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The size effect in conical indentation of an elasto-plastic solid is predicted via the Fleck

and Willis formulation of strain gradient plasticity (Fleck, N.A. and Willis, J.R., 2009,

A mathematical basis for strain gradient plasticity theory. Part II: tensorial plastic

multiplier, J. Mech. Phys. Solids, 57, 1045–1057). The rate-dependent formulation is

implemented numerically and the full-field indentation problem is analyzed via finite

element calculations, for both ideally plastic behavior and dissipative hardening. The

isotropic strain-gradient theory involves three material length scales, and the relative

significance of these length scales upon the degree of size effect is assessed. Indentation

maps are generated to summarize the sensitivity of indentation hardness to indent size,

indenter geometry and material properties (such as yield strain and strain hardening

index). The finite element model is also used to evaluate the pertinence of the Johnson

cavity expansion model and of the Nix–Gao model, which have been extensively used to

predict size effects in indentation hardness.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

There has been intense recent interest in size effects associated with plasticity on the micron scale and below (Evans
and Hutchinson, 2009; Pharr et al., 2010). In part, this is due to the development of manufacturing techniques for devices
on the micro- and nano-scales. And in part, this is a consequence of the development of new imaging and characterization
techniques that allow for the observation of the deformation mechanisms (including dislocation motion) on the sub-
micron scale.

Nano- and micro-indentation techniques (Pethica et al., 1983; Oliver and Pharr, 1992) now have the ability to measure
the indenter force–displacement curves rather than relying upon post-test measurements of hardness impression. This has
allowed for a more precise measurement of size effects in indentation hardness at impression depths from nanometer to
micron. The hardness test remains a popular method of extracting information on the Young’s modulus, strength and
toughness of engineering metals, ceramics and polymers. It samples only a small surface region of the solid, and thereby
has the merit that it can be used to probe the mechanical response of thin coatings in addition to that of bulk solids.
However, the indentation test remains difficult to interpret, particularly when the indent depth is on a micron-scale or
below (Pharr et al., 2010).

There is a growing body of experimental data to suggest that the hardness of metallic alloys increases with diminishing
contact radius for indents in the micron range and below (Poole et al., 1996; Stelmashenko et al., 1993; Stelmashenko
and Brown, 1996; Nix and Gao, 1998; Hutchinson, 2000; Pharr et al., 2010). It is appreciated that a number of physical
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mechanisms can give rise to such size effects. For example, indentation on the nano-scale may involve the prismatic
punching of dislocations from the indenter tip (Ashby, 1970). This mechanism is similar to the so-called source-limited
indentation mechanism as explored by Balint et al. (2006). At larger length scales, strength elevation is believed to be
associated with the proliferation of geometrically necessary dislocations (GNDs) induced by plastic strain gradients
imposed on the solid (Ashby, 1970; Fleck et al., 1994; Nix and Gao, 1998). The strength enhancement is attributed to the
GNDs as follows: (i) increased plastic dissipation occurs by the motion of GNDs and gives rise to dissipative, isotropic
hardening; and (ii) the elastic energy stored in the stress fields of the GNDs that gives rise to kinematic hardening.

Semi-analytical models have emerged in the literature (e.g. Ashby, 1970; Poole et al., 1996; Nix and Gao, 1998) to
quantify the observed size effect in indentation. More recently, a number of nonlocal plasticity laws and minimum
principles have been proposed to account for these size effects via full-field analytical/numerical implementations. These
approaches are phenomenological in nature (Fleck et al., 1994; Fleck and Hutchinson, 1997; Forest et al., 2000; Fleck and
Hutchinson, 2001; Gudmundson, 2004; Gurtin and Anand, 2005), are based upon crystal plasticity ideas (Fleck and
Hutchinson, 1997; Gurtin, 2002; Borg, 2007; Danas et al., 2010) or are discrete dislocation based (Kubin et al., 1992; Van
der Giessen and Needleman, 1995; Deshpande et al., 2005). Begley and Hutchinson (1998) used the Fleck and Hutchinson
(1997) model to predict indentation size effects and explored the role of strain hardening as well as the significance of the
different material length scales. They concluded that the stretch gradient is dominant in indentation problems. More
recently, Komaragiri et al. (2008) have attempted to correlate material length scales as deduced from indentation
measurements to predict the mode I fracture toughness behavior.

The Gurtin–Gudmundson phenomenological theory will be used in the present study together with the associated
variational formulation of Fleck and Willis (2009b). In this approach, the tensorial plastic strain ep

ij is treated as a kinematic
unknown in addition to the displacement ui. In contrast, the earlier theory of Fleck and Hutchinson (1997) makes use only
of the displacement ui and its first and second derivatives in the virtual work statement. Both these phenomenological
strain gradient plasticity theories can incorporate dissipative and kinematic hardening by decomposing the higher order
stresses into dissipative and energetic parts as described in Fleck and Willis (2009b). In the present study, we implement
numerically (using mixed finite element techniques) the Gurtin–Gudmundson strain gradient framework (Gudmundson,
2004) and the associated variational formulation of Fleck and Willis (2009b) in order to predict the size effect in
indentation. We shall restrict our attention to only the dissipative hardening contribution, and justify this choice by
considering the relative magnitude of elastic stored energy associated with GNDs to the plastic work for a beam in
bending, see Fig. 1.

Consider a uniform array of edge dislocations as shown in Fig. 1 associated with pure bending of a beam of height hb.
The dislocation array produces a macroscopic plastic curvature kp ¼ b=ðs dÞ, where b is the magnitude of the Burger’s
vector, and d and s denote the spacing of dislocations in the x1 and x2 directions, respectively. All dislocations are
geometrically necessary and the beam has traction-free upper and lower surfaces and no net axial forces. Evans and
Hutchinson (2009) have solved this problem and show that the elastic energy U per unit volume for this dislocation
structure is given by

U ¼
E b2

1�n2
2:80þ0:42

s

d

h i
,

s

d
Z1, ð1Þ

in terms of the Young modulus E and Poisson’s ratio n. The plastic work Wp per unit volume may be estimated as

Wp
¼Mpkp=hb, ð2Þ

where the plastic bending moment per unit thickness Mp ¼ syh2
b=4 is given in terms of the yield strength sy. The ratio of

stored elastic energy to the plastic work then follows as

U

Wp ¼
4

1�n2
2:80þ0:42

s

d

h i b

hb

� �
1

ey
, ð3Þ
x2

x1

s

d
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Fig. 1. A beam of height hb contains a uniform rectangular array of dislocations. The beam undergoes pure bending due to the dislocation array.
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where the yield strain is ey � sy=E. The dissipative contribution of the GNDs outweighs their energetic contribution when
U=Wp

51. For example, consider a typical case with n¼ 0:3, b¼0.25 nm and s¼d. Then, the dissipative contribution of the
GNDs dominates the energetic part for the case

hbb
3:5

ey
nm, ð4Þ

i.e. hbb1 mm, for a representative yield strain of 0.35%. Thus, we conclude that the dissipative hardening assumption
employed in the current study is appropriate for the interpretation of micron-scale indentation studies (some of which
have been referenced above).

Our study will focus on conical indentation. This geometry is a simplification of the pyramidal Vicker indenter and of
the Berkovich indenter and has the advantage that the predicted hardness is independent of indent depth for a
conventional rate-independent solid in the absence of strain gradient effects. Thereby, any observed size dependence of
hardness in conical indentation provides direct evidence for strain gradient strengthening. In contrast, the average strain
beneath a spherical indenter increases with increasing indent depth and so more sophisticated methods are needed in
order to distinguish strain gradient strengthening from strain hardening. The following dependence of hardness H in
conical indentation upon indent depth h has been observed in a number of theoretical and experimental studies (Poole
et al., 1996; Nix and Gao, 1998; Pharr et al., 2010):

H

H0

� �2

¼ 1þ
hn

h
, ð5Þ

where the length scale hn is treated as a material property and H0 is the hardness at large indentation depths (i.e., hbhn).
Although this relation can be motivated by basic dislocation arguments, it should be regarded as a useful empirical fit to
experimental data over a limited range of indent depth, as recently discussed by Pharr et al. (2010) and by Nachum et al.
(2010). One of the aims of the present investigation is to explore theoretically the sensitivity of hardness to the strain
hardening exponent which does not enter explicitly into the relation (5).

1.1. Scope of the study

Following this introduction, we present briefly the field equations and constitutive rules for an elasto-viscoplastic strain
gradient solid and we then detail the assumed boundary conditions for the conical indentation problem. A finite element
implementation is described, and the sensitivity of indentation response to the relative magnitude of three material length
scales within the constitutive law is explored for the non-hardening case. Indentation maps are constructed in order to
display the regimes of elastic response, elasto-plastic response and rigid-plastic behavior as a function of cone angle, yield
strain and size of indent (in relation to the three material length scales). The role of strain hardening upon the average
indentation pressure is assessed and the ability of the Tabor approximation to account for strain hardening effects is
extended down to the micron-scale (where strain gradients dominate). The numerical analysis is also used to evaluate
existing analytical models for indentation: the cavity expansion model and the Nix–Gao model.

2. The strain gradient formulation

The essential details of the Gurtin (2002)–Gudmundson (2004) strain gradient theory, along with its variational
structure as introduced by Fleck and Willis (2009b), are summarized below.

Kinematics: The primary kinematic variables are the velocity _ui (where the over-dot denotes time derivative) and the
plastic strain-rate _ep

ij. The total strain-rate _eij is the symmetric part of the spatial gradient of _ui in the usual manner, and is
additively decomposed into an elastic part _ee

ij and an incompressible plastic part _ep
ij according to

_eij ¼
1
2ð
_ui,jþ _uj,iÞ, _eij ¼ _ee

ijþ _e
p
ij, _ep

ii ¼ 0: ð6Þ

We note in passing that the plastic strain-rate and the elastic strain-rate are each incompatible fields, but taken together
the overall strain rate derives from the velocity field.

Principle of virtual work: Consider a solid of volume V and external surface S. Write qij as a stress-like quantity that is
work conjugate to the plastic strain-rate _ep

ij, tijk as a higher order stress field which is work conjugate to the gradient of the
plastic strain-rate _ep

ij,k (where the subscript ð�Þ,i denotes partial derivatives with respect to the spatial coordinate xi), and
write sij as the Cauchy stress that is the work conjugate to the elastic strain rate _ee

ij. Ti and tij are the surface traction
and higher order traction, work conjugate to the displacement rate _ui and plastic strain-rates _ep

ij, respectively. Then, the
principle of virtual work states that (Gudmundson, 2004; Fleck and Willis, 2009b)Z

V
½sijd_ee

ijþqijd_e
p
ijþtijkd_e

p
ij,k�dV ¼

Z
S
½Tid _uiþtijd_ep

ij� dS, ð7Þ

where dð�Þ denotes an arbitrary variation in ð�Þ.
Integration by parts in (7) leads to the strong form of the field equations

sij,j ¼ 0, qij�tijk,k ¼ s0ij, in V , ð8Þ
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with s0ij denoting the deviatoric Cauchy stress and sij ¼ sji, qij ¼ qji, qii ¼ 0, tijk ¼ tjik and tiik ¼ 0. The equilibrium statements
(8) in V are complemented by equilibrium statements on the boundary, i.e.,

Ti ¼ sij nj, tij ¼ tijk nk, on S, ð9Þ

where ni is the outward unit normal to the boundary surface S.
Constitutive relations: In the original work of Fleck and Willis (2009a,b), the proposed constitutive models take

into account internal energy storage due to both elastic straining and dislocation accumulation (Ashby, 1970) and
also plastic dissipation due to dislocation motion. In the present study, we restrict attention to elasto-viscoplastic (i.e.,
rate-dependent) solids that store elastic strain energy and dissipate energy by plastic straining and by plastic strain
gradients. The underlying physical assumption is that non-uniform plastic straining involves the motion of statistically
stored and geometrically necessary dislocations. This motion gives rise to plastic dissipation and outweighs the energetic
component associated with dislocation storage as argued above and as discussed by Evans and Hutchinson (2009). (The
reader is referred to Fleck and Willis (2009b) and Danas et al. (2010) for a discussion of the range of constitutive behaviors
that can be obtained by the use of the present strain gradient plasticity framework.)

By restricting attention to isotropic solids, the elastic energy U and the Cauchy stress sij ¼ @U=@ee
ij are expressed as

Uðee
ijÞ ¼

E

2ð1þnÞ ee
ije

e
ijþ

n
1�2n ðe

e
kkÞ

2
� �

, sij ¼
E

1þn ee
ijþ

n
1�2n ee

kk dij

� �
, ð10Þ

where dij are the Cartesian components of the second-order identity tensor (Krönecker delta).
In turn, the viscoplastic behavior of the solid is characterized in terms of the plastic strain-rate _ep

ij and its gradient _ep
ij,k.

Upon introducing the notation (Fleck and Hutchinson, 2001)

_ep
ij,k � rijk ¼ rjik, ð11Þ

we write the overall plastic strain-rate as (Smyshlyaev and Fleck, 1996; Fleck and Hutchinson, 1997, 2001; Wei and
Hutchinson, 2003)

_Ep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3 ð
_ep

ij
_ep

ijþ l21 I1þ4 l22 I2þ
8
3 l23 I3Þ

q
, ð12Þ

in terms of three invariants I1, I2 and I3, as given by

I1 ¼ rS
ijkr

S
ijk�

4
15 rkiirkjj, I2 ¼

1
3 ðwijwijþwijwjiÞ, I3 ¼

3
5ðwijwij�wijwjiÞ: ð13Þ

Here,

rS
ijk ¼

1
3ðrijkþrjkiþrkijÞ, wij ¼ eiqrrjrq, I1þ I2þ I3 ¼ rijkrijk: ð14Þ

and eijk denotes the permutation symbol. We note in passing that the first invariant I1 comprises stretch and rotation
gradients, while I2 and I3 involve only rotation gradients via the curvature tensor wij.

The overall plastic strain-rate (12) is an isotropic measure that is homogeneous of degree one in the plastic strain-rate
tensor and its first gradient. The three material length-scales li (i¼ 1;2,3) are introduced for dimensional consistency in
expression (12). One of the main objectives of the present study is to explore the sensitivity of any predicted size effect in
indentation to the length scales li.

In Table 1, we introduce three particular choices C1, C2 and C3 for the relative magnitude of the length scales li. For each
choice, we write the length scales li in terms of a single reference length scale l. Our purpose is to reveal the relative
significance of each length scale li upon the predicted hardness.

In case C1, the overall plastic strain-rate reduces to the form

_Ep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3ð
_ep

ij
_ep

ijþ l2 _ep
ij,k
_ep

ij,kÞ

q
, ð15Þ

while case C2 refers to a solid with no contributions from I2 and I3. Case C3 corresponds to a solid such that the strain
gradient dependence of _Ep only involves the invariant wijwij of the curvature tensor: this choice corresponds to the couple-
stress solid as introduced by Fleck and Hutchinson (1997). It has the form

_Ep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3ð
_ep

ij
_ep

ijþ l2wijwijÞ

q
: ð16Þ
Table 1
Representative choices for the three length scales.

Cases l1 l2 l3

C1 l l=2
ffiffiffiffiffiffiffiffi
3=8

p
l

C2 l 0 0

C3 0 l=2
ffiffiffiffiffiffiffiffiffiffiffi
5=24

p
l
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We proceed by considering a visco-plastic response, with a dissipation potential f that is power law in _Ep according to

fð_ep
ij, _e

p
ij,kÞ ¼

Z
qij d_ep

ijþ

Z
tijk d_ep

ij,k ¼
sy _e0

mþ1

_Ep

_e0

 !mþ1

: ð17Þ

Here, _e0 is a reference strain-rate and m is the strain-rate sensitivity parameter taking values between 1 (linear viscous)
and 0 (rate-independent limit or perfect plasticity). The flow stress sy is assumed to depend upon the accumulated
effective plastic strain Ep ¼

R _Ep dt and is here defined by

syðEpÞ ¼ s0ð1þEp=e0Þ
N , ð18Þ

where s0 is the nominal yield stress and e0 ¼ E=s0 is the yield strain. The exponent N controls the hardening rate and takes
values between 0 (non-hardening solid) and 1 (linearly hardening solid). In the following calculations, we select values of
N within the practical range N¼0 to 0.3.

Now make use of relations (11)–(14) and of the definition (17) for the viscoplastic potential to obtain

qij ¼
@f
@_ep

ij

¼
2

3

sy

_e0

_Ep

_e0

 !m�1

_ep
ij ð19Þ

and

tijk ¼
@f
@rijk

¼
2

3

sy

_e0

_Ep

_e0

 !m�1

l21 Rð1Þijk þ4 l22 Rð2Þijk þ
8

3
l23 Rð3Þijk

� �
, ð20Þ

where

Rð1Þijk ¼
1

2

@I1

@rijk

¼ rS
ijk�

4

15
djkrimm,

Rð2Þijk ¼
1

2

@I2

@rijk

¼
1

3
emkjðwmiþwimÞ,

Rð3Þijk ¼
1

2

@I3

@rijk

¼
3

5
emkjðwmi�wimÞ: ð21Þ

The above kinematical, equilibrium and constitutive relations lead to a nonlinear set of PDEs in the rate quantities _ui and
_ep

ij. A solution is obtained by a mixed finite element (FEM) formulation, as described in Appendix A.

3. Conical indentation

We proceed by making use of the above visco-plastic strain gradient formulation in order to analyze the prototypical
problem of conical indentation of a half-space. The half-space is represented by a circular cylindrical solid of height Z and
radius R, both of which are much larger than the contact radius of the indent a, see Fig. 2. The indenter is a rigid cone and
its face is inclined at an angle b with respect to the r-axis, as shown. For simplicity, we assume complete sticking contact
between the rigid indenter and the solid. This is not a severe restriction: Bower et al. (1993) have shown that the
Z

R

CL

h

h

Fig. 2. Sketch of the conical indentation boundary value problem.
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indentation response of a conventional visco-plastic solid is only mildly sensitive to the level of friction between indenter
and solid.

In the present study, we neglect the effects of geometry changes upon the momentum balance and material rotation
(i.e., we carry out a small-strain analysis) in agreement with the study of Hwang et al. (2002) who found that finite strains
have only minor effects on micro-indentation hardness. Nonetheless, the contact between the rigid indenter and the
specimen is based on the deformed surface of the specimen. At the current stage of deformation, the depth of the
indentation is denoted by h, while a denotes the actual contact radius. Note that a differs, in general, from the nominal
contact radius aN � h tan b due to sink-in or pile-up, as shown schematically in Fig. 2.

An axisymmetric mixed finite element (FEM) formulation is used to predict the hardness as a function of contact radius a.
At each node of the mesh, there exist five nodal unknowns: the two velocity components _ur , _uz and the three components of
the plastic strain-rate, _ep

rr , _e
p
zz and _ep

rz. (The out-of-plane component _ep
yy is readily evaluated via the incompressibility

condition _ep
rrþ _e

p
yyþ

_ep
zz ¼ 0.) A more detailed discussion of the finite element implementation is presented in Appendix A.

The boundary condition on the contacting surface between indenter and half-space reads

_ur ¼ 0, _uz ¼�
_h, ð22Þ

while the remaining part of the top-face and all the side face are traction-free. Along the bottom face (z¼0) we impose
_uz ¼ 0. Axisymmetry about r¼0 is imposed through axisymmetric finite elements. Additionally, zero higher order tractions
are imposed on all faces, such that tij ¼ 0. The sensitivity of response to the choice of higher order boundary conditions is
explored for a limited set of calculations in Appendix B.

The net force L on the indenter and the average contact pressure P (which is equivalent to the hardness H of the solid)
are computed as

L¼� 2p
Z R

0
Tzðr,ZÞ rdr and P¼H¼

L

pa2
: ð23Þ

Here, Tzðr,ZÞ is the z-component of the traction vector on z¼Z. Bower et al. (1993) have shown for the conventional visco-
plastic solid (i.e., l1 ¼ l2 ¼ l3 ¼ 0) that the average contact pressure P can be conveniently normalized by a rate-dependent
term such that

P0 ¼
P

½ _h=ða_e0Þ�
ms0

, ð24Þ

where a is the current actual contact radius. In the following results, P0 will be referred to as ‘‘normalized contact
pressure’’. In all calculations reported below we consider the case of negligible rate sensitivity by restricting attention to m¼0.1.
Representative results for m¼0.05 and m¼0.01 have also been considered in order to investigate the relative importance
of the strain-rate sensitivity exponent m. It has been found that a maximum quantitative difference of the order � 10% is
observed between the resulting normalized hardness for m¼0.1 and m¼0.01, whereas the qualitative response remains
the same for all three values m¼ 0:01,0:05,0:1. Hence, for numerical efficiency, the value m¼0.1 has been considered in
this study.

It will be shown below that the indentation hardness of the strain-gradient solid depends upon the cone angle b via the
non-dimensional combined parameter E tan b=s0ð1�n2Þ, as introduced originally by Johnson (1970, 1985). This non-
dimensional parameter is interpreted as the ratio of the strain beneath the indenter (i.e. tan b) to the plane-strain value of
yield strain (i.e., s0ð1�n2Þ=E¼ ð1�n2Þey, with ey denoting the yield strain). Dimensional analysis implies that the
normalized contact pressure depends upon the following non-dimensional groups:

P0 ¼ f
a

l1
,
l2
l1

,
l3
l1

,
E tan b

s0 ð1�n2Þ
,N

� �
: ð25Þ

A parametric analysis is given below for the dependence of the normalized contact pressure upon these non-
dimensional groups. First, for a non-hardening solid (N¼0), the sensitivity of indentation response to the values of yield
strain e0 ¼ s0=E, length scales l1, l2 and l3 and the indentation angle b are investigated. Second, the dependence of hardness
upon the strain hardening exponent N is determined. Finally, the finite element predictions are compared with the
predictions for other models as taken from the literature.
4. Indentation hardness for non-hardening (N¼0) gradient solids

In this section, the dependence of indentation hardness upon the independent non-dimensional groups in Eq. (25) is
explored for the case of N¼0. First, the accuracy of the FEM method is confirmed for the elastic case by comparison of the
FEM solution with the analytical elastic solution of Sneddon (1948). The elastic FEM predictions of P0 are plotted in Fig. 3
with an assumed E=s0 ¼ 300 so as to be consistent with the plastic results also included in the figure. Although the indent
depth increases in a continuous manner, the contact radius a increases in discrete steps as given by the mesh size, and this
leads to an oscillation in the estimation of the normalized contact pressure. It is clear from Fig. 3 that the mid-value of the



1010.1
0

10

20

30

40

50

a / l

Elastic

C1, N = 0, �=19.7°
E/�0=300, v = 0.3

Gradient Solid

Viscoplastic limit - l=0

Sneddon

P
0

Fig. 3. Normalized contact pressure versus the normalized contact radius for an elastic solid, and for a strain-gradient solid of type C1 in Table 1 (with

E=s0 ¼ 300, n¼ 0:3). The indenter angle is 19:71. For validation of the FEM calculations, the elastic solution of Sneddon (1948) and the rigid, ideally plastic,

viscoplastic limit with no gradient effects, as provided by Bower et al. (1993), are included.

K. Danas et al. / J. Mech. Phys. Solids 60 (2012) 1605–1625 1611
oscillations in contact pressure gives good agreement with the analytical solution: hence, we shall make use of the mid-
value in all subsequent calculations.

Fig. 3 also contains a representative plot of the normalized contact pressure as a function of the normalized contact
radius a=l for the elastic-ideally plastic solid (N¼0), with E=s0 ¼ 300, n¼ 0:31 and b¼ 19:71. This angle corresponds to the
effective cone angle for both the Berkovich and Vickers indenters. The choice C1 (of Table 1) is adopted here for the strain
gradient solid.

The response of the gradient solid is initially elastic: for small values of the contact radius a=lt0:2 the normalized contact
pressure in the gradient solid is almost identical to that of the Sneddon elastic solution. With increasing indentation depth, the
normalized contact pressure asymptotes to the indentation hardness in the conventional viscoplastic limit l=a-0 as predicted
by Bower et al. (1993). Note that for intermediate values of the contact radius 0:2ra=lr4, the gradient solid exhibits an
increased hardness due to the development of strong plastic strain gradients beneath the indenter. The qualitative features of
these calculations are in agreement with experimental evidence (Pharr et al., 2010).

We note that typically, experiments reveal that the indentation hardness increases by a factor of 2–3 when the indent radius
decreases from about 10 mm to 0:3 mm (see, for example, the review by Pharr et al., 2010). Other indentation mechanisms, such
as prismatic punching from the indenter tip, are activated at smaller contact radii. The FEM predictions shown in Fig. 3 extend
to much higher amplifications in hardness than that observed experimentally, but we give the full range in predicted behavior
in order to reveal the mathematical character of the Gurtin–Gudmundson theory: with diminishing indent size, the indentation
pressure increases to that of the elastic solution. It is appreciated that the theory loses validity at such small indents and a
discrete dislocation approach is more appropriate within this regime of nanoindentation.

In Fig. 4, the normalized contact pressure P0 is plotted as a function of the normalized contact radius a=l for three different
values of E=s0 ¼ 10;100,300 (or equivalently yield strains e0 ¼ s0=E¼ 10;1,0:3%, respectively). Parts (a), (b) and (c) of the
figure correspond to the cases C1, C2 and C3 of Table 1, respectively. In each case, the contact pressure increases with E=s0. For
the choice E=s0 ¼ 10, which corresponds to a linear elastic material with nearly no plastic strain, the contact pressure in
Figs. 4(a)–(c) remains constant with increasing a=l, and no size effects are observed. This is consistent with the fact that the
curves for E=s0 ¼ 10 in parts (a) to (c) are identical. When E=s0 ¼ 100, significant plasticity develops beneath the indenter and
leads to non-negligible size effects. The difference, however, between the three gradient solids C1 to C3 in parts (a) to (c) is
minor. The choice E=s0 ¼ 300 leads to strong size effects in Fig. 4(a) and (b) but not in Fig. 4c. This difference is solely attributed
to the presence of a nonzero l1 in Fig. 4(a) and (b) in contrast to Fig. 4(c) where l1 ¼ 0. Recall that the prescription for _Ep in the
case C3 of Table 1 involves a contribution from curvature rate but neglects any contribution from the rate of stretch gradient.
We conclude that stretch gradients play an important role in contributing to the size effect.

The relative importance of stretch gradient to curvature is assessed as follows. Consider a new choice for the relative
magnitude of l1 compared to l2 ¼ l3. Specifically, we write l2 ¼ l3 ¼ l and vary l1=l. The dependence of P0 upon l1=l is given in
Fig. 5 for selected sizes of indent as parameterized by l=a. In this figure, we observe that l1 becomes the dominant length
1 We note that the effect of the Poisson ratio on the contact pressure is negligible and thus all results presented in the following will make use of a

Poisson ratio n¼ 0:3.
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scale parameter when l140:1l particularly for small contact radii l=a40:5. As already mentioned in connection with Fig. 4,
the predicted size effects for l1=l¼ 0 are much weaker than those for l1=l¼ 1.

4.1. Construction of indentation maps

Johnson (1970) has shown that the normalized contact pressure P0 is a function of the combined parameter E tan b=s0ð1�n2Þ

for an elastic ideally plastic solid. We proceed to develop an indentation map for the strain gradient solid (cases C1, C2 and C3) and
begin by verify that the parameter E tan b=s0ð1�n2Þ maintains its usefulness in the strain gradient setting. Fig. 6 shows a graph
of normalized contact pressure as a function of the non-dimensional parameter E tanb=s0ð1�n2Þ for two representative values of
the contact radius l=a¼ 0:5,2 and two indentation angles, b¼ 19:71 (Berkovich and Vickers indenters) and b¼ 47:71 (cube
corner indenter). In addition to the FEM results, the Sneddon elastic solution and the rigid plastic limit are included. The contact
pressures corresponding to the two different indentation angles b¼ 19:71 and 47.71 are in very close agreement when plotted as
a function of E tan b=s0ð1�n2Þ implying that this combined parameter captures the response for any given l=a. Thus, all
subsequent numerical results employ the value b¼ 19:71 and are presented in terms of E tan b=s0ð1�n2Þ, without any loss of
generality. As E tan b=s0ð1�n2Þ is increased, the normalized pressure P0 increases from the Sneddon solution through an elastic–
plastic regime and finally asymptotes to a plateau value which is labeled the rigid plastic asymptote. It has been argued by
Johnson (1970) and Wei and Hutchinson (2003) that the deformation mode switches from one of radial displacements akin to
the cavity expansion mode in the elastic–plastic regime, to a surface mode in the rigid-plastic regime. We shall show below that
the displacement field beneath the indenter bears little resemblance to a spherical mode and there is no switch in mode with
increasing Etan b=s0ð1�n2Þ.

Fig. 7 shows plots of normalized contact pressure versus E tanb=s0ð1�n2Þ for the three gradient solids C1 to C3 as
introduced in Table 1. The values l=a¼ 0:05, 0:25, 0:5, 1, 2 are used to investigate the size effect for each case. For each of
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the three cases C1 to C3, the contact pressure increases with increasing Etan b=s0ð1�n2Þ and with increasing l=a. As already
discussed in connection with Fig. 4, the length scale l1 dominates the strain gradient contribution to strength with a much
milder contribution from plastic curvature. Consequently, cases C1 and C2 (in Fig. 7(a) and (b), respectively) give rise to
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comparable and large size effects, whereas case C3 (for which l1 ¼ 0, see Fig. 7(c)) predicts a smaller size effect. Upon noting
that the results for case C2 are comparable to those for case C1, our subsequent attention will be focussed upon cases C1 and C3.

Recall from Fig. 6 that three regimes of indentation mechanism exist, depending upon the value of Etan b=s0ð1�n2Þ and
of l=a: (i) an elastic regime where the analytical Sneddon solution is dominant, (ii) an elasto-plastic regime where elasticity
and plasticity are equally important in dictating the indentation hardness and (iii) a rigid-plastic regime where the solid
exhibits significant plastic straining and elasticity is of minor importance. It is instructive to portray the regimes of
dominance of each mechanism in the map of Fig. 8 by making use of the results in Fig. 7. The map takes as axes l=a and
E tan b=s0ð1�n2Þ, and displays the boundaries between regimes. The gradient solids C1 and C2 (with a nonzero l1) exhibit
very similar regimes of dominance: as l=a increases both the elastic and the elasto-plastic regions extend to higher values
of E tan b=s0ð1�n2Þ. On the other hand, when l1 ¼ 0 (i.e., case C3) the elasto-plastic regime shrinks with increasing l=a.

The map in Fig. 8 is re-plotted in Fig. 9(a) for the choice C1 and in Fig. 9(b) for the choice C3, and now normalized
contact pressure contours have been added as dashed lines. Note that the contact pressure contour lines exhibit
asymptotes either at large l=a (elastic regime) or at large Etan b=s0ð1�n2Þ (rigid-plastic regime). These maps can be read in
a twofold fashion: (i) fix the material properties and indenter geometry by fixing E tanb=s0ð1�n2Þ. Then, vary the contact
size by varying l=a; or (ii) fix l=a and vary Etan b=s0ð1�n2Þ. For instance, the normalized contact pressure in a C3 solid
(Fig. 9(b)) for an indenter with size l=a¼ 1 increases with Etan b=s0ð1�n2Þ but does not exceed a value of 5. On the other
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hand, the normalized contact pressure for Etan b=s0ð1�n2Þ ¼ 10 does not exceed 3 for any value of l=a. As already
discussed in the context of Fig. 7, a much larger size effect is exhibited by solid C1 (where stretch gradient strengthening
occurs) than that exhibited by solid C3 (where stretch gradient strengthening is absent).

4.2. Contour plots of effective plastic strain

It has been noted by Idiart et al. (2009) and Niordson and Hutchinson (submitted for publication) that strain gradient
plasticity theories which involve the plastic strain as an independent kinematic quantity have the following surprising
feature: they predict that continued plastic flow can occur when the Mises stress is small or even zero when large plastic
gradients are present. We proceed to demonstrate that this feature of unloading of the Mises stress in the presence of
continued plastic flow occurs not only in the relatively simple situations of pure bending and constrained compression as
analyzed by Idiart et al. (2009) and Niordson and Hutchinson (submitted for publication), respectively, but also in the

conical indentation problem as analyzed here. Contours of the Mises stress se ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 s0ij s

0
ij=2

q
and of the effective plastic

strain ep
e ¼

R ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2_ep

ij
_ep

ij=3
q

dt immediately below the indenter are plotted in Fig. 10 for an effective indenter angle b¼ 19:71

and a non-hardening gradient solid (N¼ 0Þ of type C1 of Table 1. (Similar observations can also be made for the cases C2

and C3 but are not shown here for the sake of brevity). Results are included for increasing indentation depth, i.e. increasing

a=l. It is apparent that as a=l increases (contours from left to right), se in Fig. 10(a) decreases over a significant region under

the indenter whereas ep
e in Fig. 10(b) increases. We anticipate that with continued loading se will approach zero over a

large part of the plastically deformed domain, as demonstrated by Idiart et al. (2009) for the case of pure bending.
This feature of strain gradient plasticity theory poses no mathematical problems in the tensor version employed here,

i.e. the problem remains well-posed with positive plastic work even if se-0 while continued plastic flow occurs. However,
it is as yet unclear whether this prediction that plastic flow can occur when the Mises stress is small or even zero is
physically realistic. This remains an open research question.
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5. Indentation hardness for hardening gradient solids

We extend the study of indentation hardness to solids that harden according to the law (18) and for a hardening exponent N

in the range of 0 to 0.3 and assess the accuracy of the Tabor (1948, 1951) approximation in the context of micro-indentation.
Tabor showed that the Vickers hardness of a conventional, strain hardening solid is three times that of the material flow strength
at a representative level of strain beneath the indenter, due to the effects of plastic constraint. Johnson (1985) extended this
scaling law to the case of conical indentation, and argued that the representative strain is related to the cone angle according to
erep ¼ 0:2 tan b. Consequently, for the choice of hardening law (18), the Tabor approximation gives P¼ 3srep where

srep ¼ s0 1þ
erep

e0

� �N

, erep ¼ 0:2 tan b: ð26Þ

This approximation pertains to conventional plasticity and large values of E=s0 (or small yield strains), i.e., when
elasticity effects are negligible. In this regime, a number of studies have confirmed that P¼ 3srep with P reasonably
independent of the value for N, provided N is in the practical range of 0 to 0.3.

The analysis of Tabor and of Johnson neglects the contribution to hardness from material rate dependence. This can be
included in the indentation analysis by introducing the notion of a representative strain rate of _h=a beneath the indenter
(Bower et al., 1993). The normalized contact pressure, as defined in (24), now becomes

PT ¼
P

½ _h=ða_e0Þ�
m srep

: ð27Þ

Thus, PT attempts to include the effect of strain hardening whereas P0 neglects any contribution from strain hardening.
It remains to investigate whether the above-mentioned Tabor approximation prevails down to the micron-scale, even
though there is no particular theoretical reasoning for this to be the case. To help make the assessment, we plot in Fig. 11
the normalized contact pressure curves as a function of the normalized contact radius a=l for a gradient solid of type C1

(of Table 1) and N in the range 0–0.3. Fig. 11(a), (c), and (e) gives values for P0 for E=s0 ¼ 100;300, and 1000, respectively,
and these plots demonstrate the contribution from strain hardening to the indentation pressure. As discussed previously,
the initial response of the gradient solid is purely elastic at small values of indentation depth a=l. The range of dominance
of the elastic solution is sensitive to the yield strain, as parameterized by E=s0. For low values of E=s0 (see for example
Fig. 11(a)) the elastic solution dominates up to relatively large indentation depths, i.e. a=l� 0:4, whereas its dominance
diminishes with increasing E=s0 as observed in Fig. 11(c) and (e). At increased plastic straining, P0 decreases to the
indentation hardness in the conventional, rigid-plastic limit (i.e. l=a¼ 0). This asymptote is a strong function of the
hardening exponent N; likewise, the indentation hardness at intermediate length scales depends strongly upon N.

Fig. 11(b), (d), and (f) shows the contact pressure normalized according to the Tabor approximation, PT , as a function of
the normalized contact radius a=l for a gradient solid of type C1 (Table 1) and selected values of N in the range 0–0.3. For
moderate and large values of E=s0 (see Fig. 11(d) and (f)), the PT curves coalesce to a single curve for a=l41 and are
thereby independent of the value for N. Also, PT asymptotes to the Tabor value of 3 at l=a¼ 0). In contrast, elasticity effects
dominate for the choice E=s0 ¼ 100, see Fig. 11(b).

In similar manner, Fig. 12 shows contact pressure curves as a function of the normalized contact radius a=l for a
gradient solid of type C3 of Table 1 (i.e., l1 ¼ 0) and N in the range 0–0.3. An important difference between Figs. 12(a), (c),
and (e) and 11(a), (c), and (e) is that the elasticity effects at small a=l reduce significantly when l1 ¼ 0. This in turn leads to
qualitatively different hardness estimates between the cases C3 and C1. The Tabor approximation has a larger range of
validity for the solid C3 than for the solid C1 (as seen in Fig. 12(b), (d) and (f)), i.e., it holds for smaller values of a=l.

The validity of the Tabor approximation for solids C1 and C3 of Table 1 is summarized in the form of a map with axes l=a

and E tan b=s0ð1�n2Þ, see Fig. 13. The part of the map above the dashed lines (for the case C1) and the dashed-dotted lines
(for the case C3) defines the regime of validity of the Tabor approximation. As already noted in the two previous figures,
the Tabor approximation exhibits a larger range of validity for the case C3 than for the case C1.

6. Evaluation of existing indentation models

In this section we evaluate previous analytical models that have been proposed for the indentation hardness of solids at
the micro- and macro-scales. First, we analyze the models of Johnson (1970) and Wei and Hutchinson (2003) (see also Hill,
1950); these authors predict indentation hardness from the known analytical solution for the expansion pressure of a
cavity in an infinite solid. This model is compared with the numerical FEM results of the current study for a non-hardening
gradient solid. Second, the present FEM strain gradient plasticity formulation is used to reproduce the hardness trends as
analyzed by Nix and Gao (1998). Finally, the link between the present FEM model and that of Begley and Hutchinson
(1998) is discussed by comparison with experiments.

6.1. Cavity expansion model versus FEM model

Johnson (1970) used the solution to the cavity expansion problem as an approximation to the indentation hardness. The
merit of this approach lies in the fact that the spherical void expansion solution constitutes an one-dimensional problem
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(the displacement rate is only a function of the radial coordinate) and hence can be found analytically in the context of
conventional elasto-(visco)plasticity as given by Hill (1950). Johnson assumed that a hemispherical core of radius a (equal
to the contact radius) exists beneath the indenter contact such that the solid is in a state of uniform hydrostatic pressure,
Psph ¼H, where H is the hardness. The elastic–plastic field outside the core is represented by the field surrounding an
expanding spherical cavity: the representative spherical void has expanded by DVsph to its current volume Vsph ¼ 4pa3=3
by the action of an internal pressure Psph. However, it remains to stipulate DVsph in terms of indentation geometry.
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One approach followed by Wei and Hutchinson (2003) is to equate the volume of the indent with DVsph=2 to give

DVsph

Vsph
¼

tan b
2

: ð28Þ

The accuracy of this approach can be assessed as follows. The void expansion DVsph can be related to the infinitesimal
radial displacement ur of its surface such that DVsph ¼ 4 p a2 ur . Consequently, after use of approximation (28)
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we find that

ur

a
¼

1

3

DVsph

Vsph
¼

tan b
6

: ð29Þ

We proceed to compare this with the Sneddon (1948) elastic indentation solution which predicts that the conical
indentation pressure is given as

PSneddon ¼
E

1�n2

tan b
2

: ð30Þ

On the other hand, the pressure obtained by the solution of the spherical expansion of a void in an infinite (linear) elastic
medium together with the use of (29) is

Psph ¼
2E

1þn
ur

a
¼

E

1þn
tan b

3
¼

2ð1�nÞ
3

PSneddon: ð31Þ

This demonstrates that hypothesis (28) leads to an underestimation of the indentation pressure as given by the Sneddon
solution in the purely elastic case. Motivated by this straightforward observation, one could prescribe

DVsph

3Vsph
¼

ur

a
¼

tan b
4ð1�nÞ , ð32Þ

in order to bring the cavity expansion model into alignment with the Sneddon solution for elastic indentation. The
question remains, however, whether the spherical void expansion model is an accurate approximation in the context of
(micro-)indentation hardness of gradient solids.

We first solve the problem of cavity expansion in a infinite strain gradient solid (the radius of the region analyzed is 100
times the initial radius a of the expanding cavity). This was done by writing a one-dimensional finite element code to solve
for the radial displacement and radial plastic strain in terms of radius r, by suitable modification of the axisymmetric finite
element code. Note that in this problem, the only relevant length scale is l1 or equivalently the single length-scale version
corresponding to the solid C1 (or C1 � C2) of Table 1. Fig. 14 shows normalized void pressure2, P0 � Psph=ðs0ð _a=ða_e0ÞÞ

m
Þ

curves as a function of DVsph=Vsph (lower primary x-axis) and ur=a (upper secondary x-axis) for selected values of l=a and
for E=s0 ¼ 300, N¼0. The values of the normalized void pressure corresponding to the two approximations introduced in
relations (28) and (32) can be extracted from the intersection of the dashed–dotted vertical lines with the pressure curve
for any given l=a. As observed in Fig. 14, relation (28) leads to lower values of the normalized pressure than that of (32).

The procedure described above for the construction of Fig. 14 was repeated in order to construct a map in Fig. 15 for the
case C1 and N¼0, showing normalized contact pressure P0 versus the strain measure Etan b=s0ð1�n2Þ. Part (a) of the figure
assumes l=a¼ 0:05, whereas part (b) assumes l=a¼ 1. Fig. 15 includes the full finite element predictions of indentation
hardness for the elastic, ideally plastic strain-gradient solid, and also the Sneddon elastic solution for conical indentation.
2 Here, the symbol P 0 is used since the void pressure estimates are directly translated to indentation hardness.
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The choice l=a¼ 0:05 is used in order to compare the FEM indentation hardness predictions with the void expansion
solutions in the case corresponding to nearly conventional plasticity, while the second value l=a¼ 1 is within the regime of
micro-indentation. Neither of the approximations proposed in (28) and (32) are able to predict accurately the indentation
pressure of a solid that exhibits significant plastic straining, i.e., for E tan b=s0ð1�n2Þ410 in both cases (a) and (b). In
particular, the use of (28) leads to a significant underestimation of the hardness of the solid even when l=a¼ 0:05.3 On the
other hand, the new prescription (32) provides better agreement than that of relation (28) for l=a¼ 0:05. When l=a¼ 1, the
curve corresponding to definition (32) follows the FEM solution (and the elastic curve) up to a value E tan b=s0ð1�n2Þ � 10,
but then significantly underestimates the indentation pressure for large E tan b=s0ð1�n2Þ (in the indentation regime of
significant plasticity). We conclude that the spherical void expansion solutions underestimate micro-hardness when
3 It is important to point out that Johnson (1970) has proposed the addition of a constant term to the void expansion pressure in order to get

reasonable agreement with FEM calculations of the indentation pressure.
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significant plastic straining is present. The lack of agreement is consistent with the observation that the FEM indentation
solution possesses markedly non-spherical contour fields of the Mises plastic strain, recall Fig. 10(b).

6.2. Nix and Gao approach versus FEM model

Nix and Gao (1998) proposed the phenomenological formula (5) to fit experimental micro-indentation curves. Eq. (5)
can be re-written in terms of the contact radius a according to

H

H0

� �2

¼ 1þA
l

a
, ð33Þ

where A is a non-dimensional constant. This is done by noting that in the conical indentation the indentation depth h

scales linearly with the actual contact radius a (Nix and Gao, 1998).
Fig. 16 shows ðH=H0Þ

2 curves (where H� P0) as a function of l=a for selected values of yield strain. The normalized hardness
H0 is extracted from the FEM calculations as the asymptotic value of P0 in the limit l=a-0: the values of H0 used to the
different cases are stated in Fig. 16. Predictions for a gradient solid of type C1 are included in Fig. 16(a), whereas Fig. 16(b)
shows curves for a gradient solid involving only rotation gradients (case C3). The gradient solid C1 exhibits a nonlinear increase
of ðH=H0Þ

2 with increasing l=a (i.e. as a decreases). In contrast, the solid C3 gives a linear dependence of ðH=H0Þ
2 upon l=a,

similar to the Nix–Gao prediction. This suggests that the gradient solid of type C3 is representative of the indentation data
analyzed by Nix–Gao.
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6.3. Discussion on the Begley–Hutchinson model

There are close links between the findings of the present study and the earlier predictions by Begley and Hutchinson (1998).
The Begley–Hutchinson paper assumes a different formulation of strain gradient plasticity (i.e., that of Fleck and Hutchinson,
1997), wherein the only kinematically free variable is the material displacement field, and the plastic strain field is determined
at the constitutive level. Both studies explore the relative significance of stretch gradients (case C2, closely approximated by
case C1) and of rotation gradients (case C3) upon indentation size effects. While both studies explore the role of strain
hardening, the present study also explores the role of yield strain upon the indentation response, and complete indentation
maps are presented. Detailed comparisons are also made in the present study between the predictions of the present FEM

model and the classical analytical ideas on indentation theory by Tabor (1948, 1951) and Johnson (1970).
In broad terms, the present study and that of Begley and Hutchinson (1998) give rather similar size effects in the

practical range of indents on the micron scale. For example, it is clear from Fig. 5 of the present study, and from Fig. 6 of
Begley and Hutchinson (1998) that the hardness is more sensitive to the magnitude of the length scale in case C1 than that
of l in case C3 (for case C3, l¼ lCS in the notation of Begley and Hutchinson, 1998). On this basis, Begley and Hutchinson
conclude that the indentation test can be used to deduce the value of l1. An alternative view is that l1 is much less than lCS

and indentation tests on the micron scale can be used to deduce the value of lCS. The predictions given in Fig. 16 support
this view, by the following argument. Assume that the observed dependence of hardness upon indent size is that noted by
Poole et al. (1996) and Nix and Gao (1998), as stated in relation (33). The predictions of the present study give a similar
behavior upon considering case C3 with l1 ¼ 0 (recall Fig. 16(b)). In contrast, the case C1 gives a hardness prediction upon
indent size of different qualitative shapes to that given by relation (33). A similar conclusion is drawn by making a direct
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comparison between the predictions of the present study and the experimental data of Swadener et al. (2002) for
Berkovich indentation of Iridium, as shown in Fig. 17. In the simulations, we have used a reference indentation hardness at
large indentation depths of H0¼2.5 GPa, an inverse yield strain value of E=s0 ¼ 4780, a strain hardening exponent
N¼0.638 and indenter angle b¼ 19:71. The material length scale l is adjusted for the cases C1 and C3 in order to fit the
model to the data at large indent depths. We find that for the C1 solid the relevant length scale is l¼ 0:6 mm and for the C3

solid it is l¼ 1:6 mm. It is clear that the solid of type C3 gives a much better correlation with the observed hardness at small
indent depths.
7. Concluding remarks

In this work, we have investigated the micro-indentation hardness of isotropic strain gradient solids which are
described by purely dissipative hardening laws. A parametric analysis of the different length scales involved in the strain
gradient formulation has been carried out. It has been shown that the present strain gradient plasticity formulation
provides a basis for the study of the indentation process at micron scales. In particular, the indentation contact pressure is
given by the Sneddon (1948) elastic solution at extremely small indent depths and then smoothly attains the large scale
indentation pressure at larger length scales. We have also shown that the length scale associated with stretch gradients, l1,
leads to strong size effects whereas rotation gradients, i.e. nonzero l2 and l3 (and l1 ¼ 0), lead to much milder size effects.

The FEM results have been used to construct maps which give the dominant indentation mechanism as a function of (i)
size of indent l=a and (ii) the strain measure E tan b=s0ð1�n2Þ, as originally proposed by Johnson (1970). Three regimes
exist: (i) elastic indentation as given by the Sneddon (1948) solution for low E=s0; (ii) an elastic–plastic regime for solids
that satisfy 10oE=s0o200; and (iii) the size-dependent, rigid-plastic limit at high values of E=s0. The boundaries of these
regimes are strongly affected by the choice of length scale parameters as described in Section 4.1. For example, the solid for
which the strength is influenced by stretch gradients (nonzero l1) exhibits a large elasto-plastic regime. In contrast, the
solid that has a strength influenced by rotation gradients (l1 ¼ 0) has a rather large rigid-plastic regime.

Idiart et al. (2009) and Niordson and Hutchinson (submitted for publication) have previously noted that the present
strain gradient plasticity theory predicts a decreasing Mises stress within material regions of continued plastic flow. In
order to further explore this, we have provided Mises stress and effective plastic strain contour maps below the indenter. It
has been confirmed that the Mises stress becomes small in regions of continued plastic flow and of large plastic gradients.
This is directly attributable to the feature that the Mises stress is work-conjugate to the elastic strain, and there is a much
greater penalty for elastic strain energy within the Fleck and Willis (2009b) Minimum Principle than for plastic dissipation.
This feature of the tensorial strain gradient plasticity theory, as employed in this study, poses no mathematical or
numerical problems, i.e. the problem remains well-posed with positive plastic work. Nonetheless, a physical interpretation
of this feature remains to be established.

Our study of micro-indentation hardness has been limited to the case of gradient solids that undergo dissipative
isotropic hardening. For such a class of solids, we have shown that the Tabor (1948) approximation is a useful aid to the
interpretation of hardness data provided the yield strain is sufficiently low. Tabor’s approximation has a broader range of
applicability for the gradient solid with only rotation gradients present (i.e. l1 ¼ 0) than for the one that involves only
stretch gradients (i.e. l1 is the dominant length scale).

Finally, the present finite element strain gradient framework has been used to evaluate previous simplified indentation
models at micro- and macro-scales, such as the cavity expansion solution and the Nix and Gao (1998) empirical model.
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It has been found that the cavity expansion solution significantly underestimates both the micro- and macro-indentation
hardness of solids particularly at low yield strains (or high values of E=s0). This has been explained by the fact that the
plastic strain fields beneath the indenter exhibit a markedly non-spherical shape and hence the hypothesis of spherically
symmetric plastic strain fields is inappropriate. A comparison of the present finite element calculations with the Nix and
Gao (1998) formula reveals that the gradient solid that involves only rotation gradients (l1 ¼ 0) reproduces the Nix–Gao
trends, i.e. the square of the indentation hardness scales linearly with the inverse of the contact radius (or equivalently
with the inverse of the indentation depth).
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Appendix A. Rate-independent and rate-dependent formulations

The rate-independent and rate-dependent strain gradient plasticity theories are now contrasted. First, we discuss the
rate-independent formulation, which results in a non-local yield function and second we present the finite element
implementation of the rate-dependent formulation as used in the present work to predict indentation hardness.

The rate-independent formulation is attained in the limit of the rate sensitivity exponent m-0 and was originally
described in Fleck and Willis (2009b). Specifically, it involves two minimum principles, termed as Minimum principle I and
Minimum principle II as presented below.

First, we assume that there exists a nonzero plastic strain rate field _ep
ij in a sub-domain VP of V. Since the problem is

rate-independent, _ep
ij in that sub-domain takes the form

_ep
ij ¼

_L bep
ijðxÞ,

_LZ0,
1

VP

Z
VP

bep
ij
bep

ij dV ¼ 1, ð34Þ

where _L is the plastic multiplier and the field bep
ij serves to define a distribution of the plastic strain field. Then, following Fleck

and Willis (2009b) (see Eq. (6.1) in that manuscript), one can write the minimum principle I in terms of the following functional:

Fðs0ijÞ ¼
Z

SU

tij _ep
ij dS�infbep

ij

Z
V
ðsyðEpÞ

_Ep�s0ij _e
p
ijÞ dV�

Z
ST

tij _ep
ij dS

	 

: ð35Þ

The above expression constitutes a ‘‘non-local’’ yield function, such that yield occurs when F¼ 0, and no yield occurs if Fo0.
Thus, we obtain two possible cases:
�
 In the case of yield, i.e., F¼ 0, we make use of the minimum principle II (see equation (7.1) in Fleck and Willis, 2009b).
This takes the form

J ¼ min
_ui , _LZ0

Z
V

1

2
½ð_eij�_ep

ijÞLijklð_ekl�_e
p
klÞþhNðEpÞ

_Ep� dV�

Z
ST

½ _T i _uiþ _t ij _ep
ij� dS

	 

, ð36Þ

where hNðEpÞ ¼ dsy=dEp denotes the hardening rate of the material. By carrying out the minimization procedure in (36),
we obtain the solution for _ui and _L. Then, we have two possibilities for _L: the first is _L40, which indicates that active
plastic flow occurs in the sub-domain VP, while the second is _L ¼ 0, indicating that elastic unloading occurs from the
current yield point.

�
 In the case of no yield, i.e., Fo0, purely elastic straining occurs and _ep

ij ¼ 0 (as well as _Ep ¼ 0) everywhere in V. This
requires the solution of the minimization problem (36), which is a standard elasticity problem.

A complete numerical implementation of the above-described rate-independent procedure is not yet fully developed, due to
the nonlocal character of the yield function (35). The first steps in this direction have been taken by Niordson and Hutchinson
(submitted for publication). Therefore, for convenience in the present study, we have implemented numerically the pertinent
rate-dependent formulation but for a small rate sensitivity exponent (m¼0.1) so that the corresponding indentation results are
also relevant to the hardness of a rate-independent solid. Nonetheless, one should keep in mind that real materials always
exhibit rate sensitivity to some degree and hence, the rate-dependent formulations are always useful.

Next, we describe the numerical implementation of the rate-dependent formulation as outlined in Section 2. The imple-
mentation employs a mixed finite element framework. In this connection, the weak form of the equilibrium equations (8) readZ

V

_s ij d _ui,j dV ¼

Z
S

Tid _ui dS, ð37Þ

Z
V

qijd_e
p
ij dVþ

Z
V
tijkd_e

p
ij,k dV ¼

Z
V
s0ijd_e

p
ij dVþ

Z
S

tijd_ep
ij dS, ð38Þ

where the plastic strain is constrained to be incompressible, i.e. _ep
kk ¼ 0.
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For the finite element implementation of relations (38), we define the vector of rates of nodal degrees of freedom f _uN
g

and f_epN
g while fvg and f_ep

g are the vectors of components of the velocity and the plastic strain-rate at a material point
within an element. In a conventional small-strain formulation, the shape functions ½Nu� and ½Nep � relate fvg and f_ep

g to the
corresponding nodal degrees of freedom via

fvg ¼ ½Nu�f _u
N
g, f_ep

g ¼ ½Nep �f_epN
g: ð39Þ

The corresponding rate of the total strain f_eg and plastic strain-rate gradient fr _ep
g vectors are defined via the matrices ½Bu�

and ½Bep � according to

f_eg ¼ ½Bu�f _u
N
g, fr _ep

g ¼ ½Bep �f_epN
g: ð40Þ

where the ½B� are the appropriate spatial derivatives of the shape functions. Using the discretized relations (39) and (40),
we write the weak form of the equilibrium equations (38) asZ

V
½ _s�T ½Bu� dVf _uN

g ¼

Z
S
½T�T ½Nu� dSf _uN

g, ð41Þ

Z
V
½q�T ½Nep � dVf_epN

gþ

Z
V
½t�T ½Bep � dVf_epN

g ¼

Z
V
½s0�T ½Nep � dVf_epN

gþ

Z
S
½t�T ½Nep � dSf_epN

g: ð42Þ

Plastic incompressibility is a linear equality constraint on f_epN
g and can be imposed in a rather straightforward manner as

detailed in Cook et al. (1974, Chapter 9) and is not detailed here. The solution of the above two simultaneous equilibrium
equations is done via an iterative scheme wherein each equation is solved independently via a Newton scheme and
convergence then checked for the two equations together.

Appendix B. Sensitivity of hardness to the choice of boundary conditions at the contact

The sensitivity of indentation pressure to the choice of higher order boundary conditions at the contact area is now
investigated. More specifically, we either apply zero higher order tractions tij ¼ 0 at the contact area or a zero plastic
strain-rate _ep

ij ¼ 0. According to Wei and Hutchinson (2003), these two different boundary conditions do not significantly
affect the predicted contact pressure at the indenter. To confirm this, we carried out two indentation simulations; in the
first tij ¼ 0 at the contact area while in the second _ep

ij ¼ 0 at the contact area. Fig. 18 confirms the findings of Wei and
Hutchinson (2003): the difference between the responses for _ep

ij ¼ 0 and the tij ¼ 0 is on the order of 5% at l=ao0:3, and
becomes negligible at l=a40:3.
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