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Compliant interfaces: A mechanism for relaxation of dislocation pile-ups
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a b s t r a c t

Discrete dislocation plasticity models and strain-gradient plasticity theories are used to
investigate the role of interfaces in the elastic–plastic response of a sheared single crystal.
The upper and lower faces of a single crystal are bonded to rigid adherends via interfaces of
finite thickness. The sandwich system is subjected to simple shear, and the effect of thick-
ness of crystal layer and of interfaces upon the overall response are explored. When the
interface has a modulus less than that of the bulk material, both the predicted plastic size
effect and the Bauschinger effect are considerably reduced. This is due to the relaxation of
the dislocation stress field by the relatively compliant surface layer. On the other hand,
when the interface has a modulus equal to that of the bulk material a strong size effect
in hardening as well as a significant reverse plasticity are observed in small specimens.
These effects are attributed to the energy stored in the elastic fields of the geometrically
necessary dislocations (GNDs).

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction – experimental motivation

Recently, size effects have been observed in the plastic deformation of structures in the micron range (Fleck et al., 1994;
Hutchinson, 2000). The underlying concept is that plastic strain gradients lead to the enhancement in the density of geomet-
rically necessary dislocations and thereby to an elevation in material strength. Consequently, ‘‘smaller is stronger”.

The presence of strain gradients can be an inevitable consequence of the test configuration, regardless of the imposed
boundary conditions: strain gradients are present in a beam under bending, a wire in torsion, in the vicinity of an indentation
in a solid and near a crack tip. In other circumstances, the existence of plastic strain gradients requires a particular set of
imposed boundary conditions. For example, grain boundaries in a polycrystal can impede slip and thereby result in a
Hall–Petch size effect (Aifantis and Willis, 2005; Borg and Fleck, 2007). Surface passivation of thin films in tension can also
impede dislocation motion at the surface and thereby generate strain gradients (Xiang and Vlassak, 2006). Likewise, the plas-
tic shearing of a single crystal sandwiched between elastic adherends can lead to the pile-up of dislocations on inclined slip
planes and thereby induce a plastic strain gradient. A number of numerical studies suggest that the blockage of dislocations
at the crystal–substrate interface leads to both isotropic and kinematic hardening: the macroscopic shear strength increases
with diminishing layer thickness (Shu et al., 2001; Gurtin and Needleman, 2005). These studies treat the crystal–substrate
interface as ‘‘perfectly hard”.

In reality, the ‘‘hard interface” assumption may over-emphasise the role of strain gradient strengthening in a sandwich
layer. This is supported by recent measurements performed by Tagarielli and Fleck (in preparation) on the shear strength
of a thin aluminium layer sandwiched between sapphire blocks. These authors find a negligible effect of layer thickness upon
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the macroscopic shear strength for layers of thickness 10–50 lm. Given that strong strain gradients will exist in the speci-
men when dislocations are not permitted to exit from the adhered boundaries, one possible explanation for this negligible
size effect is that interfaces can relax the stress fields of dislocations in the vicinity of the interface. Consequently, the hard-
ening contribution (and associated Bauschinger effect) due to pile-ups are significantly reduced. The aim of the present study
is to explore the sensitivity of size effects in thin sheared layers to the compliance of the interface. Both discrete dislocation
and strain gradient crystal plasticity approaches are employed.

Consider the simple shear of a prototypical single crystal with two symmetric slip systems, with slip planes orientated at
angles u(1) = �u(2) = u with respect to the x1-axis as shown in Fig. 1. The crystal is sandwiched between two rigid blocks, and
the blocks are subjected to a relative sliding displacement. Dislocation sources will be activated and dislocations will glide
under the applied load on both slip systems until they impinge the rigid blocks. If the interfaces are perfectly bonded and of
vanishing thickness, the dislocations will pile-up and generate long-range elastic back-stresses. This will impede further dis-
location activity and will result in both strong macroscopic hardening and a Bauschinger effect.

It is likely, however, that manufacture of the sandwich specimen (e.g., the joining of two dissimilar solids by diffusion
bonding) will generate an interface of finite thickness, and with an internal structure that is more amorphous than that
of the bulk and consequently more compliant. In turn, this will result in the relaxation of stresses in the dislocation pile-
ups. The principal aim of the current study is to use discrete dislocation simulations to explore the significance of interface
compliance upon the elastic–plastic response of the sandwiched single crystal under remote shear. The ability of strain-gra-
dient plasticity theory to mimic the discrete dislocation behaviour is also investigated. It is recognised that current discrete
dislocation simulations do not account for a number of phenomena that occur deep in the plastic range, for example, forest
hardening and cross-slip. These additional effects can be modelled in an approximate manner using strain-gradient plasticity
theory: this is done in the final section of the paper.

1.1. Specification of the sandwiched single crystal

A specimen crystal of overall height H comprises a single crystal bonded to rigid blocks via interfaces, each of height h, as
shown in Fig. 1. Following numerous other studies in crystal plasticity (e.g., see review by Asaro (1983) and manuscript by
Nye (1957)), we attempt to model a crystal that is representative of FCC aluminium. Thus, we assume that the crystal is elas-
tically isotropic but plastically anisotropic with two slip systems1 with slip planes aligned at u(1) = �u(2) = 30�. This scheme
whereby the plastic anisotropy is modelled but the elastic anisotropy neglected has been demonstrated in numerous studies
to qualitatively capture the shear response of a sandwiched single crystal (see for instance Shu et al. (2001)). Both interfaces
share the same slip systems as those of the bulk crystal. Consequently, dislocations that have been generated within the bulk
are able to glide into the interfaces. However, it is envisaged that the interfaces have a reduced elastic modulus compared to
that of the bulk and so the stress field associated with each dislocation in the interface is diminished.

Use the subscript B to denote the bulk crystal, and the subscript I to denote the interface. Then, the Young’s modulus of
the bulk crystal and interface are EB and EI, respectively (the Poisson ratio m is taken to be the same for both solids). The slip
direction vector sðaÞi and plane unit normal mðaÞi of each slip system a is

sðaÞi ¼ cos uðaÞeð1Þi þ sin uðaÞeð2Þi ; mðaÞi ¼ � sinuðaÞeð1Þi þ cos uðaÞeð2Þi ; ð1Þ

where eð1Þi and eð2Þi are unit vectors along the x1 and x2 axes, respectively.

Fig. 1. Sketch of the boundary value problem.

1 This choice of slip systems models plane-strain deformation involving simultaneous and equal shear on the pair of planes ð�111Þ and ð11 �1Þ as discussed by
Rice (1987).
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The crystal is subjected to plane-strain conditions in the x3-direction, i.e., ei3 = 0 (i = 1,2,3). Simple shear loading is applied
on the upper and lower surfaces with u1 = U at x2 = H and u1 = 0 at x2 = 0 such that the imposed macroscopic shear strain is
C = U/H. Full constraint is imposed in the x2 direction such that u2 = 0 along x2 = 0 and x2 = H. On the lateral faces, we apply
periodic boundary conditions, i.e., Dui = 0, where Dui is the difference between displacements on opposite sides of the
crystal.

2. Constitutive modelling

Two complementary formulations are used to predict the response of the sandwich layer shown in Fig. 1:

(I) the discrete dislocation plasticity formulation of Van der Giessen and Needleman (1995), and
(II) a generalisation of the strain-gradient crystal plasticity theory of Gurtin (2002) along the lines proposed by Fleck and

Willis (2009b). The corresponding constitutive laws for the bulk and the interfaces are chosen to match the discrete
dislocation simulations for specimens of large height H.

2.1. Discrete dislocation plasticity

Following the pioneering work of Van der Giessen and Needleman (1995) and subsequent studies by Deshpande and
coworkers (Deshpande et al., 2002; Deshpande et al., 2002; Balint et al., 2005; Hussein et al., 2008), we describe briefly a
numerical framework, labelled as DD, where full boundary value problem solutions are obtained by consideration of the col-
lective motion of a large number of edge dislocations (or line singularities) in an elastic medium inducing plastic flow.

In the present study, the dislocation structure within the bulk crystal involves the nucleation and motion of dislocations,
their mutual annihilation and their pinning at random obstacles. Although the interfaces are free of sources and obstacles,
dislocations are able to glide into them from the bulk. In addition, the interfaces are allowed to have a different Young’s mod-
ulus than that of the bulk, as suggested in the Introduction.

The loading is applied incrementally. At each increment, the stress and deformation state are computed by superposition
of the singular dislocation field and the image field. The singular field (�) associated with N dislocations is calculated ana-
lytically from the isotropic linear elastic dislocation fields in an infinite medium (Hirth and Lothe, 1968). The complete solu-
tion is obtained by adding a smooth image field ð̂ Þ that ensures that the boundary conditions are satisfied. The
displacements ui, strains eij, and stresses rij are given by

ui ¼ bui þ eui; eij ¼ beij þ eeij; rij ¼ brij þ erij; ð2Þ
where the (�) field is the sum of the fields due to the presence of N individual dislocations in their current positions, i.e.,

eui ¼
XN

J¼1

euðJÞi ; eeij ¼
XN

J¼1

eeðJÞij ; erij ¼
XN

J¼1

erðJÞij : ð3Þ

The image field ð̂ Þ is obtained by solving a linear elastic boundary value problem using finite elements with the boundary
conditions changing as the dislocation structure evolves. When the solution domain comprises phases with different elastic
moduli, as in the case here, a polarisation term is included in the finite element calculation of the ð̂ Þ fields as elaborated in
Van der Giessen and Needleman (1995).

Further, recall that the boundary value problem being solved is periodic in the x1 direction with period W. The (�) fields
for the dislocations are the analytical fields in an infinite medium and hence not periodic. Periodicity of the total fields is
enforced via the ð̂ Þ fields, i.e., while both ð̂ Þ and (�) fields are not periodic, their sum is periodic in the x1 direction with per-
iod W. In addition to the periodicity of the u fields, the tractions are also set to be anti-periodic (Michel et al., 1999). Note
however that since the (�) tractions derived by the dislocation fields are not anti-periodic, the ð̂ Þ tractions will not be anti-
periodic either.

At the beginning of the calculation, the crystal is stress- and dislocation-free. Long range interactions of the dislocations
arise automatically from their elastic fields while the following constitutive rules account for short range interactions:

(i) Dislocation dipoles with Burgers vectors ± b are nucleated at point sources, that simulate Frank–Read sources, randomly
distributed on the discrete slip planes. Nucleation occurs when the magnitude of the resolved shear stress at the source
exceeds a critical value snuc during a time period tnuc. The sign of the dipole is determined by the sign of the resolved
shear stress along the slip plane while the distance between the two dislocations at nucleation, Lnuc, is taken such that
the attractive stress that the dislocations exert on each other is equilibrated by a shear stress of magnitude snuc.

(ii) After nucleation, the dislocations glide apart, driven by the Peach–Koehler force acting on them, given by

f ðIÞ ¼ mðIÞi
brij þ

X
J–I

erðJÞij

" #
bðIÞj ; ð4Þ

where mðIÞi is the unit normal to the slip system on which the dislocation with Burgers vector bðIÞj resides. The magni-
tude of the glide velocity V ðIÞg along the slip direction of the dislocation I is taken to be linearly related to the Peach–
Koehler force f(I) through the drag relation V ðIÞg ¼ f ðIÞ=B with B denoting the drag coefficient.
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(iii) Annihilation of two opposite signed dislocations on a slip plane occurs when they are within a material-dependent
critical annihilation distance Le.

(iv) The obstacles to dislocation motion are modelled as randomly distributed points on the slip planes such that when
dislocations attempt to pass through them they are pinned. An obstacle releases a pinned dislocation when the
Peach–Koehler force on the obstacle exceeds sobs b, where sobs is the obstacle strength and b is the magnitude of
the Burgers vector.

These constitutive rules are typically only valid during stage I of the crystal response wherein forest hardening effects are
negligible. Augmented rules suggested by Benzerga et al. (2004) can incorporate forest hardening effects in a two-dimen-
sional, DD simulation but are not required here since we restrict our analysis to stage I deformations.

2.2. Strain-gradient crystal plasticity

In this section, we describe a strain-gradient crystal plasticity formulation, labelled as SGP, which is based on the prin-
ciple of virtual work introduced by Gurtin (2002) (see also Borg (2007), Borg and Fleck (2007)). The constitutive relations
are motivated by the recent strain-gradient plasticity model of Fleck and Willis (2009b).

2.2.1. Kinematics
The total strain-rate tensor is defined as the symmetric part of the rate of displacement and is written as

_eij ¼
1
2
ð _ui;j þ _uj;iÞ ¼ _ee

ij þ _ep
ij; ð5Þ

with _ee
ij and _ep

ij denoting the elastic and plastic strain-rate, respectively. Plastic deformation is due to slip on slip systems de-
fined by the slip plane normal, mðaÞi , and the slip direction sðaÞi , as defined in relation (1). Making use of the slip rate _cðaÞp on a
specific slip system a, we define the plastic strain-rate as

_ep
ij ¼

X
a

_cðaÞp lðaÞij ; ð6Þ

where lðaÞij ¼ ðs
ðaÞ
i mðaÞj þmðaÞi sðaÞj Þ=2 is the Schmid orientation tensor.

2.2.2. Principle of virtual work
Let S and V denote the exterior surface and the volume of the specimen under study. Write q(a) as a stress measure work-

conjugate to the slip rate _cðaÞp ; sðaÞi as a higher order stress measure work-conjugate to the gradient of the slip rate _cðaÞp;i (where
the subscript (),i denotes partial derivatives with respect to the spatial coordinate xi), rij as the Cauchy stress work conjugate
to the elastic strain ee

ij and write rðaÞ ¼ rijlðaÞij as the Schmid stress. Ti and t(a) are the traction and higher order traction, work-
conjugate to the displacement rate _ui and the slip rate _cðaÞp , respectively. Then, the principle of virtual work states (Gurtin,
2002; Borg, 2007; Borg and Fleck, 2007)Z

V
rijd _eij þ

X
a

qðaÞ � rðaÞ
� �

d _cðaÞp þ
X

a
sðaÞi d _cðaÞp;i

" #
dV ¼

Z
S

Tid _ui þ
X
a

tðaÞd _cðaÞp

 !
dS; ð7Þ

where d(�) denotes an arbitrary variation in (�).
Integration by parts of (7) leads to the strong form of the field equations:

rij;j ¼ 0; qðaÞ � sðaÞi;i ¼ rðaÞ; in V ð8Þ
for each slip plane a. These macroscopic and microscopic force balances are complemented with the equilibrium statements
on the boundary,

Ti ¼ rijnj; tðaÞ ¼ sðaÞi ni; on S; ð9Þ

where ni is the outward unit normal to the surface S.

2.2.3. Constitutive equations
A viscoplastic formulation is now presented for the dependence of ðqðaÞ; sðaÞi Þ upon _cðaÞp ; cðaÞp and their spatial gradients. In

the strain gradient formulation, the values adopted for the material parameters in the bulk crystal are chosen in order to
reproduce the discrete dislocation results. There remains some choice of values for the interfaces. Precisely the same consti-
tutive laws and numerical values are assumed for the interface and bulk crystal, with the following exceptions: (i) the
Young’s modulus of the interface is allowed to deviate from the bulk value as done in the discrete dislocation simulations,
and (ii) the energetic length scale for the interface (to be made precise below) is calibrated to a different value from that of
the bulk in order to closely mimic the discrete dislocation results.

Following the recent work of Fleck and Willis (2009a, b), we propose phenomenological constitutive laws for the ‘‘ener-
getic” and ‘‘dissipative” parts of ðqðaÞ; sðaÞi Þ. More specifically, the stored internal energy of the medium U consists of the con-
ventional elastic energy Ue and a defect energy Up which is attributed to the energy stored in the elastic fields of the
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geometrically necessary dislocations (GNDs) (Ashby, 1970; Fleck et al., 1994; Gurtin, 2002) and is expected to be important
at small length scales. Assuming that Ue and Up are uncoupled, one may write, in general, that

Uðee
ij; c

ðaÞ
p ; cðaÞp;i Þ ¼ Ueðee

ijÞ þ UpðcðaÞp ; cðaÞp;i Þ: ð10Þ

The elastic energy Ue and the Cauchy stress rij ¼ @Ue=@ee
ij are expressed for an isotropic solid as

Ueðee
ijÞ ¼

E
2ð1þ mÞ ee

ije
e
ij þ

m
1� 2m

ðee
kkÞ

2
� �

; rij ¼
E

1þ m
ee

ij þ
m

1� 2m
ee

kkdij

� �
; ð11Þ

where dij is the second-order identity tensor (Krönecker delta). For simplicity, we assume no cross-coupling from one slip
system to the next and write the defect energy Up as

UpðcðaÞp ; cðaÞp;i Þ ¼
X

a
UðaÞp ðcðaÞp ; cðaÞp;i Þ; ð12Þ

where UðaÞp are the defect energies of each slip system. It remains to specify a particular functional form for UðaÞp . It is conve-
nient to first introduce an effective slip measure (homogeneous of degree one in its arguments)

cðaÞe ¼ HjcðaÞp j
q þ jLcðaÞp;i sðaÞi j

q
h i1=q

; ð13Þ

with 0 < q <1 and L denoting an energetic length scale parameter which in general is different for the bulk crystal and inter-
face, whereas H = {1,0} is a flag that is used to either turn on or off, respectively, the dependence on cðaÞp (see Section 3.4 for
the physical significance of H). Making use of (13), we propose a defect energy UðaÞp of the form

UðaÞp ðcðaÞe Þ ¼
bG

M þ 1
cðaÞe

� �Mþ1
or U0ðaÞp ðcðaÞe Þ ¼ bG cðaÞe

� �M
; ð14Þ

where the prime denotes the derivative with respect to the argument of the function, b is a scalar constant and G = E/(2 + 2m)
denotes the shear modulus. When M = 1 (a value to be adopted in the following calculations), (14) is quadratic in cðaÞe and
thus has a similar form to the one proposed by Gurtin (2002).

Similarly, we introduce an effective slip rate for plastic dissipation (homogeneous of degree one in its arguments) such
that

_cðaÞe ¼ j _cðaÞp j
l þ jl _cðaÞp;i sðaÞi j

l
h i1=l

; ð15Þ

where 0 < l <1 and l denotes a dissipative length scale. Assuming that both the bulk and interface materials exhibit rate-
dependent (viscoplastic) behaviour, with no dissipative hardening, a power-law dissipation potential / is introduced as

/ðaÞð _cðaÞe Þ ¼
ry _co

mþ 1
_cðaÞe

_co

 !mþ1

or /0ðaÞð _cðaÞe Þ ¼ ry
_cðaÞe

_co

 !m

: ð16Þ

Here, ry is a flow strength, _co is a reference slip rate, m is the strain-rate sensitivity parameter taking values between 1 (linear
viscoelasticity) and 0 (rate-independent limit or perfect plasticity).

Next, we present the constitutive relations between the stress and strain variables. The quantities q(a) and sðaÞi are parti-
tioned into dissipative, (.)D, and energetic, (.)E, parts (Fleck and Willis, 2009b) such that

sðaÞi ¼ sEðaÞ
i þ sDðaÞ

i ; qðaÞ ¼ qEðaÞ þ qDðaÞ: ð17Þ

Then, upon making use of relations (13)–(16), the energetic stresses read

qEðaÞ ¼
@UðaÞp

@cðaÞp

¼ HU0ðaÞp
jcðaÞp jq�2

cðaÞe

� �q�1 cðaÞp ;

sEðaÞ
i ¼

@UðaÞp

@cðaÞp;i

¼ L2U0ðaÞp

jLcðaÞp;ksðaÞk j
q�2

ðcðaÞe Þq�1 cðaÞp;j sðaÞj

� �
sðaÞi ; ð18Þ

while the dissipative stresses are

qDðaÞ ¼ @/
ðaÞ

@ _cðaÞp

¼ /0ðaÞ
j _cðaÞp jl�2

_cðaÞe

� �l�1
_cðaÞp ;

sDðaÞ
i ¼ @/

ðaÞ

@ _cðaÞp;i

¼ l2/0ðaÞ
jl _cðaÞp;ksðaÞk j

l�2

_cðaÞe

� �l�1
_cðaÞp;j sðaÞj

� �
sðaÞi ; ð19Þ
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The strain gradient formulation for the sandwiched sheared crystal leads to a non-linear set of ODEs in rate quantities as a
function of x2. A solution is obtained by the finite element method using an one-dimensional setup similar to those of Gurtin
(2002) and Borg (2007) (not repeated here).

3. Results and discussion

First, results are given for the DD simulations. Material properties are chosen to be representative of aluminium single
crystals (Kubin et al., 1992) albeit with some modifications to parameters like source density and slip plane spacing, in order
to allow computations to be carried out in the 1–5 lm range rather than the 10–50 lm range which makes the DD calcu-
lations computationally prohibitive. A sensitivity analysis is performed of the macroscopic response to the following prime
variables: H, h and EI/EB. In this way, the dependence of the size effect in shear response and the properties of the interface is
determined. Second, the ability of the strain gradient calculations to mimic the DD results is assessed. Third, the degree of
Bauschinger effect is investigated for both the DD and SGP formulations. And finally, a broad scoping exercise is performed in
order to reveal the relationship between the macroscopic shear response and each of the constitutive ingredients in the SGP
formulation; for example, the relative significance of dissipative and energetic terms is explored.

3.1. The DD simulations for forward loading

The Young’s modulus of the bulk material is taken as EB = 70 GPa, whereas the Young’s modulus EI of the interface mate-
rial is ascribed the selected values of EI/EB = 1, 0.5, 0.25, 0.1. The Poisson ratio m = 0.3 is identical for both solids, and the shear
moduli of the bulk and the interfaces are given by the standard isotropic relations GB = EB/(2 + 2m) and GI = EI/(2 + 2m),
respectively.

We consider crystals of total height H = 0.5, 0.7, 1, 2, 4 lm and width W = 3H and three different interface heights h = 0.1,
0.05, 0 lm. Following numerous earlier studies (e.g., Van der Giessen and Needleman (1995), Shu et al. (2001), Hussein et al.
(2008)) we have chosen the following parameter set for the DD calculations. All slip planes have a spacing 100b with the
magnitude of the Burger’s vector held fixed at b = 0.25 nm for all dislocations. The Frank–Read sources and obstacles are ran-
domly distributed with a density qnuc = qobs = 20 lm�2. Each source is randomly assigned a nucleation strength from a
Gaussian distribution with average �snuc ¼ 50MPa and standard deviation Dsnuc = 10 MPa while the nucleation time is
tnuc = 10 ns for all sources. The obstacle strength is sobs = 150 MPa. The drag coefficient associated with the dislocation mo-
tion is B = 10�4Pa � s and the annihilation distance is Le = 6b. Finally, the DD results are obtained by averaging over five real-
isations of source and obstacle distributions. We emphasise that the bulk material contains sources and obstacles whereas
the interfaces are free of both sources and obstacles and all calculations are conducted for an applied shear strain-rate
_C ¼ 2000 s�1 and a time step Dt = 0.5 ns.

Fig. 2 shows DD shear stress–strain curves for H in the range of 0.5–4 lm and h = 0.1 lm. Here (and subsequently), the
shear stress is the remote applied stress that is conjugate to the imposed macroscopic shear strain C. The moduli ratio equals
EI/EB = 1 in part (a) and EI/EB = 0.25 in part (b). It is clear from Fig. 2a that the smaller crystals (H < 1 lm) exhibit a significant
size effect in hardening, which gradually decreases for larger crystals. The observed hardening has an energetic character (as
will be seen below where unloading is considered) and is attributed to the fact that the fixed upper and lower surfaces (pas-
sivated boundary) do not allow the dislocations to exit the crystal, thus creating dislocation pile-ups near the boundaries of
the crystal. These dislocation pile-ups generate long-range elastic back-stresses which impede further dislocation activity in
the crystal. This in turn leads to the development of strong plastic-strain gradients near the upper and lower boundaries and

a b

Fig. 2. DD shear stress–strain curves for H = 0.5, 0.7, 1, 2, 4 lm and h = 0.1 lm for (a) EI/EB = 1 and (b) EI/EB = 0.25.
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to an increase of the overall shear strength. In contrast, no significant size effect is observed for the initial yield point. Upon
reducing the Young’s modulus of the interface, the macroscopic shear strength reduces significantly; compare parts (a) and
(b) of the figure paying attention to the different scales. The reduced Young’s modulus of the interface induces much lower
back-stresses in the bulk solid, leading to a relaxation of the macroscopic shear stress in the single crystal.

The effect of interface modulus upon the macroscopic shear response is shown explicitly in Fig. 3 for (a) H = 0.5lm and (b)
H = 2 lm, with h held fixed at h = 0.1 lm. For the choice (a) of H = 0.5 lm the interface comprises a significant fraction of the
layer height, and the strain hardening response is sensitive to the value of EI/EB. On the other hand, the interface comprises a
minor proportion of the layer height for the choice H = 2 lm in part (b) and its presence has a negligible effect upon the mac-
roscopic shear response for all EI/EB. For large H, the behaviour of the crystal is dominated by the motion of dislocations in the
bulk.

3.2. Calibration of the strain-gradient plasticity model against the DD results for forward loading

The SGP theory contains a number of parameters that require calibration against the DD results reported above. Some are
obvious: the Young’s modulus and Poisson ratio are the same as those used in the DD simulations. It remains to specify the
flow strength, material length scales, strain-rate sensitivity and internal defect energy. Here, we do not attempt to make a
formal link between the DD and continuum theory parameters. Rather, the parameters of the SGP theory (e.g., flow strength,
strain hardening, etc.) are chosen so as to reproduce the DD simulations in a consistent manner while not trying to make the
connection between these continuum parameters and the underlying physical phenomena such as cross-slip and forest
hardening. We specify M = 1 and b = 0.25 in order to obtain a linear strain hardening characteristic in the SGP calculations.
We now argue that we need to set H = 0 in (13) in order to switch off the macroscopic strain hardening at large H, as ob-
served in Figs. 2 and 3 (see Section 3.4 for a detailed discussion on the various terms of the SGP model). Then, expression
(18)2 reduces to

sEðaÞ
i ¼ G

4
L2cðaÞp;j sðaÞj sðaÞi ; ð20Þ

while qE(a) = 0. This allows for macroscopic strain hardening at small H but not for large H.
In order to define the flow strength ry as well as the strain-rate sensitivity parameter m, introduced in the constitutive

relation (16), we make use of the DD shear response for a crystal with H = 4 lm, h = 0.1 lm and EI/EB = 1 as shown in Fig. 2a.
The SGP formulation is brought into line with the DD prediction by taking a flow strength ry = 30 MPa, a strain-rate sensi-
tivity m = 0.05, a reference slip rate _co ¼ 10�3 s�1 combined with an applied shear strain-rate _C ¼ 10�3 s�1.

The power l in (15) is chosen as l = 2 (Fleck and Hutchinson, 2001). Note that the SGP theories require also the prescrip-
tion of boundary conditions for the plastic slip rate. In the present study, we set _cðaÞp ¼ 0 at x2 = 0 and x2 = H (Gurtin, 2002).
Such a boundary condition mimics the fact that dislocations are blocked by the rigid adherends.

Next, we ascribe values to the dissipative length scales, lB and lI, and to the energetic length scales LB and LI. Following Shu
et al. (2001) and Hussein et al. (2008), we choose lB = lI = LB = 103b = 0.25 lm. It remains to select a value for the energetic
length scale of the interface LI. Recall that no sources are introduced in the interfaces in the DD calculations. This suggests
that LI is larger than LB. We shall subsequently show that the choice LI = 2LB gives good agreement between the SGP and DD
predictions.

Fig. 4 presents DD and SGP shear stress–strain loading curves for (a) a crystal of small height H = 0.5 lm and (b) a crystal
of large height H = 2 lm with interface heights h = 0.1, 0.05, 0 lm and a Young’s moduli ratio EI/EB = 1. For case (a), the degree

a b

Fig. 3. DD shear stress–strain curves for EI/EB = 1, 0.5, 0.25, 0.1 and h = 0.1 lm for (a) H = 0.5 lm and (b) H = 2 lm.
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of macroscopic strain hardening is sensitive to the value of h, due to the fact that the interface contains no sources and obsta-
cles. The shear response is well-mimicked by the SGP theory upon making the choice LI = 2LB. (Had we set LI equal to LB, the
SGP results would then show no dependence upon interface height and all curves would coincide with the h = 0 lm curve.)
For case (b), the bulk response of the crystal dominates the behaviour and there is only a minor effect of the value of h upon
the macroscopic DD behaviour. The SGP theory with LI = 2LB captures this adequately with the nature of the discrepancies in
part (b) not yet fully understood.

Many of the above results are conveniently summarised in Fig. 5 which presents plots for the macroscopic shear flow
strength of the sandwich layer as predicted by the DD simulations (full circles) and the SGP formulation (continuous lines)
for H = 0.5, 0.7, 1, 2, 4 lm and h = 0.1 lm as a function of the Young’s moduli ratio EI/EB. In this figure, the flow strength is
defined as the average macroscopic shear stress over the interval 0.01 6 C 6 0.02. Excellent agreement is noted between the
SGP and the DD simulations. It is clear from the figure that the degree of size effect progressively diminishes as the stiffness
of the interface is reduced to a value much less than that of the bulk. For example, at EI/EB = 1 the flow strength increases by a
factor of �4 as H decreases from 4 to 0.5 lm. A significantly lower size effect occurs for a more compliant interface, i.e., EI/
EB = 0.1. We further note that the flow strength is independent of the ratio EI/EB for large crystals.

Fig. 6 presents SGP results for the normalised plastic strain distribution cp/C at C = 3% along the thickness x2/H of the
specimen, where cp � 2ep

12. Results are included for (a) H = 0.5 lm and (b) H = 2 lm and choices EI/EB = 1, 0.5, 0.25, 0.1. It
is clear from Fig. 6a that the plastic strain distributions become increasingly more spatially uniform with decreasing EI/EB

with the consequence that plastic strain gradients and hence size effects reduce with decreasing EI/EB. By contrast, the plastic
strain distributions are less sensitive to EI/EB in the thicker specimen (Fig. 6b) and hence EI/EB plays a smaller role in the re-
sponse of such specimens. We note that the average value of cp/C is approximately 0.3 across the thickness of the H = 0.5 lm
specimen which means that elastic strains are comparable to the plastic strains even at the overall applied shear strain value

a b

Fig. 4. DD vs. SGP stress–strain loading curves for (a) H = 0.5lm and (b) H = 2 lm for interface heights h = 0.1, 0.05, 0 lm and Young’s moduli ratio EI/EB = 1.

Fig. 5. Collective plots of the flow strength as predicted by the DD (full circles) and the SGP (continuous lines) for H = 0.5, 0.7, 1, 2 ,4 lm and h = 0.1 lm as a
function of the Young’s moduli ratio EI/EB. The flow strength is defined as the average macroscopic shear stress over the interval 0.01 6 C 6 0.02.
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of C = 3%. This is due to the fact that high elastic back-stresses from dislocation pile-ups in the DD calculations significantly
inhibit plasticity in this specimen.

3.3. The degree of Bauschinger effect according to the DD and SGP simulations

A series of simulations have been performed such that the loading direction undergoes a single reversal and the crystal is
unloaded back to zero shear traction. Fig. 7 shows DD and SGP loading and unloading stress–strain curves with H = 0.5, 2 lm
and h = 0.1 lm for (a) EI/EB = 1 and (b) EI/EB = 0.25. The SGP model captures remarkably well the hardening size effect and the
unloading behaviour for both ratios EI/EB = 1, 0.25. For both values of EI/EB, the high strain hardening rate at H = 0.5 lm is
mainly energetic in nature, and gives rise to a strong Bauschinger effect leading to a significant amount of reverse plasticity.
This is in accord with the recent experimental observations of Xiang and Vlassak (2006) made in the context of thin films in
tension with passivated surfaces.

In contrast, when H = 2 lm plasticity is mainly dissipative with negligible kinematic strain hardening, leading to (almost)
linear elastic unloading. While the dissipative character is due to the motion of dislocations, the energetic behaviour of the
crystal is attributed to the energy stored in the elastic fields of the GNDs. In the SGP calculations the energetic part of sðaÞi (c.f.
(17)) gives rise to the strong hardening of the stress–strain curve as well as to the large amount of reverse plasticity for the
smaller specimen. On the other hand, as the crystal becomes larger, the dissipative components qD(a) and sDðaÞ

i dominate. At
this point, we remind the reader that the energetic term qE(a) has been set equal to zero since it would induce kinematic
hardening even in the case of a large crystal, for example, H P 4 lm. The present DD simulations exhibit negligible harden-
ing in this limiting case.

a b

Fig. 6. SGP results of the normalised plastic strain cp/C at C = 3% along the height x2/H for (a) H = 0.5 lm and (b) H = 2 lm. The interface regions are denoted
with the dashed horizontal lines and results are included for EI/EB = 1, 0.5, 0.25, 0.1.

a b

Fig. 7. DD vs. SGP loading and unloading stress–strain curves with H = 0.5, 2 lm, h = 0.1 lm for (a) EI/EB = 1 and (b) EI/EB = 0.25.
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In order to further interrogate the Bauschinger effect, we introduce a normalised measure Cb of the amount of reverse
plasticity present in the crystal after unloading. It is defined as follows. Load the crystal to a given shear traction and then
fully unload the layer, as sketched in Fig. 8a. Denote the residual shear strain C upon full unloading by crp, and write cep as
the average plastic shear strain that would be present if unloading was purely elastic. Then, the normalised measure of re-
versed plasticity is Cb = crp/cep. Cb = 0 denotes purely elastic unloading, implying a fully dissipative response of the crystal. In
contrast, the extreme value of Cb = 1 denotes the case where the response to loading and unloading are dominated by purely
energetic stresses, and zero plastic deformation remains upon full unloading.

The dependence of Cb at a maximum overall shear strain C = 3% upon the moduli ratio EI/EB is shown in Fig. 8b for H = 0.5,
0.7, 1, 2, 4 lm. Again, the SGP predictions are in excellent agreement with the DD values. For the small crystals, Cb increases
rapidly as the ratio EI/EB is increased to the value of �0.6, and subsequently it approaches an asymptote for larger values of
EI/EB. On the other hand, Cb is insensitive to the ratio EI/EB for the larger crystals taking very low values close to zero. These
results again imply that dissipation is the main mechanism observed in large crystals whereas stored defect energy domi-
nates the behaviour of smaller ones.

In view of the previously discussed unloading results, it is instructive to make a quantitative comparison between the
average stored defect energy Up of the DD and SGP simulations. While in the SGP formulation Up is readily calculated by vol-
ume integration of relation (12) and (14), the evaluation of Up in the DD simulations requires special attention. We first com-
pute the total stored energy

U ¼ 1
V

Z
V

1
2
rijeijdV ; ð21Þ

over the volume V at each instant in time. Note that the dissipation in the DD simulations is a direct consequence of the mo-
tion of dislocations and therefore occurs between two subsequent time steps, i.e., when the dislocations move from one po-
sition to another with the help of the kinetic law (4). Consequently, the fields rij and eij defined in (2) contribute only to the
total energy stored in the crystal. In turn, the elastic energy Ue due to the remote applied load is defined by

Ue ¼
r2

12

H
H � 2h

2GB
þ h

GI

� �
; ð22Þ

where r12 is the remote applied shear stress. The average defect energy then is simply Up ¼ U � Ue, in accord with relation
(10).

Fig. 9 shows DD and SGP estimates for the average defect energy normalised by the total work W done, i.e., Up=W, for (a)
H = 0.5 lm and EI/EB = 1, 0.1 and (b) H = 0.5, 2 lm and EI/EB = 1 as a function of the applied shear strain C for h = 0.1 lm in
both cases. In both the DD and SGP formulations, the total work done W amounts to the area under the corresponding
stress–strain curves shown in the previous figures. By applying the above definitions in the present study, we observe in
Fig. 9 that the SGP and DD results are in good agreement for both the small and large specimens. In particular, we observe
that in the smaller specimen (H = 0.5 lm) with EI/EB = 1 the amount of energy stored in the elastic fields of the GNDs (defect
energy) can be as much as 30% of the total work done. This portion reduces to the value of 10% as the Young’s moduli ratio EI/
EB decreases (part (a)) or the specimen height increases (part (b)). Note however that the agreement between the SGP and
the DD curve for H = 2 lm in part (b) is poor, although they both predict a significant drop of the value of the average defect
energy as the crystal height increases from H = 0.5 lm to H = 2 lm. These observations further suggest that the assumption

a b

Fig. 8. In part (a), the graphic representation of the normalised reverse shear plastic strain Cb is shown. In part (b), collective plots are presented for Cb as
predicted by the DD (full circles) and the SGP (continuous lines) for H = 0.5, 0.7, 1, 2, 4 lm and h = 0.1 lm as a function of the Young’s moduli ratio EI/EB at a
total shear strain C = 3%.
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that the local defect energy Up has a quadratic dependence on the plastic slip cðaÞp;i made in the context of the SGP formulation
(c.f. (14)) is a fairly good approximation for the sheared single crystal.

3.4. The relative importance of dissipative and energetic terms in the strain gradient formulation

This section presents only SGP results for a sheared single crystal with no interface. The principal aim is to make use of the
general constitutive laws of (18) and (19) in order to show the wide range of possible macroscopic constitutive behaviours of
the bulk crystal, sandwiched between rigid adherends. The sensitivity of response to particular combinations of energetic
and dissipative parts of q(a) and sðaÞi is determined. The only relevant length scales are the energetic L/H and the dissipative
l/H as introduced in (14) and (16), respectively. Use is made of the material parameters presented in Section 3.2 for the bulk
solid and all calculations are presented for an applied loading rate _C ¼ 10�3 s�1. The one difference is that while the defini-
tion (13) for cðaÞe is still used with q = 2, the flag H (introduced in (13)) is set equal to either 0 or 1 depending on the case
being analysed as specified below.

Table 1 presents all possible combinations of the terms qE(a), sEðaÞ
i and sDðaÞ

i . The indicative numbers ‘‘1” and ‘‘0” serve to
denote whether a term is active or inactive, respectively, in the constitutive description of the material. On the other hand,
conventional large-scale plasticity has always a dissipative character, and for this reason the term qD(a) has been set active in
all cases considered here. In addition, the effect of each term of Table 1 on the macroscopic response of the crystal becomes
more clear if no dissipative hardening is assumed; hence, the yield stress ry is taken to be independent of plastic strain.

The first two cases in Table 1 correspond to conventional perfectly plastic (von Mises) solids with no kinematic hardening
(Case I) and with kinematic hardening (Case II). In Case I, only the term qD(a) is active, while in Case II kinematic hardening is
achieved by the addition of the term qE(a) in the constitutive description of the crystal. In the following plots, Cases I and II
correspond to l/H = L/H = 0 such that no size effects are present.

The Cases A–F describe solids with size effects in yield and/or in hardening, and the corresponding stress–strain curves
are presented in Fig. 10. A size effect in yield strength is achieved via the presence of the term sDðaÞ

i whereas a size effect in
hardening is due to the term sEðaÞ

i . More specifically, the following cases are considered below:

� Case A: First, we activate only sDðaÞ
i (i.e., L/H = 0 and H = 0) which leads to size effects in the yield point, but absent kine-

matic or gradient hardening.

Table 1
Constitutive description of solids exhibiting size effects.

Cases sDðaÞ
i

qE(a).
sEðaÞ

i
Size effect on yield Size effect on hardening

I. Conventional von Mises solid 0 0 0 – –
II. Conventional kinematic hardening solid 0 1 0 – –

A. Purely dissipative gradient solid 1 0 0 U –
B. Purely gradient hardening solid 0 0 1 – U

C. Dissipative gradient solid with conventional kinematic hardening 1 1 0 U –
D. Conventional dissipative solid with kinematic and gradient hardening 0 1 1 – U

E. Dissipative gradient solid with purely gradient hardening 1 0 1 U U

F. Fully coupled solid 1 1 1 U U

a b

Fig. 9. DD vs. SGP estimates for the average defect energy normalised by the total work done Up=W for h = 0.1 lm and (a) H = 0.5 lm and EI/EB = 1, 0.1 and
(b) H = 0.5, 2 lm and EI/EB = 1 as a function of the applied shear strain C.
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� Case B: By activating only sEðaÞ
i (i.e., l/H = 0 and H = 0), the solid exhibits only a size effect in hardening (termed gradient

hardening). In this case, we note an increase of the macroscopic hardening slope with increasing L/H.
� Case C: Here the only inactive term is sEðaÞ

i (i.e., L/H = 0 and H = 1). The presence of the term qE(a) leads to kinematic hard-
ening, however the slope of hardening remains the same for all l/H since the term sEðaÞ

i is switched off. In addition, a size
effect in the yield point is observed.
� Case D: Both qE(a) and sEðaÞ

i are active with sDðaÞ
i inactive (i.e., l/H = 0 and H = 1). Consequently, the crystal exhibits both

kinematic and gradient hardening but no size effect in the yield point.

Fig. 10. Normalised SGP shear stress–strain curves for different choices of the constitutive parameters. The labelling of the sub-figures is done according to
Table 1.
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� Case E: The presence of sDðaÞ
i and sEðaÞ

i (with qE(a) being inactive; i.e., H = 0) gives rise to size effects in yield and hardening
with no conventional kinematic hardening. This choice is the most appropriate one for mimicking the DD simulations
described in the previous sections.
� Case F: All terms are active (i.e., H = 1) and consequently the solid is fully coupled, exhibiting size effects in yield as well

as kinematic and gradient hardening.

4. Concluding remarks

In this study use has been made of discrete dislocation (DD) and strain-gradient plasticity (SGP) formulations to carry out
a plane-strain analysis of a sandwiched sheared single crystal whose upper and lower surfaces are bonded to rigid blocks via
interfaces of finite height. The sensitivity of size effects to the interface compliance has been emphasised. The strain-gradient
crystal plasticity results were found to be in very good agreement with the discrete dislocation simulations in all cases con-
sidered. When the interface is more compliant than the bulk crystal, both the size effect in macroscopic shear strength and
the Bauschinger effect are considerably reduced. In addition, a negligible size effect is observed for the initial yield point for
all values of interface compliance.

In the case of small crystals with interfaces that have the same Young’s modulus as that of the bulk solid, the observed
hardening has an energetic character and is attributed to the fact that the fixed upper and lower surfaces (passivated bound-
ary) do not allow the dislocations to exit the crystal thus creating dislocation pile-ups near the boundaries of the specimen.
These dislocation pile-ups generate long range elastic back-stresses which impede further dislocation activity and conse-
quently strong plastic strain-gradients develop near the upper and lower boundaries. This in turn increases the internal
stored energy in the specimen and leads to strong hardening and significant Bauschinger effects. On the other hand, the pres-
ence of an interface with a modulus less than that of the bulk material, results in the relaxation of the elastic back-stresses
due to the dislocation pile-ups and consequently in a significant reduction of both the predicted plastic size effect and the
Bauschinger effect. Independent experimental measurements of the interface compliances are required in order to check the
validity of the hypothesis presented here – this is a topic for future experimental studies.

Finally, the strain-gradient plasticity formulation was used to give a broad range of structural responses for the sand-
wiched single crystal in shear. A number of these constitutive behaviours cannot at present be modelled in a comprehensive
manner by discrete dislocation simulations (such as forest hardening and relaxation of stresses by cross-slip). These complex
dislocation phenomena are described in a phenomenological manner by the strain-gradient plasticity theories via the intro-
duction of dissipative and energetic constitutive terms, as described in Section 3.4. Several combinations of the relevant con-
stitutive parameters have been combined in order to obtain a wide range of possible size effects in yield and in hardening.
There is a need for experimental studies in order to reveal the most pertinent constitutive law.
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