods over the micromechanical single-shell models is related to
the fact that they can be used to generate consistent evolution laws
for the relevant microstructural variables contrary to the microme-
chanical models such as Gologanu et al. [31], which need to borrow
evolution laws for the pore orientation from other models (e.g.,
above-mentioned homogenization models and/or unit cell finite
element models).

1.1. Scope of the study

The scope of the present study is twofold. First, we propose the
modified variational model (MVAR) for elasto-plastic, rate-
independent porous materials. This model is obtained by simple
modifications of the earlier “variational” homogenization method
which is known to be stiff at high stress triaxialities but is accurate
at low stress triaxialities, while it also tends to underestimate the
evolution of the void shapes. These modifications allow for very
accurate predictions of the macroscopic response and micro-
structure evolution of porous materials subjected to general
three-dimensional loading conditions at both low and high stress
triaxialities, as is the case in the SOM model of Danas and Ponte
Castafieda [17]. Comparison of the MVAR prediction with the
SOM and Gurson estimates will be carried out for both the instan-
taneous response (i.e., yield surfaces) and the microstructure
evolution (i.e., stress—strain curves).

Second, the new MVAR model is implemented numerically in a
three dimensional user-material subroutine (UMAT) in the Abaqus
[1] general-purpose finite element code by proper modification of
the earlier two-dimensional version developed by Kailasam et al.
[39] and Aravas and Ponte Castafieda [3]. The MVAR model, even
though being less accurate than the SOM model at the level of
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the representative volume element, it is more stable and faster
numerically than the SOM model since it involves only the evalu-
ation of one-dimensional elliptic integrals of the Eshelby-type,
contrary to the SOM model that requires, in the more general case,
the numerical evaluation of two-dimensional (surface) integrals
which become singular at large void elongations. For complete-
ness, the MVAR model will also be compared with the original
Gurson [32] model which is also implemented numerically in a
user-material subroutine.

Following the introduction, we describe the microstructure
making use of the appropriate microstructural variables. Then
the theory is presented in two separate sections. The first section
discusses the modification of the original variational method (i.e.,
MVAR model) to correct for the material response at high stress
triaxialities and makes contact with the composite sphere and
composite cylinder assemblages of Hashin [33]. The second section
discusses the evolution equations for the microstructural variables
used in the present model. The theory is followed by two sections
where the MVAR model is compared with the SOM and the Gurson
models in the prediction of the yield surfaces and the microstruc-
ture evolution of the porous material. Then, numerical simulations
of a three-dimensional thin-sheet (butterfly) specimen are carried
out using the MVAR and the Gurson models and the corresponding
results of the two models are compared for shear-dominated and
traction loading conditions.

2. Microstructure

The porous material is composed of two phases. The matrix
phase is elasto-plastic (rate-independent) and isotropic following
a J, flow rule with strain hardening described by the yield stress
gy as a function of the accumulated equivalent plastic strain &},.
The inclusion phase is vacuous and comprises voids of the same
shape and orientation distributed uniformly over the representa-
tive volume element. As a consequence of the finite deformations
considered in this work, the voids evolve into ellipsoidal shapes
and hence the porous medium becomes locally anisotropic (i.e.,
develops morphological anisotropy). Consequently, it is necessary
to define microstructural variables that not only describe the vol-
ume fraction of the voids, as is the case in the models of Gurson
[32] and Nahshon and Hutchinson [50], but also their shape, distri-
bution and orientation.

According to the schematic representation shown in Fig. 1 and
at some finite deformation state, we consider that the porous
material is characterized by a “particulate” microstructure consist-
ing of ellipsoidal voids with semi-axes a; # a, # as aligned in a cer-
tain direction. In addition, it is assumed [67,68,56] that the centers
of the voids are distributed with ellipsoidal symmetry, i.e., the dis-
tribution (or two-point correlation) function of the centers of the
voids has also ellipsoidal shape. This description of a particulate
microstructure represents a generalization of the Eshelby [22] di-
lute microstructure to the non-dilute regime. In this work, which
is based in the models of Ponte Castafieda and Zaidman [57] and
Danas and Ponte Castaileda [17], we will make the simplifying
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Fig. 1. Graphical representation of the microstructure showing the local orientation
axes n) with i =1, 2, 3 of a representative ellipsoidal void with semi-axis a;, a, and
as.

assumption that the ellipsoidal shape and orientation of the distri-
bution function is identical to the ellipsoidal shape and orientation
of the voids at each stage of the deformation. This assumption has
been shown [18] to provide very accurate estimates, especially at
small and moderate porosities. Nonetheless, it should be men-
tioned that, in general, the void distribution shape could be differ-
ent from the void shape, as discussed by Ponte Castafieda and
Willis [56], and this effect could be accounted for at least approx-
imately [42].

In view of the above hypotheses, the relevant internal variables
describing the state of the microstructure in this problem are:

Sq = {Sllidvf7wl1W27n<])7n(2)7n(3) = n(]) X n(Z)}’ (1)

where &b, is the accumulated plastic strain in the undamaged matrix
phase, f is the porosity (i.e., volume fraction of the voids), and
wy = as/a; and w, = asfa, are two aspect ratios characterizing the
ellipsoidal shape of the voids (with a;, a; and as; denoting the prin-
cipal semi-axes of the ellipsoidal voids) and their distribution func-
tion, while the vectors n'” (with i = 1,2,3) denote the orientation of
the principal axes of the voids.

3. Instantaneous constitutive relations

The overall strain-rate Dy =(v;;+ v;;)/2 (with z; denoting the
cartesian components of the overall applied velocity) is decom-
posed as
D; = Dg- + Dg., (2)
where ij and Df}, respectively, denote the elastic and plastic parts.
Note that due to the presence of voids the overall material behavior
is compressible implying that the plastic strain-rate tensor is not
deviatoric (i.e., D, # 0). In view of the fact that the pores can carry
no loads and following Aravas and Ponte Castafieda [3], it is as-
sumed that the elastic and plastic parts of the strain rate can be esti-
mated by independent, but consistent homogenization analyses.

3.1. Elasticity

Thus, the elastic response of the porous material is described in
terms of an effective compliance tensor M via

D = Mijkl(v)'kla Miju = M?ﬂd + lffo,ﬁlz, 3)

where ¢ is the Jaumann rate of the Cauchy stress, i.e.,
v .
Ojj = 0jj — WO + Oim W, 4)

with Wj; = (4;; — 9;;)/2 denoting the overall applied macroscopic
spin.

In relation (3), the microstructural fourth-order tensor, Qjjy;, is
directly related to the well-known Eshelby [22] or Hill [34] tensor
for ellipsoidal microstructures and its evaluation is detailed in the
Appendix of Aravas and Ponte Castafieda [3]. The fourth-order ten-
sor MM is the compliance modulus of the matrix phase and is taken
to be isotropic such that

1 1
M% = ﬂKijkl + ﬁ]fjkl» 5)
where p and x denote the elastic shear and bulk moduli of the ma-
trix phase, respectively, with

1 . <« 1.
lja =5 (00t + 0udu)s  Jiju = 3 90K
In this last expression, I, Jiii and Kjj, denote the cartesian compo-
nents of the standard, fourth-order, identity, hydrostatic and shear
projection tensors, respectively.

Kijkl = Iijkl 7]ijkl- (6)
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3.2. Plasticity

The present study focuses on rate-independent, elasto-plastic
porous materials and subsequent results include no rate effects.
However, for the derivation of the rate-independent constitutive
relations for the porous material, it is useful to start by considering
the appropriate limit of a homogenized dissipation (rate-depen-
dent) potential U(a;;) proposed by Ponte Castafieda [52] (but see
for more details regarding porous materials the doctoral thesis of
Danas [14]), which takes the form

N 1+n
%e } . (7)

ay (&)

Here, 6.(a;s,) contains all the information about the microstructure
and is detailed later in this section, gy is the flow stress of the ma-
trix phase in tension and &, denotes a reference strain-rate. The
yield strength o, need not be constant (i.e., perfect-plasticity),
whereby in the present work it is taken to be a function of the accu-
mulated plastic strain &}, in the matrix phase. In the above expres-
sion, the exponent n is the inverse of the strain-rate sensitivity
parameter and takes values between 1 and oo. The value n=1 cor-
responds to a linearly viscous material, whereby the limit n —» oo
needs to be considered separately and leads to a rate-independent
material response, which is the focus in the present study.
Thus, by considering the limit n — oo in Eq. (7), we obtain

&0y

(-2

U(o;s.) =

p P
0, 6. <ay(ey)
oo, otherwise,

U(e;s,) = { 8)

which directly gives the yield function as
ay (&), 9)
such that the yield condition is defined by ®(a;s,) = 0.

®(06;S,) = G, —

3.2.1. The original Variational formulae (VAR)
In the original variational method, the effective stress measure

b, is given by the explicit expression [14]
~ g ymykzo'kl
6 P

e 1 —f
where the fourth-order tensor m is written in terms of the micro-
structural tensor Q, which is defined as

(10)

3
var __
My = KuklJr

3f
3 —faIr llm Hngl (1)

Here, the subscript “var” has been used to denote the original result
of Ponte Castafieda [52], which is a rigorous upper bound of the
effective response of the porous material. In the limit k¥ —» oo in
(11), the tensor Q becomes a homogeneous function of degree one
in u and hence the tensor m is independent of u. In addition, Q
and consequently m are functions of the microstructural variables
s, and for a non-zero porosity f are both compressible. Note further
that when the voids become non-spherical, i.e., when the aspect
ratios, defined in (1), take values other than unity, m becomes
anisotropic. The explicit expressions for the evaluation of the micro-
structural tensor Q are detailed in the Appendix of Aravas and Ponte
Castafieda [3].

3.2.2. The modified variational or modified secant formulae

The original variational formulation of Ponte Castafieda [52],
discussed previously, has been found to be sufficiently accurate
at low stress triaxialities but tends to overestimate the effective re-
sponse of the porous material at high stress triaxialities, especially
at low porosities. In this connection, following the earlier works of
Ponte Castafieda [53] and Michel and Suquet [46], we correct

expression (11) by modifying only the hydrostatic part of m, such
that

e
VFn(1/f)’

The scalar factor g; brings the yield function (9) into alignment with
the spherical shell (or equivalently the “composite sphere assem-
blage”) and the cylindrical shell (or equivalently the “composite
cylinder assemblage”) solutions when subjected to purely hydro-
static loadings, while preserving standard requirements, such as
convexity and smoothness of the yield surface for the entire range
of microstructural configurations. Note, however, that the new
modified variational model in (12) is not an upper bound but an
estimate for the effective behavior of porous materials. Nonetheless,
this estimate has the following properties. In one hand, it repro-
duces the Gurson model in the special case of spherical voids and
purely hydrostatic loading, while satisfying exactly the variational
bound for all range of stress triaxialities and microstructures. In
addition, the correction factor g; in (12) brings into alignment the
present model with the second-order model of Danas and Ponte
Castafieda [17] for any choice of the microstructural variables s,
in the case of purely hydrostatic loadings.

At this point, it should be mentioned that more complicated
interpolation functions could in general be proposed in (12), how-
ever, there is risk that the yield surface becomes non-convex for
some range of microstructural configurations (e.g., large values of
the void aspect ratios). Thus, any modification of the above-
prescribed interpolation requires, in general, dependence upon
the microstructural variables, such as the porosity and the aspect
ratios. However, it will be shown in the following that the interpo-
lation (12) is adequately accurate when compared with the
second-order model of Danas and Ponte Castafieda [17].

2
i = mi + (g7 —1)JjpgMiin e @) = (12)

3.2.3. The spherical and cylindrical shell solutions vs. the VAR and
MVAR estimates

In order to demonstrate that the MVAR recovers the exact
spherical and cylindrical shell results, we first consider the special
case of spherical voids (i.e., w; =w, =1 or a; = a; = az) which im-
plies that the constitutive response of the porous material is isotro-
pic. Hence, for purely hydrostatic loadings, the spherical shell yield
function becomes [32,45]

3 1

ssh . _ 2 _
4 (Gmaf) - 2 ln(l/f) |O-m‘ O-,V7 (13)
which implies that at yield
¢SSh -0 = |O-m| 2 ln(l/f) (]4)
y

This last exact result is also obtained by using the Gurson [32] yield
function at purely hydrostatic loads, i.e.,

@ (g, f) = 2f cosh (3 f)_y) 1o (15)

Considering the yield condition &' =
tains (14).

In turn, in the limit of spherical voids and purely hydrostatic
loading, the original variational yield function, as obtained by using
relations (9)-(11), reads [16]

3
\[f |om| — (16)
Solution of (16) at yield gives
lon] _21F
gy, 3 Jf

0 and solving for ¢,,, one ob-

Py (Omsf) =

P =0 = (17)
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This last equation clearly deviates from the exact shell solution (14),
especially for small porosities.

However, the corrected modified variational model proposed in
Eq. (12) gives

3 1
%w ~% =3Ol - (9

which is identical to Eq. (13) and hence reproduces the exact result
(14).

At this point, it should be noted that under hydrostatic loadings
the spherical shell result coincides with the composite sphere
assemblage solution of Hashin [33], and thus it constitutes an exact
result for this specific isotropic microstrocture. In addition, the
same exact result is recovered by the isotropic infinite-rank lami-
nate microstructure (see Danas et al. [16] and Idiart [36]). These
observations suggest, albeit not in a rigorous manner, that the ex-
act shell result is a very accurate estimate for the effective response
of isotropic porous materials.

Similar to the above analysis, one can also consider the limiting
case of cylindrical voids with circular cross-section, i.e., the cylin-
drical shell problem (or equivalently the “composite cylinder
assemblage”) subjected to in-plane hydrostatic pressure. This case
can be readily obtained by allowing any one of the three semi-axes
(ay, ay or as) of the voids tend to infinity, while setting the other
two equal. Here, we consider az — co and a; = a,, while the cylin-
drical shell is subjected to hydrostatic pressure in the plane 1-2
with all the out-of-plane components of the deformation tensor
set equal to zero (i.e., plane-strain). The resulting yield function
for this cylindrical shell becomes then

V3 o1
2 In(1/f)
The above result is equivalent to those obtained by the relevant
two-dimensional Gurson model (c.f, Eq. (3.18) in Gurson [32])
and the two-dimensional infinite-rank laminate microstructures
[15,37].

On the other hand, considering the limit a; — oo in the original
variational method [15], one obtains

" (0,:f) = */; %

. 3
O (omif) =54

(0, f) = loy|—0ay, y=1,2. (19)

|O-}”/| - O-y’ V = ]725 (20)
which again deviates from the exact solution (19). However, consid-
ering the modified variational model obtained by using the cor-
rected Eq. (12), one recovers the exact solution (19), i.e.,

muoar \/§
QDH (O'yy;f) = Tq] 1\{ff |O-yy‘ — Oy
V3o
_TWIG’”"*%’ y=1,2. (21)

The fact that the use of the simple scalar correction factor qj, defined
in relation (12), leads to two exact solutions for two different micro-
structures is not trivial. It rather suggests that the original varia-
tional method comprises the appropriate qualitative features of
microstructure evolution, i.e., it predicts the change of the factor 3
(for a; =a,=as3) in relation (16) to the factor v/3 (for asz — oo,
a; = ay) in (20)).

3.2.4. The plastic flow rule
The plastic strain-rate D” is evaluated in terms of the yield func-

tion @ using the standard normality condition and is given by

o My Ok

D% = ANj, Nj=—=
’ ! ! 00 (1 —f)OpqMpgsOis

(22)

mvar

where m=m""" from Eq. (11) for the VAR model and m=m
from Eq. (12) for the MVAR model. The scalar A > 0 is the plastic

multiplier and is determined from the consistency condition as dis-
cussed in Aravas and Ponte Castafieda [3] (cf Eq. (44) in that
manuscript).

4. Evolution of microstructure

When porous materials undergo large plastic deformations, the
underlying microstructure and therefore the morphological anisot-
ropy of the material evolve. The microstructure evolution, in turn,
affects the response of the material itself since the yield condition
and the plastic flow rule depend on the current state of the micro-
structure. Thus, evolution laws for the microstructural state vari-
ables s, have to be prescribed. In the current application, we
assume that evolution of microstructure occurs only due to plastic
deformation of the matrix. In addition, it is important to note that
the purpose of homogenization models (such as the MVAR and
VAR model discussed in the present study) is the description of
the effective behavior in average terms. Therefore, ellipsoidal voids,
whose shape and orientation is described by the two aspect ratios
w; and w-, and the orientation vectors n'” (i =1,2,3), respectively,
evolve-on average-to ellipsoidal voids with different shape and
orientation. This, in turn, suggests that the average change in shape
and orientation of the voids depends only upon the average strain-
rate D? and the average spin W in the vacuous phase. These two
tensorial quantities can readily be obtained as a byproduct of the
homogenization process as discussed below. Then, the evolution
laws for the microstructural variables are obtained simply by
appropriate kinematic considerations.

4.1. Evolution of the accumulated plastic strain in the matrix and the
porosity

The evolution equation for the accumulated plastic strain in the
matrix phase &), is determined by the condition that the macro-
scopic plastic work O',-J-Dg- be equal to the corresponding micro-
scopic plastic work (1 — f)o,&h;, which implies that [32]

oo 005 o oNg
M (1-He, T (1-foy

For strain hardening materials, g, is a function of &},, which, in gen-
eral, is to be extracted from experimental uniaxial stress-strain
curves. In our work, a rather general strain hardening law for
oy (&) will be given in the results section.

Any changes of the pores are assumed to be only the result of
plastic deformations [3] while elastic deformations are considered
to have a negligible effect on the evolution of the voids volume
fraction. Noting further that the matrix material is plastically
incompressible (J, plasticity), the evolution equation for the poros-
ity f follows easily from the continuity equation and reads

(23)

=0 =D} = A1 = f)Ni. (24)

We point out that void nucleation is not considered in the above
relation but can be readily included by proper modification of
(24) (e.g., Needleman and Rice [51], Chu and Needleman [12],
Tvergaard [64]).

4.2. Evolution of the aspect ratios

The evolution of the aspect ratios w; and w,, describing the
shape of the voids, is given in terms of the average strain-rate in
the vacuous phase D?, which is given in terms of the fourth-order
concentration (or localization) tensor A, such that

. 1 1
Djj = AjuDyy = AAjuNu,  Ajja = ¥ <1ijkl - jKiqumE;m)- (25)
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var

Here, m=m"" is given from Eq. (11) for the VAR model and
m =m"™" from Eq. (12) for the MVAR model. In the above relation,
we have made the assumption that D depends only on the plastic
strain-rate D” which is consistent with the assumption made in the
beginning of the section stating that elastic deformations are very
small and hence do not contribute to the evolution of the micro-
structural variables.

The evolution law for the aspect ratios is obtained by using stan-
dard kinematics and the definition w; = as/as (s = 1,2), such that

o as  ds\ _ GG O\
Wy = 0y W (afa—s) _ocwws(n,. n> —non )Dij

3)

= Aowws (nn® — ') AyuD}, (26)

J

(no sum on s = 1,2). The scalar factor «,, has been introduced in the
last expression in a heuristic manner in order to enhance the accu-
racy of the evolution of the aspect ratios. The reason we introduce
this factor is related to the findings of Danas [14] and Danas and
Ponte Castafieda [18], who showed that the original variational
method and consequently the modified variational model of the
present work tend to underestimate the evolution of the void shape
at low stress triaxialities. In general, «,, is a free parameter that can
be calibrated from experiments. In the present study (i.e., rate-inde-
pendent plasticity with n — oc), we choose the value a,, = 7/4. This
is done in order to bring the modified variational model in good
agreement (c.f. Section 5.3) with the recent second-order model
[17], which was shown to be very accurate when compared with
unit-cell finite element calculations in all range of stress triaxialities
considered (see Danas [14] and Danas and Ponte Castafieda [18]). It
should be noted, however, that in the case of rate-dependent porous
materials, a,, is expected to be a function of the strain-rate sensitiv-
ity n since for n = 1 (linearly viscous material), the value a,, = 1 leads
to the exact solution in the dilute limit (f - 0), and hence no mod-
ifications are needed in that case. In addition, one could also let a,,
be a heuristic function of the stress triaxiality in order to capture
the counterintuitive elongation of the void shape transversely to
the maximum principal stress at very high stress triaxialities and
dilute porosities (see relevant discussion in Budiansky et al. [11],
Fleck and Hutchinson [25] and Danas and Ponte Castafieda [18])
but such an attempt is not pursued here.

4.3. Evolution of the orientation vectors

The evolution of the orientation vectors n” (i = 1,2,3) depends
upon the average strain-rate D” (see (25)) and the average spin
WY in the vacuous phase, which, in turn, are given in terms of
the overall plastic strain-rate D” and the overall spin W. Thus, first,
it is helpful to write the average spin in the vacuous phase as [41]

Wi = Wy — CjuDy = Wij — CijaAumnDys  Cija = —(1 = ) ijpgApgu,

(27)
where IT is the fourth-order Eshelby [22] rotation tensor and de-
pends on the aspect ratios w; and w, as well as on the orientation
vectors n” (i = 1,2,3). The tensor IT is antisymmetric with respect to
the two first indices and symmetric with respect to the last two, i.e.,
jja = —jir = i The evaluation of the IT tensor is detailed in the
Appendix of Aravas and Ponte Castafieda [3].

The evolution of the orientation vectors n'” is determined by
the spin of the Eulerian axes of the ellipsoidal voids, or
“microstructural” spin w, via
Y=o, k=123 (28)

1

The microstructural spin o is related to the average spin in the void,
WY, and the average strain-rate in the void, D”, by the well-known
kinematical relation, which is written in direct notation as [34,3]

Wy = w? ws =1.

w?
’121ww2

(29)

The special case in which at least two aspect ratios are equal is dis-
cussed later in this section.

The evaluation of the Jaumann rate (Wthh is an objective rate)
of the orientation vectors n'”, denoted by n® (k=1,2,3), is re-
lated to the standard time derivative of relation (28) by

D) _ p(k) (k) _ (k)
n =0 — Wi = (w5 — Wyn™,

k=1,2,3. (30)

The last equation can be written in terms of the plastic spin [13],
which is defined as the spin of the continuum relative to the micro-
structure, as follows

= _WPn!

U]7

WP = Wy — . (31)

Combining the above equations, the plastic spin WP can be written
as
W” AQZ,

2 2
w2 +w?
@ = CjuNu —5 Z [( p g +n£15)n1(3r))Aqu1Nkl] m'n’,

rs=1 r
r#s
Wr#Ws

(32)

where N and A are given by (22) and (25), respectively.

At this point, we point out that special care needs to be taken for
the computation of the spin of the Eulerian axes in the case of a
spherical void, i.e., when w; = w, = w3 =1, as well as for a spheroi-
dal void, i.e., when wi=w,#w3=1 or wy#wy=w3=1 or
wy = w3 =1 # w,. More specifically, when two of the aspect ratios
are equal, for instance wy = w,, the material becomes transversely
isotropic about the n®-direction, and thus the component 8, be-
comes indeterminate. Since the spin Qf, is inconsequential in thlS
case, it can be set equal to zero [2], which implies that w3 = ws.
This notion can be applied whenever the shape of the void is sphe-
roidal, in any given orientation. Following a similar line of thought,
when the voids are spherlcal (wy =w, =ws3=1) the material is
isotropic so that @ = 0, n® =0 and n® = Wn® (k=1,2,3).

5. Results for the instantaneous effective response and
evolution of microstructure

This section deals with the application of the modified varia-
tional model (MVAR) to predict the instantaneous effective
response and the evolution of microstructure under finite deforma-
tions of a porous material subjected to purely triaxial loading con-
ditions so that the orientation vectors of the voids remain fixed and
aligned with the laboratory frame axes. We first define the stress
triaxiality and Lode parameters as alternative stress measures of
the principal stress components. In the following, we construct
yield surfaces for various microstructural configurations, both iso-
tropic and anisotropic, in order to investigate the effect of void
shape upon the instantaneous effective response of the porous
material. This section ends with the study of the effect of the Lode
parameter and the stress triaxiality on the microstructure evolu-
tion at finite deformations. For comparison purposes, the MVAR
model is compared with the original variational bound (VAR)
[52], the second-order model (SOM) [17] and the Gurson [32] mod-
el (GUR). It is recalled that while the MVAR, VAR and SOM models
belong to the same family of homogenization models and hence in-
clude void shape effects, the GUR model is based on the spherical
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shell analysis and hence remains isotropic (i.e., voids remain
spherical) during the entire deformation process.

5.1. Triaxial loading conditions: stress triaxiality and Lode parameter

This subsection discusses the loading conditions and the associ-
ated stress measures used to distinguish between hydrostatic load-
ing and different shear stress states. In the context of purely
triaxial loading conditions, one can define alternative stress mea-
sures other than the principal stresses that are more appropriate
for dilatational plasticity of porous materials. The three alternative
measures are the hydrostatic (or mean) stress, o,,, the von Mises
equivalent (or effective) stress, a,, and the third invariant of the
stress deviator, J5, defined as

g 3
On="3" Oe=\/3=|35isi, J3=det(s;), (33)

where s; = gjj — od;; is the stress deviator. Using these definitions,
we can readily define the stress triaxiality, X», and Lode parameter,
L, or equivalently the Lode angle, 0, via the following expressions
27 ]

, L:—cosB@:—Ta—g. (34)

0,
Xy =-m
ae

By definition, the range of values for the X and L, (or §)! are
—0o<Xs<oo,and —1<L<1lor0<0< /3. (35)

In order to illustrate the connection of Xs and L with the stan-
dard stress components, we consider the principal stresses
01= 011,02 = 02 and 03 = g33 (05 = 0 for i # j) that are aligned with
the laboratory frame axes, e, e®) and e(®), respectively. Then, rela-
tions (34) can be used to express the principal stresses as functions
of X5, 0. and 0, such that

2168{0'1,0'2,0'3} = {—cos (0—1—;), —cos (0—§>,c050}
+%X;{1,1,1}. (36)

It should be noted, here, that if initially anisotropic materials are
considered (e.g., arbitrary ellipsoidal void shapes) then one should
consider 0 < 0 < 27 in order to attain all possible values for the prin-
cipal stress components (see for instance IT-plane graphs in Danas
and Ponte Castafieda [18]).

Fig. 2 shows the normalized principal stresses defined in (36) as
a function of the Lode parameter L and Lode angle 0 for (a) X> =0
and (b) Xx = 1. It is obvious from Fig. 2a that for L= —1 or 0 = 0, the
stress state is axisymmetric with one positive and two negative
stresses (axisymmetric tension). On the other end, when L=1 or
0 = 1/3, the stress state is also axisymmetric but with two positive
and one negative stresses (biaxial tension with axisymmetric com-
pression). Note that these two different axisymmetric states lead to
different evolution of the underlying microstructure and therefore
to different overall responses as the deformation progresses.
When, L =0 or 0 =7/6, the stress state is in-plane shear with one
stress identically equal to zero (e.g., plane stress state). The rest
of the states are between axisymmetric and in-plane shear states.
It should be noted that when the stress triaxiality is non-zero then
the principal stresses are simply translated by a constant either up-
wards for Xs > 0, as shown in Fig. 2b for Xx =1, or downwards for
Xx <0 (not shown here for brevity). Note also that |Xx| - oo and
X =0 correspond to purely hydrostatic and purely deviatoric load-
ings, respectively.

! In the literature, other definitions of the Lode parameter have also been used. In
particular, using the very common definition for the Lode parameter u=
(201 — 63 — 02)/(03 — G3), one finds readily that v/3L = u in expression (34),.

5.2. Yield surfaces

In this section, we present results for the instantaneous effec-
tive response of porous materials comprising voids with spherical
and non-spherical shapes. First, we examine the accuracy of the
estimates obtained by the present MVAR model and its ability to
recover the Gurson result in the purely hydrostatic limit. Second,
we examine the effect of the void shape on the resulting yield sur-
face of the porous material.

5.2.1. Isotropic microstructures

Fig. 3 shows yield surfaces for spherical voids (i.e., w; =w, =1)
as predicted by (a) the modified variational model (MVAR), (b) the
variational bound (VAR), (¢) the second-order model (SOM) of Da-
nas et al. [16] and (d) the Gurson [32] model (GUR). The porosity is
set equal to f=1% and the loading is axisymmetric (i.e., L=—1 or
0 =0). The MVAR model is identical to the VAR bound at zero stress
triaxiality (i.e., purely deviatoric load ¢,, = 0) and deviates from the
bound with increasing o, In the purely hydrostatic limit (i.e.,
g — 0), the MVAR model attains the analytical spherical shell
solution and thus coincides with the SOM and Gurson models.
For intermediate values of the mean stress (i.e., 1 < g,, < 2.8), how-
ever, the difference between the MVAR and GUR models is signif-
icant. In this case, the MVAR agrees well with the SOM model,
which has been shown to give very accurate estimates when com-
pared with numerical high-rank laminate microstructures (see Da-
nas et al. [16] for a detailed comparison). At this point, it is worth
noting that for the axisymmetric loading considered here the SOM
model is not symmetric with respect to the o, =0 vertical axis
implying that for purely deviatoric stress loads the corresponding
strain tensor (extracted by using the normal to the SOM yield sur-
face) exhibits a small hydrostatic part, as already discussed in Da-
nas et al. [16]. This is attributed to the fact that the isotropic SOM
yield surface depends also on the third invariant of the stress ten-
sor, i.e., J3. This is not the case for the rest of the models, which
have a quadratic character and hence depend only on the first
two invariants, the mean stress g, and the von Mises stress ge.
Nonetheless, the dependence of the more accurate SOM isotropic
yield surface upon the third invariant of the stress is rather negli-
gible, especially for small porosities and, as will be discussed later
in this section, it is of minor importance when compared to the
corresponding void shape effects at a given level of porosity.

In Fig. 4, we compare the MVAR and SOM isotropic yield sur-
faces for three different porosities, f= 0.1%, 1%, 5%. The main obser-
vation is that the simple modification of the original variational
bound, introduced in Eq. (12), leads to a satisfactory agreement be-
tween the MVAR and the SOM predictions for a large range of
porosities. The largest difference between the MVAR and the
SOM estimates is found for smaller porosities (f=0.01%) and
moderate values of the mean stress (2 < g, <4). In addition, the
asymmetry of the SOM yield surface with respect to the g,,, = 0 ver-
tical axis diminishes with decreasing porosity.

At this point, it should be noted that while the differences be-
tween the MVAR and the SOM yield surfaces are relatively small,
the differences in the normals 0®/da, (which are essential for the
evolution of the microstructure) are not necessarily close (in rela-
tive terms). In fact, the MVAR model tends to give more compliant
estimates than the SOM model especially for stress triaxialities in
the order of 1-2.

5.2.2. Anisotropic microstructures

Fig. 5 shows MVAR and SOM yield surfaces for (a) spherical
voids (w; =w, = 1), (b) prolate voids (w; = w, =5), (c) oblate voids
(w1 =w, =0.2) and (d) arbitrary ellipsoidal voids (w; =5, w, =0.2).
The porosity is set equal to f= 1%, whereas the loading is axisym-
metric along the x3-axis (L = —1). This implies that in the present
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Fig. 3. Yield surfaces in the o.-0,, plane for isotropic microstructures (i.e.,
wy =w, = 1). Comparison between the various models (modified variational MVAR,
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Fig. 4. Yield surfaces in the o.-0,, plane for isotropic microstructures (i.e.,
wy =w, =1). Comparison between the modified variational MVAR and the sec-
ond-order SOM models for three different porosities f=0.1%, 1%, 5% and L= —1 (or
0=0).

case of prolate and oblate voids, which are also axisymmetric with
respect to the xs-axis, the corresponding material response is
transversely isotropic. In contrast, for the more general case with
the ellipsoidal void shape (w; = 5, w, = 0.2) the response of the por-
ous material is orthotropic with the axes of orthotropy coinciding
with the ellipsoidal void axes. The main observation in Fig. 5 is that
non-spherical void shapes have a dramatic influence on the yield
surface of the porous material as predicted by both the MVAR
and the SOM models. First, the slopes of the yield surfaces depend
strongly on the void shape. For instance, a porous material with

ellipsoidal voids (w; =5, w, =0.2) is stiffer than that with oblate
voids (w; =w, =0.2) in the regime of —0.6 < g, < 1.2, whereas it
becomes more compliant for the rest of the mean stress values.
In addition, for the same value of porosity, non-spherical void
shapes lead to a significantly more compliant response at high val-
ues of the mean stress, especially in the case of oblate and arbitrary
ellipsoidal voids. Moreover, it is evident from this figure that arbi-
trary ellipsoidal shapes (w; =5, w, = 0.2) lead to very different re-
sponses when compared with spheroidal shapes (w; =w, =0.2 or
wi =wy=0.2).

It should be mentioned at this point that a series of additional
triaxial loading conditions have also been considered and the
MVAR has been found to be in good agreement (similar to the
one observed in the previous results) with the corresponding
SOM estimates. However, no such results are shown here for
brevity.

5.3. Stress—strain response and evolution of microstructure under
finite deformations

In this section, the objective is to investigate the effects of the
stress triaxiality Xz and Lode parameter L (or Lode angle 6) on
the macroscopic response and microstructure evolution of porous
elasto-plastic materials subjected to triaxial loading conditions
and compare the relevant estimates given by the modified varia-
tional model (MVAR), the second-order model (SOM) [17] and
the Gurson [32] model (GUR). Given the fact that a maximum
stress is expected, the strain rate D33 is prescribed, together with
the values of Xx and L, which will serve to determine all three
(principal) stresses, o1, g, and a3, as well as the evolution of the
microstructural variables, the porosity f, and the average aspect
ratios, w; and w,, as functions of time t. No rotation of the voids
is considered in this stage, so that the principal axes of the voids
coincide with the laboratory frame during the entire deformation
process, i.e, n”=e (i=1,2,3). For convenience, the total
equivalent strain & = [ ,/3D;Djdt, with Dj; denoting the strain-
rate deviator, is used as a time-like variable, whereas the overall
von Mises equivalent stress o, is considered as the main stress
measure for the characterization of the macroscopic response in
the following results instead of the individual stress components.
Because of the special loading conditions imposed, the maximum
on the g, vs. & plots will correspond exactly to a vanishing harden-
ing rate of the porous material, indicating a possible instability
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Fig. 5. Yield surfaces in the g.~a,, plane for isotropic (spherical voids w; = w, = 1) and anisotropic microstructures; prolate voids w; = w, = 5, oblate voids w; = w, = 0.2 and
ellipsoidal voids w; = 5, w, = 0.2. Comparison between the modified variational MVAR and the second-order SOM models for f=1% and L=—1 (or 6 =0).

under stress-controlled loading conditions. Furthermore, it should
be emphasized, that as a consequence of the very small magnitude
of the overall elastic strains, the difference between the overall to-
tal strain and the overall plastic strain is very small for all practical
purposes.

5.3.1. Material parameters and initial conditions

The Young’s modulus and Poisson’s ratio of the matrix phase are
taken to be E=200 GPa and v=0.3, respectively, and the matrix
phase to exhibit isotropic strain hardening following the law?

p &) 0o
oy (&) = 0o (1 +—> . Bo=—f. (37)
&0 E
In this expression, gg and &g denote the initial yield stress and yield
strain of the matrix material (i.e., the material with f=0),and N < 1
is the strain hardening exponent. Typical values for these parame-
ters are oo =200 MPa and N =0.1, which will be used throughout
this section.

The matrix phase is taken to be initially unloaded with zero
accumulated plastic strain &}, = 0, while the voids are initially
spherical with w;=w;,=1. The initial porosity is taken to be
fo=1%. It should be noted that the macroscopic response of the
porous material at large deformations is strongly affected by the
hardening exponent N, the initial porosity f and the initial aspect
ratios w; and w,, but carrying out a parametric study with respect
to those parameters is beyond the scope of this work and the read-
er is referred to the recent work of Danas and Ponte Castafieda [19]
for more details. On the contrary, the dependence of response upon
the Young’s modulus, and Poisson’s ratio has been found to be
weak at large deformations.

In the following, we show results for two representative values
of stress triaxialities, X5 = 0.1, 1, and four of the Lode parameter,
L=-1, -0.5,0, 1 (or Lode angle 0 =0, 20°, 30°, 60° respectively).

5.3.2. Low stress triaxiality

Fig. 6 shows MVAR, SOM and GUR plots of (a) the equivalent
stress o, (b) the porosity f, and the aspect ratios (¢) w; and (d)
W, as a function of the equivalent strain &, for the aforementioned
values of the Lode parameter and a low value of the stress triaxial-
ity (X>=0.1). The main observation in Fig. 6a is that the Lode
parameter strongly affects the onset of softening (i.e., maximum
load) of the porous material. In the case of axisymmetric tensile
loadings (L= —1), the stress increases following the prescribed

2 1t should be noted here that any hardening law for the matrix phase involving
temperature effects or different non-monotonic strain hardening stages can be readily
taken into account. However, the simple isotropic model will suffice for the purposes
of this work.

strain hardening law of the matrix phase (N = 0.1 here) for all mod-
els. On the other hand, for L=-0.5, 0, and 1, we observe sudden
drops in o, at different levels of the total strain &, indicating a sud-
den loss in the load-carrying capacity of the material, as predicted
by both the MVAR and the SOM which are found to be in good
agreement. In contrast, the GUR model (almost coincides with
the MVAR and SOM for L= —1) does not exhibit any dependence
on the Lode parameter and hence predicts no softening at such
low triaxiality.

The mechanism leading to this sharp stress drop is directly re-
lated to the microstructure evolution. Thus, plots for the evolution
of f, w; and w; are provided in Fig. 6b-d, respectively, as a function
of the equivalent strain &.. In part (b), we observe an overall reduc-
tion in the porosity f as a function of &, for both the MVAR and SOM
models, except in the case of the MVAR prediction for L = —1. In con-
trast, the GUR model predicts a monotonic increase of fwith increas-
ing straining. Nonetheless, this porosity increase is not sufficient to
overcome the matrix hardening in order to lead to overall softening
of the material, as has been observed in Fig. 6a. Therefore, the corre-
sponding stress drop observed in part (a) for both the MVAR and
SOM estimates cannot be associated with porosity increase, and
the only microstructural variables that can possibly affect the over-
all response of the porous material are the aspect ratios, w; and w;.

As shown in part (c), w; can become rather large for L = —1, for
both the MVAR and the SOM models (GUR model includes no void
shape effects), but remain below the value of 5 for L > —0.5. On the
other hand, as shown in part (d), w, increases very fast for all val-
ues of L used here except for L = —1. In particular, for L =1 (corre-
sponding to axisymmetric compression along the x, direction, see
Fig. 2a), w; = 1, while w, blows up at a certain “critical” value of ¢,
for both the MVAR and the SOM models. This implies that a void
collapse mechanism (i.e., flattened cracks lying in the x;—x3 plane)
is developed in the x, direction with increasing strain, while the
material becomes locally orthotropic with the axes of orthotropy
coinciding with the void axes.

To clarify this failure mechanism further, it is recalled here that
the aspect ratios serve to denote both the shape of the voids as well
as the shape of their distribution function (see also Danas and Pon-
te Castafieda [19]). Hence, as a, — 0 and a; =as — oo both the
shape of the voids and the shape of their distribution function be-
come extremely flat in the x; — x5 plane. This observation together
with the fact that the porosity is small but finite, implies that the
pores grow without a bound in the x;-x3 plane, eventually linking
up to form “layers” of pores in the solid material, which can be
associated with void coalescence in that plane and subsequent loss
of the load-carrying capacity of the material in the transverse
direction. This, of course, implies that the corresponding yield sur-
face of the porous material shrinks to zero. In addition, after the
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Fig. 6. Plots of the MVAR, SOM and GUR estimates for (a) the equivalent stress a,, (b) the porosity f, and the aspect ratios (c) w; and (d) w, as a function of the equivalent
strain &, for a low value of the stress triaxiality (Xx = 0.1) and four values of the Lode parameter. The influence of the Lode parameter is dramatic at low triaxialities mainly
due to the extremely sharp evolution of the aspect ratio w, in (d). The strain hardening exponent is N =0.1 and the initial porosity fo = 1%.

maximum load occurs, the porosity tends to grow again, especially
in the SOM model, which is a direct consequence of the applied
stress (fixed triaxiality and Lode angle) loading conditions and
the strong orthotropy developed due to the extreme void elonga-
tions in this case. Such a failure mechanism is consistent with
the “flat” dimples observed in the experimental results of Barsoum
and Faleskog [5] at low stress triaxialities. For other values of L
with —1 <L <1, essentially the same mechanism is observed ex-
cept that in this case the pores also change shape in the collapse
plane (x;-x3). However, as can be seen in Fig. 6a and d, the effect
becomes more pronounced as the value of L increases from —1 to-
ward +1. At the extreme value of L = —1, the shape of the pores is
constrained to remain prolate, and this kinematic restriction pre-
vents collapse of the pores, explaining the lack of a maximum
stress in this case.

5.3.3. High stress triaxiality

Fig. 7 shows MVAR, SOM and GUR plots of a., f, w; and w; as a
function of the equivalent strain ¢, for the aforementioned values
of the Lode parameter L and for a high stress triaxiality (Xs =1).
The main result is that the effect of the Lode parameter on the
overall mechanical response of the porous material is negligible,
as can be seen in Fig. 7a, since all the g.-¢, curves almost coincide
for the largest range of the applied strain. All models exhibit a
maximum stress at rather low strains and then smooth but signif-
icant softening as the deformation progresses. Specifically, the
MVAR shows the most compliant response among the models
shown here, while the GUR prediction is the stiffest one. This is
consistent with the observations made in the discussion of the

yield surfaces in Section 5.2, where it was found that the MVAR
is, in most of the cases, the more compliant of all the models
considered.

As before, the fact that the stress—strain curve is independent of
the Lode parameter at Xs =1 is easily explained by referring to
Fig. 7b, where the increase of porosity is significant for all values
of the Lode parameter (L= -1, —0.5, 0, 1). The MVAR model pre-
dicts the highest increase in f, which is consistent with the fastest
drop in o, in Fig. 7a, and vice versa for the corresponding GUR esti-
mate. In addition, by observation of parts (c) and (d), we note that
the void shape still evolves as a function of &, but in a much
weaker manner than for the previous case of Xx =0.1. This indi-
cates that the main softening mechanism in this high-triaxiality
situation (Xx = 1) is clearly the evolution of porosity which is found
to lead to significant softening of the effective response of the por-
ous material. Note that this void growth mechanism leads to the
well-known ’high-triaxiality coalescence’ of the voids, and failure
consistent with the deep dimples observed in the micrographs
from the experimental results of Barsoum and Faleskog [5]. Also,
it is clear that the dominance of the evolution of porosity will pre-
vail at larger stress triaxialities Xs > 1 not shown here (but see Da-
nas and Ponte Castafieda [18]).

5.4. Remarks

To summarize, the MVAR and the SOM predictions for the
instantaneous material response are in good agreement for both
isotropic and anisotropic microstructures. In particular, it has been
observed that void shapes have significant effects on the instanta-



2554

K. Danas, N. Aravas/Composites: Part B 43 (2012) 2544-2559

(b) 0.3

0.25
0.2
S~ 015
0.1

0.05

(d)

wy

Fig. 7. Plots of the MVAR, SOM and GUR estimates for (a) the equivalent stress a,, (b) the porosity f, and the aspect ratios (c) w; and (d) w, as a function of the equivalent
strain &, for a high value of the stress triaxiality (Xs = 1) and four values of the Lode parameter. The influence of the Lode parameter becomes negligible in this case since the
response of the porous material is dominated by the significant evolution of porosity f. The strain hardening exponent is N =0.1 and the initial porosity fo = 1%.

neous response of the porous material for a given porosity. We have
shown that arbitrary ellipsoidal shapes lead (except in a small range
of stress triaxialities) to a more compliant material response than
the spheroidal shapes (prolate or oblate). Thus, ad hoc approxima-
tions (see for instance Scheyvaerts et al. [60]), where the void shape
is assumed to remain spheroidal even for plane-strain loadings, re-
quire, first, the addition of several ad hoc fitting parameters and,
second, they could lead to inaccurate estimates for material failure
since they tend to predict a stiffer material response.

In the context of finite deformations which lead to evolution of
the microstructure, the MVAR and the SOM exhibit very similar
qualitative behavior in both cases considered here (low triaxiality,
X>=0.1, and high triaxiality, Xy = 1) although quantitatively we
observe differences, albeit small ones. Nevertheless, it is important
to note that neither of these two models have been confronted
against direct experimental results (see for instance Boisot et al.
[10] for relevant work concerning a modification of the Gurson
model) and hence the quantitative accuracy of any of the two
remains an open question at this stage. In view of this, the MVAR
model, being simpler than the SOM model, is numerically imple-
mented in a user-material subroutine coupled with finite elements
allowing to analyze qualitatively and quantitatively real geome-
tries. Preliminary numerical results obtained with the MVAR and
the Gurson model are discussed in the following section.

6. Three dimensional simulations of a butterfly specimen

Numerical simulations are carried out in the butterfly specimen
sketched in Fig. 8. This specimen has originally been designed by

Mohr and Henn [48] and recently has been further optimized by
Dunand and Mohr [20]. In the present study, we use the recently
optimized specimen of Dunand and Mohr [20], whereas the corre-
sponding geometrical constants are summarized in Table 1. The
present geometry allows for a wide range of stress and strain states
in the middle section of the specimen by appropriate adjustment of
the displacement ratio u,/u, applied at the upper boundary of the
specimen, as shown at the top of Fig. 8. The numerical calculations
have been carried out in Abaqus [1] using 6-noded triangular and
8-noded cubic linear, hybrid (with constant pressure) elements
(C3D6H and C3D8H, respectively).

In our study, we consider two loading states. The first is a shear-
dominated deformation load and is attained by fixing the ratio
uy = 10u, which leads to rather low stress triaxialities (at least be-
fore localization occurs) in the middle section of the specimen.
Note that we do not choose to set u, = 0 with a non-zero uy in order
to avoid difficulties with numerical convergence due to the very
strong shear localization of the specimen in this case. The second
load considered in the present study is a uniaxial tension load
where u,, > 0 (with u, = 0) which leads to higher stress triaxialities
in the middle section of the specimen.

Then, we compare the results obtained by using the present
modified variational model (MVAR) and the Gurson [32] (GUR)
model for the above stated loading conditions. The parameters
used for the description of the porous material are summarized
in Table 1. The initial porosity is considered to be fo=1% while
no porosity nucleation criteria are used during the calculation. In
addition, it is noted that the pores are considered to be initially
spherical in the MVAR model, such that w; =w, =1, whereas as
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Fig. 8. Three-dimensional butterfly geometry used in the simulations (courtesy of Matthieu Dunand and Prof. Dirk Mohr).

Table 1
Simulation constants.

Geometry (mm)

H L h ¢ R R R

Material properties

Elag v a0 N f wyq W

12.6 61.2 2 0.4 ~200 10 2

300 0.3 1 10 0.01 1 1

the loading progresses the pores change in shape (become ellipsoi-
dal) and orientation. On the other hand, in the Gurson model, the
voids remain spherical during the entire deformation process.

6.1. Shear-dominated loading

Fig. 9 shows MVAR and GUR estimates for the horizontal mac-
roscopic force F, as a function of the macroscopic applied horizon-
tal displacement u, in the case of the shear-dominated loading, i.e.,
uy = 10u,. The initial porosity for both models is fo=1% and the
hardening exponent is N=0.1. We observe that up to a value
uy ~ 3, the response predicted by both models is very similar. How-
ever, following this value, the MVAR response exhibits a sharp drop
in F,, which is directly related to a very fast rate of localization of
deformation [59] in a sharp zone in the gage section of the speci-
men, contrary to the GUR estimates which predict a much slower
rate of localization in this section. The reason for this very sharp re-
sponse of the MVAR model is related to the underlying porosity
and void shape changes which lead to a more compliant response
(locally) than the GUR model, as already discussed in the previous
sections.

In order to examine the local response of the porous mate-
rial, we choose a single element where porosity is maximum for
both MVAR and GUR models.®> As shown in the contours of

3 Note that in general maximum porosity does not occur at the point of maximum

accumulated plastic strain, since maximum f depends only upon the hydrostatic part
of the plastic strain tensor.

15

uy=10u,
B M N A S N O A A A A

Fy (kN)

10 x

MVAR —
fo=1% GUR ---
0
0 1 2 3 4

uy (mm)

Fig. 9. MVAR and GUR estimates for the horizontal macroscopic force F, as a
function of the macroscopic applied horizontal displacement u,. The loading is
shear-dominated with u, = 10u, at the upper surface of the specimen. The strain
hardening exponent is N=0.1 and the initial porosity fo = 1%.

Fig. 10, the maximum porosity for both the MVAR and the GUR
model occurs in the upper right part of the gage section of the spec-
imen and the zone of maximum porosity for both models is not par-
allel to the x-direction as already discussed in the experimental
findings of Dunand and Mohr [20]. However, the MVAR predicts a
higher value of porosity than the GUR model at the displacement
level where the horizontal macroscopic force F, is maximum,
respectively.
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Fig. 10. Porosity contours for the MVAR and the GUR models at the point where the
horizontal macroscopic force Fy is maximum, respectively.

To investigate these differences between the MVAR and the
GUR models, we plot the evolution of the microstructure at the
centroid of a selected element which coincides with that maxi-
mum porosity point. Thus, Fig. 11 shows MVAR and GUR estimates
for (a) the equivalent stress ., (b) the stress triaxiality X, (c) the
Lode parameter L, (d) the effective plastic strain &2, (e) the porosity
f, and (f) the aspect ratios w; and w, as a function of the macro-
scopic applied horizontal displacement u,. The main observation
in the context of Fig. 11ais that at this local point, the MVAR exhib-
its a sharp stress drop and deformation localization at the zone of
maximum porosity (see Fig. 10) much earlier than the GUR model.
Similarly, the evolution of the stress triaxiality (Fig. 11b) and the
Lode parameter (Fig. 11c) become very different for the two mod-
els analyzed here after the stage that the MVAR shows the sharp
stress drop. In this connection, it should be pointed out that
although the specimen has been designed to produce rather uni-
form distributions and low values of the stress triaxiality and the
Lode parameter, we observe that after u, ~ 2.5, both the MVAR
and the GUR models predict a significant increase of the stress tri-
axiality. This is a direct consequence of the high value of porosity at
this point that leads to localization of deformation and subsequent
necking of the specimen in a thin zone. Thus, in the present exam-
ple, even at initially low triaxiality loading conditions, we cannot
prevent material necking that leads to an overall increase of the
stress triaxialities at values of the order ~1. Deformation localiza-
tion, in turn, leads to mesh dependence and thus has to be taken
into account possibly by using gradient damage models (see for in-
stance, [23]).

In Fig. 11d-f, we show the evolution of the underlying micro-
structure as predicted by the MVAR and the GUR models. Although,
GUR model predicts a higher increase of the effective plastic strain
&b (Fig. 11d) than the MVAR model, the MVAR estimate for the cor-
responding porosity evolution (Fig. 11e) is much higher than that
of GUR. This behavior can be explained by observing that the
MVAR predicts a significant evolution of void shapes, i.e., of the as-
pect ratios wy and w, in Fig. 11f. In turn, this change in void shape
leads to a strong porosity evolution and earlier deformation local-
ization and failure (i.e., drop of the stress) of the material in that
specific zone. Note that the rather fast increase of w; and w, in
Fig. 11f at the later stages of the deformation process are a direct
consequence of the fast increase of the stress triaxiality at this later
stage. It is also useful to note that, for the shear dominated loading
considered here, the aspect ratios in the MVAR evolve continuously
during the entire deformation process. In contrast, porosity re-
mains very low until values of u, ~ 2.5 for the MVAR and u, ~ 3.2
for the GUR, whereafter it exhibits a very fast increase leading to
the fast drop of the stress observed in Fig. 11a.

6.2. Uniaxial tension loading

Fig. 12 shows MVAR and GUR estimates for the vertical macro-
scopic force Fy as a function of the macroscopic applied vertical dis-
placement uy in the case of a uniaxial tension loading, i.e., uy=0
and u, > 0. The initial porosity for both models is fo=1% and the
hardening exponent is N=0.1. We observe that although, the
MVAR model predicts a maximum load at lower values of the ap-
plied displacement u, than the GUR model, overall, both the MVAR
and the GUR models exhibit a very similar response. Contrary to
the shear-dominated loading discussed previously, the MVAR does
not show a sharp drop in F, but a rather smooth material softening.

Nonetheless, the response is very different when we analyze a
single element where porosity is maximum for both MVAR and
GUR models. As shown in the contours of Fig. 13, the maximum
porosity for both the MVAR and the GUR model occurs at the cen-
ter of the gage section of the specimen and the zone of maximum
porosity for both models is parallel to the x-direction as discussed
in the experimental findings of Dunand and Mohr [20]. Note how-
ever that the MVAR predicts a much higher value of porosity than
the GUR model at the displacement level where the vertical mac-
roscopic force F, is maximum, respectively.

To investigate these differences between the MVAR and the
GUR models, we plot the evolution of the microstructure at the
centroid of a selected element which coincides with that maxi-
mum porosity point. Thus, Fig. 14 shows MVAR and GUR estimates
for (a) the equivalent stress a,, (b) the stress triaxiality X5, (c) the
Lode parameter L, (d) the effective plastic strain &2, (e) the porosity
f, and (f) the aspect ratios w; and w; as a function of the macro-
scopic applied vertical displacement u,. The main observation in
the context of Fig. 14a is that the MVAR exhibits a maximum stress
and subsequent deformation localization at the zone of maximum
porosity (see Fig. 13) much earlier than the GUR model. The evolu-
tion of the stress triaxiality in Fig. 14b is identical for both the
MVAR and the GUR models up to the point where the MVAR shows
the sharp stress drop. Nonetheless, both the MVAR and the GUR
model predict a significant increase of the stress triaxiality after
the maximum stress point which can reach values in the excess
of 1.2. In Fig. 14c, we observe that both the MVAR and the GUR pre-
dict a very low value for the Lode parameter (L ~ 0.1 for MVAR and
L ~ 0 for GUR) until the maximum stress point where L increases
rapidly to values greater than 0.7.

In Fig. 11d-f, we show the evolution of the underlying micro-
structure as predicted by the MVAR and the GUR models. Contrary
to the previously discussed shear-dominated loading, in the case of
uniaxial loading, the MVAR model predicts higher values for the
effective plastic strain & than the GUR model, as shown in
Fig. 11d. In particular, it is noted that even though the MVAR model
leads to maximum stress and subsequent deformation localization
at lower values of the macroscopic displacement u, than the GUR
model, the corresponding plastic strains are much higher than
those of the GUR model. In addition, porosity evolution (Fig. 11e)
is much higher for the MVAR than the GUR model and this is
directly attributed to the strong evolution of the void shapes as this
is described by the very low values of the aspect ratios w; and w; in
Fig. 11f.

6.3. Remarks

To summarize, simulations have been carried out for the butter-
fly geometry of Dunand and Mohr [20] using the present modified
variational model (MVAR) and the Gurson [32] (GUR) model. It has
been found that the presence of void shape effects, as is the case in
the new MVAR model, leads to maximum load, deformation local-
ization and failure of the material at lower values of the macro-
scopic applied displacement when compared with the GUR
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Fig. 11. Plots of the MVAR and GUR estimates for (a) the equivalent stress g, (b) the stress triaxiliaty Xs, (c) the Lode parameter L, (d) the effective plastic strain &£, (e) the
porosity f, and (f) the aspect ratios w; and w; as a function of the macroscopic applied horizontal displacement u, at a single element where porosity is maximum (see red dot
on the sketch of parts (a) and (d)). The loading is shear-dominated with u, = 10u, at the upper surface of the specimen. The strain hardening exponent is N = 0.1 and the initial

porosity fo=1%.
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Fig. 12. MVAR and GUR estimates for the vertical macroscopic force F, as a function
of the macroscopic applied vertical displacement uy. The loading is uniaxial tension
along the y-direction with u,=0 and u, > 0 at the upper surface of the specimen.
The strain hardening exponent is N =0.1 and the initial porosity fo = 1%.

model which contains no void shape effects. However, the corre-
sponding local plastic strains at failure predicted by the MVAR
model are not necessarily lower than those of the GUR model. It
has been found, for example, that for the uniaxial loading case
the local plastic strains at the position of maximum porosity are
much higher for the MVAR model than the GUR model. Moreover,
for both the MVAR and the GUR model, maximum stress occurs lo-
cally due to the underlying microstructure evolution (this is not
the case for the standard J, plasticity theories which cannot exhibit
locally a maximum stress load). The microstructure evolution, in
turn, provides information about the potential local failure of the
material (i.e., position of maximum porosity and void shape
elongation at zone of high shears) which precedes always the
macroscopic failure of the structure. Note further that after the
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Fig. 13. Porosity contours for the MVAR and the GUR models at a displacement
level where the vertical macroscopic force F, is maximum, respectively.

maximum stress load occurs both stress triaxiality and Lode
parameter increase significantly and in a different manner for the
MVAR and the GUR models. Consequently, this non-proportional
response has to be taken into account in the construction of failure
maps (see for instance Bao and Wierzbicki [4] and Barsoum and
Faleskog [5]) as functions of the stress triaxiality and the effective
(accumulated) plastic strain. In addition, the fact that the MVAR
and the GUR models predict rather different values for the macro-
scopic displacement where maximum load occurs, implies that use
of different models to analyze experimental results could lead to
very different quantitative observations even when the initial
porosity is as small as 1%.

Finally, it is clear from the previous simulations that special
care needs to be considered after maximum load occurs locally
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Fig. 14. Plots of the MVAR and GUR estimates for (a) the equivalent stress g, (b) the stress triaxiliaty Xs, (c) the Lode parameter L, (d) the effective plastic strain &2, (e) the
porosity f, and (f) the aspect ratios w; and w;, as a function of the macroscopic applied vertical displacement uy at a single element where porosity is maximum (see red dot on
the sketch of parts (a) and (d)). The loading is uniaxial tension along the y-direction with u, = 0 and u, > 0 at the upper surface of the specimen. The strain hardening exponent

is N=0.1 and the initial porosity fo = 1%.

in some section of the specimen. It is well known that strong
softening of the material leads to localized deformation and conse-
quently to mesh size dependence. In this case of excessive defor-
mation localization, the present micromechanical models have to
be augmented with appropriate non-local criteria (see for instance
[23]) in order to assess material failure and fracture after the max-
imum stress point in real experimental studies. Such work is in
progress.
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