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Abstract
A small-strain two-dimensional discrete dislocation plasticity (DDP)
framework is developed wherein dislocation motion is caused by climb-assisted
glide. The climb motion of the dislocations is assumed to be governed by a drag-
type relation similar to the glide-only motion of dislocations: such a relation
is valid when vacancy kinetics is either diffusion limited or sink limited. The
DDP framework is employed to predict the effect of dislocation climb on the
uniaxial tensile and pure bending response of single crystals. Under uniaxial
tensile loading conditions, the ability of dislocations to bypass obstacles by
climb results in a reduced dislocation density over a wide range of specimen
sizes in the climb-assisted glide case compared to when dislocation motion is
only by glide. A consequence is that, at least in a single slip situation, size effects
due to dislocation starvation are reduced. By contrast, under pure bending
loading conditions, the dislocation density is unaffected by dislocation climb
as geometrically necessary dislocations (GNDs) dominate. However, climb
enables the dislocations to arrange themselves into lower energy configurations
which significantly reduces the predicted bending size effect as well as the
amount of reverse plasticity observed during unloading. The results indicate
that the intrinsic plasticity material length scale associated with GNDs is
strongly affected by thermally activated processes and will be a function of
temperature.

(Some figures may appear in colour only in the online journal)

1. Introduction

Over the last 25 years or so, computational solid mechanics has become an integral part
of theoretical materials science. Significant attention has focused on mesoscale continuum
mechanics where size matters. Such formulations are intermediate between a direct atomistic
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simulations and an unstructured continuum description of deformation processes. A variety
of theoretical frameworks are emerging to describe inelastic deformation at the mesoscale:
in this study we shall focus on one of these methods, namely, discrete dislocation plasticity
(DDP). In DDP, the dislocations are treated as line singularities in an elastic solid. A many
body interaction problem involving the discrete dislocations needs to be solved together with
a complimentary more conventional elasticity boundary value problem.

Following the pioneering work of Van der Giessen and Needleman [1], the DDP method
has been shown to successfully predict numerous observations of plasticity size effects at the
micrometre and sub-micrometre length scale. These include size effects in composites [2],
bending [3], indentation [4], uniaxial compression [5], and under constrained shear [6].
The framework has also been used to investigate crack growth under monotonic [7] and
fatigue loading [8]. Numerical methods to extend the framework to three-dimensional (3D)
problems [9] and quasi-3D or the so-called 2.5D [10] have also been developed in order to
capture essential features of plasticity including strain hardening under tensile loading. In all
these studies the motion of dislocations is restricted to glide-only along specific slip planes,
which is appropriate for deformations at temperatures significantly less than about 0.3Tm where
Tm is the melting temperature of the metal. Diffusion is a significant mechanism of deformation
at the temperatures encountered in many applications including for example the manufacture
of semiconductor devices: the surface diffusion driven deformation of thin films leading to
island formation, gives a possible means of producing quantum dots. It is thus of interest to
extend the DDP framework to higher temperatures, where diffusion of vacancies affects the
motion of dislocations.

Diffusion of vacancies permits dislocations to climb out of their slip planes. This is
a potent relaxation mechanism: with the aid of small amounts of climb, dislocations can
surmount small obstacles and thereby prevent the build-up of large pile-ups [11, 12]. In fact,
recent experimental measurements of the uniaxial compression of indium micro-pillars at room
temperature (room temperature is above 0.3Tm for Indium) by Lee et al [13] (see also [14])
revealed significantly smaller size effects compared with corresponding measurements for
Gold [15], Ni and Ni3Al [16] single crystals at room temperature. Moreover, a reduced
indentation hardness size effect too has recently been reported by Franke et al [17] in copper
as the temperature is increased from ambient to 200 ◦C. It is thus of considerable interest to
extend the DDP framework to include the climb motion of dislocations.

Mordehai et al [18] have reported three-dimensional discrete dislocation calculations
wherein climb motion of the dislocations is included in the form of a drag-type relation. This
early study demonstrated the effect of climb in an infinite fcc crystal by investigating the
activation of Bardeen–Herring sources. Other notable contributions which have incorporated
climb into a discrete dislocation studies include the work by Xiang and Srolovitz [19] and
Bakó et al [20]. However, to date a framework to solve boundary value problems in which the
motion of discrete dislocations is by climb and glide has not yet been presented.

Here, we aim to develop a two-dimensional framework along the lines of the work of
Van der Giessen and Needleman [1] that allows for the solution of boundary value problems
with climb-assisted glide of dislocations. This would enable the investigation of the effect of
climb on size effects in plasticity and make contact with the recent experimental observations
referred to above.

The outline of the study is as follows. First we discuss the mechanisms and driving forces
for the climb of edge dislocations and motivate a constitutive relation for the climb motion
of these dislocations. Second, the two-dimensional (2D) DDP problem, with climb-assisted
glide motion of dislocations, is formulated and discussed. Two boundary value problems are
then solved using this formulation: (i) uniaxial tension and (ii) pure bending. Detailed results
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Figure 1. Sketch of the climb of an edge dislocation. The extra half-plane associated with the
edge dislocation is shaded. At A, a vacancy from the crystal is destroyed directly at a jog. At B, a
vacancy from the crystal jumps into the core. At C, an attached vacancy is destroyed at a jog. At
D, an attached vacancy diffuses along the core.

are presented for the case of only one active slip system and then contrasted to the situation
when three slip systems are active. Emphasis is given to the effect of the specimen size on the
predicted responses.

2. Climb of edge dislocations

Figure 1 presents a simplified three-dimensional representation of the climb of an edge
dislocation arising from the destruction of excess vacancies in the crystal. The jogs (steps in
the edge of the extra half-plane of atoms) in the dislocation core are the sites where vacancies
are created or permanently destroyed. Vacancies can reach a jog by either jumping directly
into it or else by first jumping into the dislocation core and then diffusing along the core to a
jog where they are destroyed. The elementary processes involved include (with reference to
figure 1): (i) the jumping of a vacancy directly into a jog and its simultaneous destruction as
at site A; (ii) the jumping of a vacancy into the core, where it becomes attached as at B; (iii)
the destruction of an attached vacancy at a jog as at C and (iv) the diffusion of an attached
vacancy along the core as at D. In many cases, vacancies are bound to the dislocation core by
an attractive binding energy and diffuse along the dislocation more rapidly than in the crystal.
Many more vacancies may therefore reach jogs by fast diffusion along the dislocation core
than by diffusion directly into them through the crystal.

The jogs required for the climb process can be generated by the nucleation and growth
of strings of attached excess vacancies along the core. When a string becomes long enough,
it will collapse to produce a fully formed jog pair, as for example in the region bounded by
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A and C in figure 1. The spacings between the jog pair then increase due to the continued
destruction of excess vacancies at the jogs until a complete row of atoms has been stripped
from the extra half-plane. In a two-dimensional view, the edge dislocation then climbs one
atomic spacing; readers are referred to Ballufi et al [21] for a more detailed description of the
climb of dislocations.

2.1. The equilibrium vacancy concentration

Gao and Cocks [22] have shown that in general there are three configurational forces acting
on a dislocation to inhibit/promote climb. These are:

(i) the climb component fc of the Peach–Koehler force due to the elastic field of the
dislocation,

(ii) the so-called osmotic force fo resulting from the change of free energy associated with
the creation or destruction of vacancies due to the climb of the dislocations and

(iii) a drag force on the dislocations due to the free energy of the vacancies associated with the
evolution of the pressure field of the dislocation as it climbs.

The drag force is negligible compared with the other two forces [22] and hence is neglected
in most analyses. In the treatment presented here we also adopt this approximation and only
consider the fc and fo contributions to the configurational forces on the dislocation.

The osmotic force fo per unit length on the edge dislocation is given in terms of the
Boltzmann constant k and atomic vacancy volume � as [23]

fo = kT b

�
ln

(
c

co

)
, (1)

where c is the vacancy concentration in the vicinity of the dislocation with Burger’s vector
b and co is the standard-state concentration of vacancies (usually taken as the equilibrium
concentration of vacancies in the absence of stress at the temperature T ). Thus, the total climb
force per unit length on the edge dislocation is

F = fc + fo = fc +
kT b

�
ln

(
c

co

)
. (2)

If the dislocation is in climb equilibrium, F = 0 so that equation (2) yields the local equilibrium
concentration of vacancies near the dislocation as

ceq = co exp

(
−fc�

bkT

)
. (3)

The inward vacancy current per unit dislocation length from the crystal into the dislocation
core is proportional to the vacancy concentration in the vicinity of the dislocation and is given
by 2πrcKceq where rc is the core radius and K a rate constant that depends on the core
characteristics such as density of vacancy incorporation sites, diffusion rate of vacancies along
the core and the binding energy of vacancies to the core. Under equilibrium conditions, the
edge dislocation does not climb and thus this vacancy current into the core is balanced by an
equal outward vacancy current from the dislocation core into the crystal.

2.2. Diffusion limited versus sink-limited climb kinetics

Vacancies are easily created or destroyed at jogs and hence they are maintained at their
equilibrium value given by equation (3) in the immediate vicinity of jogs. If vacancies
experience an attractive binding energy to the core and also diffuse relatively rapidly along it,
a typical attached vacancy will diffuse a significantly large mean distance Z̄, along the core
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before it jumps back into the crystal. Each jog is therefore capable of maintaining the vacancy
concentration essentially at equilibrium over a distance Z̄ along the dislocation core. Each
jog, with the assistance of the two adjoining segments of high diffusivity core, therefore acts
effectively as an ellipsoidal sink of semi-axes b and Z̄ having a surface on which the vacancy
concentration is maintained in local equilibrium with the jog. The overall effectiveness of
the dislocation as a sink then depends upon the magnitude of Z̄ and the mean spacing S̄ of
jogs along the dislocation core. A wide range of dislocation sink efficiencies is thus possible.
When 2Z̄/S̄ � 1, the effective jog sinks overlap along the dislocation line, which then acts
as a highly effective line sink capable of maintaining local vacancy equilibrium everywhere
along the dislocation line. The rate of vacancy destruction is limited only by the rate at which
the vacancies can diffuse to the dislocation. The kinetics is therefore diffusion limited, and the
dislocation is considered to be an ideal sink. Conditions that promote this situation are a high
binding energy for attached vacancies, a relatively fast diffusion rate along the core, a small
jog formation energy and a large vacancy supersaturation.

On the other hand, when fast diffusion of the attached vacancies to the jogs is impeded
and Z̄ is therefore small (i.e. Z̄ ≈ b), each jog acts as a small isolated spherical sink of radius
b. If at the same time, S̄ is large, the jog sinks are far apart and the overall dislocation sink
efficiency is relatively small. Under these conditions the rate of vacancy destruction will be
limited by the rate at which the vacancies can be destroyed along the dislocation line. In the
limit where the rate of destruction is slow enough so that it becomes essentially independent
of the rate at which vacancies can be transported to the dislocation line over relatively long
distances by diffusion and the kinetics are sink limited. The efficiency of the dislocation as a
sink is then defined as

η = flux rate at an actual sink

flux rate at the corresponding ideal sink
. (4)

A dislocation that climbs rapidly enough so that ideal diffusion-limited conditions are achieved
therefore operates with η → 1. By contrast, a slowly acting dislocation sink has an efficiency
approaching zero.

To illustrate these two limits we proceed to present an example of a spherical sink of radius
rc in an infinite medium. This example is chosen as it admits a simple analytical solution
which displays all the essential features. The diffusion equation governing the concentration
c of vacancies in the medium as a function of time t is

∂c

∂t
= D∇2c = D

(
∂2c

∂r2
+

2

r

∂c

∂r

)
, (5)

where D is the diffusion coefficient and r is the radial distance measured from the centre of
the spherical sink. The boundary and initial conditions are

c(r = rc, t > 0) = c̄ (6)

c(r � rc, t = 0) = co, (7)

c(r → ∞, t � 0) = co. (8)

The solution of equation (5) with the above initial and boundary conditions is

c − co

c̄ − co
= rc

r

[
1 − erf

(
r − rc

2
√

Dt

)]
, (9)

and the total vacancy current into the sink is then

Iv = 4πr2
c D

∂c

∂r

∣∣∣∣
r=rc

= 4πDrc(co − c̄)

(
1 +

rc

2
√

Dt

)
. (10)
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The second term inside the bracket in the above equation is an initial transient that decays
rapidly and becomes negligible when 2

√
Dt � rc and for all practical purposes we can

assume that the vacancy current is given by

Iv ≈ 4πDrc(co − c̄). (11)

It now remains to determine the concentration c̄ that is maintained on the surface of the sink.
This is governed by the kinetics of vacancies entering and leaving the sink. The vacancy
current from the body into the sink is proportional to the concentration of vacancies in the
vicinity of the sink and is hence given as 4πr2

c Kc̄. The reverse current of vacancies out of
the sink will equal the rate of transfer into the sink under equilibrium conditions, i.e. when the
concentration of vacancies in the vicinity of the sink was equal to ceq. Thus, the net rate of
transfer of vacancies into the sink is given by

I ′
v = 4πr2

c K(c̄ − ceq). (12)

In order to prevent a build-up of vacancies at r = rc the rate of transfer of vacancies by diffusion
to the sink Iv should be equal to the net rate of vacancy transfer I ′

v across r = rc. Setting
Iv = I ′

v and solving for c̄ gives

c̄ = Dco/(rcK) + ceq

D/(rcK) + 1
, (13)

and the current into the sink follows as

Iv = 4πDrc(co − ceq)

1 + D/(Krc)
. (14)

Thus, the sink efficiency is given by

η = 1

1 + D/(Krc)
. (15)

When D/(Krc) 	 1, c̄ ≈ ceq and the kinetics is diffusion limited. At the other extreme, when
D/(Krc) � 1, c̄ ≈ co, i.e. the vacancy concentration is spatially uniform and the kinetics is
sink limited.

2.3. Effect of the dislocation stress field

In the above treatment we do not take into account the effect of the dislocation stress field
on the diffusivity of the vacancies. The diffusion equation, equation (5), is modified in the
presence of the hydrostatic pressure p as

∂c

∂t
= D∇2c +

D�′

kT
∇ · (c∇p) , (16)

where �′ is the relaxed vacancy volume. The additional term in the above equation is of
importance only within a relatively small distance from the dislocation where p�′ is of the
order kT . Ham [24] has shown that the effect of this term after the decay of the initial transient
in equation (10) can be approximated in a simple manner by making a relatively small change
in the core radius rc of the dislocations in equation (12). We thus argue that neglecting the stress
term in the diffusion equation is a sufficiently accurate assumption for the present purposes.

2.4. A drag relation for edge dislocation climb

The computational framework for analysing the general case of mixed kinetics where 0 � η �
1 is beyond the scope of this study. Rather, we develop a constitutive rule for the climb rate of
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edge dislocations in the limit where the process is sink limited, i.e. η → 0 or D/(Krc) � 1
and then compare it with the diffusion-limited case analysed by Hirth and Lothe [23].

Consider the two-dimensional boundary value problem where at time t there are N edge
dislocations in the body with both glide and climb of the dislocations permitted. The body
occupies a volume B and its boundary is denoted by ∂B. The equilibrium concentration of
vacancies in the absence of dislocations at temperature T is co. Given that vacancies are readily
destroyed or created on the surface ∂B it is reasonable to assume that the vacancy concentration
c = co on ∂B at all times. As each dislocation climbs it either emits or absorbs vacancies and
thereby each dislocation acts as a moving point source/sink in this two-dimensional setting. We
have limited our consideration to the case where the kinetics is sink limited, i.e. the diffusion
rate is fast compared with the rate of operation of the dislocation sources or sinks. Based on
the analysis in section 2.2, we can thus assume that vacancy concentration c = co throughout
B at all times.

As described earlier, the vacancy current from the crystal into the dislocation core per unit
line length of the edge dislocation is proportional to the vacancy concentration in the crystal
and given as 2πrcKco. The reverse current of vacancies flowing from the dislocation core
into the crystal will be the same as the rate of transfer from the crystal into the core under
equilibrium conditions and hence given by 2πrcKceq. Thus, the net vacancy current into the
dislocation core is

Iv = 2πrcK(co − ceq) (17)

and conservation of mass then gives the climb velocity vc as

vc = I�

b
. (18)

Substituting for ceq from equation (3) gives the climb rate as

vc = 2π�rcKco

b

[
1 − exp

(
−fc�

bkT

)]
. (19)

Under most circumstances it is reasonable to assume |fc�| 	 |bkT | [23] so that equation (19)
simplifies to

vc = 2π�2rcKco

b2kT
fc ≡ fc

Bc
, (20)

where the climb drag coefficient is defined as

Bc ≡ b2kT

2π�2rcKco
. (21)

Hirth and Lothe [23] and Mordehai et al [18] considered the diffusion-limited case and assumed
that the diffusion length of vacancies is given by the average dislocation spacing �. With this
assumption the dislocation climb law also takes the form vc = fc/Bc with Bc given by

Bc = b2kT ln(�/b)

2πDco�2
. (22)

Thus, in this study we shall use Bc as a parameter to investigate the effect of climb with the
results being equally valid in both the sink-limited kinetic and diffusion-limited kinetic limits.

3. Modelling dislocation climb with discrete dislocation dynamics

The two-dimensional (2D) plane strain, small-strain DDP framework wherein dislocation
motion occurs both by climb and glide is described in this section with an emphasis on the
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differences with the glide-only formulation of Van der Giessen and Needleman [1]. In DDP, the
dislocations are treated as line defects in an otherwise elastic continuum. In this plane-strain
formulation the edge dislocations lie in the x1–x2 plane. At each stage of loading, the stress and
deformation state is computed using superposition [1] of a singular field ( ˜ ) and a smooth image
field ( ˆ ) that enforces the boundary conditions. When dislocations can move only by glide,
the deformation state of the body can be computed from the current positions of dislocations
including those that have exited the domain and left behind slip steps. When the motion of the
dislocations is by a combination of glide and climb, the deformation state of the body cannot
be constructed from only the knowledge of the current positions of the dislocations. Thus, it is
numerically more convenient to write the problem in rate or an incremental form and update
the deformation of the body during each increment of the dislocation motion.

At time t , the body contains N edge dislocations moving with a velocity v
(I)
i , where

I = 1, . . . , N . The change in position of dislocation I gives rise to a displacement field
˙̃u
(I)

i (xj ) at each material point xj within the body. The total displacement rate is written as the
superposition

u̇i(xj , t) = ˙̂ui(xj , t) + ˙̃ui(xj , t), (23)

where xj denotes the position of a material point and

˙̃ui(xj , t) =
N∑

I=1

˙̃u
(I)

i . (24)

We typically calculate ˙̃u
(I)

i from time t to time t + �t using a finite difference scheme as
described subsequently.

The computation of the deformation history is carried out in an incremental manner.
Each time step involves three main computational stages: (i) determining the climb and glide
Peach–Koehler forces on the dislocations; (ii) determining the rate of change of the dislocation
structure, caused by the motion of dislocations, generation of new dislocations, their mutual
annihilation or exit from the domain and their possible pining and release from obstacles; and
(iii) determining the stress and strain state for the updated dislocation arrangement.

At a given stage of loading, the material velocity, strain rate and stress-rate fields are
written as the superposition of two fields

u̇i = ˙̂ui + ˙̃ui, ε̇ij = ˙̂εij + ˙̃εij , σ̇ij = ˙̂σ ij + ˙̃σ ij , (25)

where the ( ˜ ) fields are the sum of all the individual dislocations, namely,

˙̃ui =
N∑

I=1

˙̃u
(I)

i , ˙̃εij =
N∑

I=1

˙̃ε
(I)

ij , ˙̃σ ij =
N∑

I=1

˙̃σ
(I)

ij . (26)

These ( ˜ ) fields give rise to traction rates ˙̃
T i and material velocities ˙̃

Ui on the boundary of the
body. With body forces neglected, the principle of virtual work takes the form∫

V

σij δε̂ij dV =
∫

ST

Tiδûi dS, (27)

where V is the volume of the body analysed and ST is the external surface over which traction
boundary conditions are imposed. Substituting σij from equation (25)3 (which is true in both
total and rate form), and then carrying out integration by parts and the divergence theorem in
equation (27), one readily obtains∫

V

σ̂ij δε̂ij dV =
∫

ST

(Ti − T̃i)δûi dS. (28)
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At time t the stress field and the current positions of all the dislocations are known. An
increment of loading is prescribed and the dislocation structure updated to time t + �t , such
that σ̂ (t+�t) = σ̂ (t) + ˙̂σ �t . The rate boundary value problem is then given as

�t

∫
V

˙̂σ ij δε̂ij dV =
∫

ST

(
T

(t+�t)
i − T̃

(t+�t)
i

)
δûi dS −

∫
V

σ̂
(t)
ij δε̂ij dV, (29)

which can be conveniently solved for the ( ˆ ) fields using the prescribed traction and
displacement boundary conditions on ST and Su, respectively, by a finite element (FE) analysis.

3.1. Dislocation interaction constitutive rules

Attention is restricted to elastically isotropic and homogeneous crystals with Young’s modulus
E and Poisson’s ratio ν. Constitutive rules for 2D dislocation dynamics were given by Kubin
et al [25] and subsequently employed by Van der Giessen and Needleman [1] in plane-strain
analyses. We summarize the plane-strain rules, highlighting the differences that arise due to
dislocation climb.

The main difference is that with dislocation climb permitted, dislocations are no longer
confined to a fixed slip plane as they can climb out of that plane. Hence, the basic entity is
a slip system (i.e. the orientation in the lattice of the slip plane normal and the slip direction)
rather than a slip plane. The glide and climb force work conjugates to infinitesimal variations
of the position of dislocation I (i.e. the glide and climb Peach–Koehler force) are given by

f (I)
g =


σ̂ij +

∑
J �=I

σ̃
(J )
ij


 b

(I)
j mi, (30)

f (I)
c = −


σ̂ij +

∑
J �=I

σ̃
(J )
ij


 b

(I)
j si , (31)

respectively, where b
(I)
j is Burger’s vector of dislocation I residing on a slip system with unit

normal mi and a unit vector si in the slip direction such that eijksjmk is a unit vector in the x3

direction (eijk is the permutation tensor). The glide velocity of dislocation I is given by the
usual drag relation [1]

V (I)
g = f

(I)
g

Bg
, (32)

where Bg is the drag coefficient in glide while the analysis of section 2.4 gives a drag relation
for the climb velocity of the form

V (I)
c = f

(I)
c

Bc
. (33)

In the calculations presented subsequently, we shall use Bc as a parameter to investigate the
effect of climb.

New dislocation pairs are generated by simulating Frank-read sources. In two dimensions,
this is mimicked by discrete point sources on a slip system which generate a dislocation dipole
with their Burger’s vector aligned with si . This occurs when the magnitude of the Peach–
Koehler force at that source exceeds a critical value τnucb, where b is the magnitude of Burger’s
vector for a time period tnuc. The distance Lnuc between the dislocations of the nucleated dipole
is taken to be specified by

Lnuc = E

4π(1 − ν2)

b

τnuc
, (34)
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Figure 2. Sketch of the combined glide and climb of an edge dislocation during its motion from
location A to location C. In (a) the dislocation moves from A to C by first gliding to the intermediate
location B and then climbing to C while in (b) the motion involves first climbing to the intermediate
location B and then gliding to the final position C. The local axes attached to the dislocation x′

1 and
x′

2 are also illustrated.

such that the dislocation source and the two nucleated dislocations are all co-linear (i.e. we
neglect climb of the nascent dislocation loop). This choice of Lnuc ensures that the shear
stress of one dislocation acting on the other is balanced by the slip system shear stress τnuc.
Annihilation of two opposite signed dislocations on the same slip system occurs when they
are sufficiently close together. This is modelled by eliminating the dislocations when they are
within a material-dependent critical annihilation distance Le. Note that unlike in the glide-only
formulation where only opposite signed dislocations on a given slip plane can annihilate each
other, in this formulation opposite signed dislocations on a given slip system can annihilate
each other. Thus, annihilation of two opposite signed dislocations on a particular slip system
occurs when they are within a radius Le irrespective of their current slip plane.

Obstacles to dislocation motion are modelled as points associated with a slip system.
Dislocations on the obstacle slip system get pinned as they try to pass through that point.
Again, unlike in the only-glide deformation case, dislocations and obstacles are associated with
slip system rather than a slip plane. Thus, dislocations on the obstacle slip system that pass
within a specified distance, taken to be Le, get pinned to that obstacle. Pinned dislocations can
only pass through an obstacle when their Peach–Koehler force exceeds an obstacle dependent
value τobsb.

3.2. Calculation of the ( ˜ ) velocity fields

The calculation of the ˙̃ui is complicated by the fact that dislocation motion is by a combination
of glide and climb as illustrated in figure 2. The complication arises due to the fact that while
the stress and strain fields associated with a dislocation (i.e. the σ̃ij and ε̃ij ) are unique, the
corresponding displacement field ũi depends on the history of motion. To clarify, consider
a perfect crystal and consider two limiting processes by which an edge dislocation may be
inserted into this crystal: (i) insert the dislocation into the crystal by a pure glide process as
shown in figure 3(a) wherein the motion of the edge dislocation is along the direction of
Burger’s vector and (ii) insert the extra half-plane by a climb-like process wherein the motion
of the dislocation is perpendicular to the direction of Burger’s vector as shown in figure 3(b).
The resultant displacement fields (in an infinite crystal) due to these two processes are given by

ū1 = b′

2π(1 − ν)

[
x ′

1x
′
2

2(x
′2
1 + x

′2
2 )

− (1 − ν) tan−1

(
x ′

1

x ′
2

)]
, (35)

ū2 = b′

2π(1 − ν)

[
x

′2
2

2(x
′2
1 + x

′2
2 )

− (1 − 2ν)

4
ln

(
x

′2
1 + x

′2
2

b2

)]
(36)
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(i) (ii) (iii)

(b)

(i) (ii) (iii)

(a)

Figure 3. Sketch illustrating the two limiting processes to insert an edge dislocation into a perfect
crystal: (a) a pure glide process wherein the dislocation motion is along the direction of Burger’s
vector and (b) a climb-like process wherein the motion of the dislocation is perpendicular to Burger’s
vector.

for the glide process sketched in figure 3(a) and by

ŭ1 = b′

2π(1 − ν)

[
x ′

1x
′
2

2(x
′2
1 + x

′2
2 )

+ (1 − ν) tan−1

(
x ′

2

x ′
1

)]
, (37)

ŭ2 = b′

2π(1 − ν)

[
x

′2
2

2(x
′2
1 + x

′2
2 )

− (1 − 2ν)

4
ln

(
x

′2
1 + x

′2
2

b2

)]
. (38)

for the climb-like process sketched in figure 3(b). Here x ′
1 and x ′

2 are the coordinates of the
material point at which the displacement is being calculated as measured in the local coordinate
system of the edge dislocation as shown in figure 2 and b′ is the signed magnitude of Burger’s
vector.

Now consider the motion of the edge dislocation from location A at time t to location C
at time t + �t involving glide and climb; see figure 2. We decompose this motion into glide-
only and climb-only components, as shown in figure 2(a), where location B is the intermediate
location of the dislocation after it has completed its glide-only part of its motion at time t +�tg.

We then calculate the displacement rate ˙̃u
(I)

i due to the motion of the dislocation (I ) from A
to C as

˙̃u
(I)

i = 1

�t

[
ū

(t+�tg)

i − ū
(t)
i + ŭ

(t+�t)
i − ŭ

(t+�tg)

i

]
. (39)

If the situation as shown in figure 2(b) occurs, i.e. the motion of the edge dislocation from A to
C occurs by first a climb step followed by a glide step, then equation (39) needs to be modified
by swapping the order of the ūi and ŭi terms.

In the procedure described above, we decompose the motion of the dislocation into glide-
only and climb-only segments. The displacement rate ˙̃ui will depend on the order to these two
events, i.e. whether the glide-only segment precedes the climb-only segment or vice versa as
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Figure 4. Sketch of the single crystal specimen analysed. The sign convention for the dislocations
along with the leading specimen dimensions and the co-ordinate system employed are marked.
Two boundary value problems are analysed (a) uniaxial tension in the x1 direction and (b) pure
bending about the x1-axis.

shown in figures 2(a) and (b). Within a time step �t , we cannot resolve the order of these
events and hence need to arbitrarily assume the glide and climb sequence within a time step.
This is done using the following reasoning. Recall that in discrete dislocation dynamics, we
employ an explicit time integration scheme. A consequence of this integration scheme is that
there is some vibratory motion of dislocations that may be a numerical artifact. We ensure
that these vibratory motions do not give any net contribution to the ũi fields by employing the
following ‘sign-convention’: the glide-only segment precedes the climb-only segment when
an edge dislocation is gliding along the positive si direction and vice versa. This convention
ensures no net contribution to ũi due to purely vibratory motion of the dislocations.

3.3. The boundary value problems

We illustrate the effect of climb on the response of single crystals using two illustrative
examples: (i) uniaxial tension and (ii) pure bending as sketched in figure 4. Consider a single
crystal of length 2L and width H with slip systems orientated at angles φ(α) with respect to the
x1-axis, where α is the slip system designation. Uniaxial tension is imposed by prescribing a
displacement rate U̇ (see figure 4(a)) such that

u̇1 = ±U̇ , and Ṫ2 = 0 (40)

on x1 = −L and x1 = L, respectively, as well as free surface conditions on the top and bottom
surfaces, i.e. Ṫ1 = Ṫ2 = 0 on x2 = −H/2 and x2 = H/2. In addition we impose u̇2 = 0 on
the corner (x1, x2) = (−L, −H/2) in order to prevent rigid body motion in the x2 direction.
In all the calculations a loading rate U̇/L = 1000 s−1 is employed.

Pure bending on the crystals is imposed by specifying displacements (see figure 4(b))

u̇1 = ±θ̇ (x2 − x0) (41)

along with Ṫ2 = 0 on x1 = −L and x1 = L, respectively, as well as the traction-free conditions
Ṫ1 = Ṫ2 = 0 on x2 = −H/2 and x2 = H/2. The location x0 of the neutral axis is determined
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from the solution of the problem in order to ensure pure bending, i.e.∫ H/2

−H/2
Ṫ1 = 0 (42)

on both x1 = −L and x1 = L; see [3] for details of this procedure. Rigid body motion in the x2

direction is again prevented by imposing u̇2 = 0 on the corner (−L, −H/2). All calculations
were performed using a loading/unloading rate θ̇ = κ̇L = ±1000 s−1, where κ̇ is the imposed
curvature rate.

3.4. Reference properties

In the calculations, the specimen aspect ratio was fixed at 2L/H = 3 and the specimen sizes
varied from H = 1–8 µm. The crystals were taken to be elastically isotropic with Young’s
modulus E = 70 GPa and Poisson’s ratio ν = 0.33. The materials had Frank–Read sources
distributed on planes that were spaced 100b apart where b = 0.25 nm is the magnitude of
Burger’s vector of the edge dislocations in the calculations. Each source is randomly assigned a
nucleation strength τnuc from a Gaussian distribution with average τ̄nuc = 50 MPa and standard
deviation �τnuc = 1 MPa. The nucleation time for the sources tnuc is 10 ns and the glide drag
coefficientBg = 10−4 Pa s. Obstacles of strength τobs = 150 MPa are also randomly distributed
on planes spaced at 100b while the material-dependent annihilation distance Le = 6b. The
climb drag coefficient Bc is treated as a parameter whose sensitivity is investigated in this
study and varied over the range 104 � Bc/Bg � ∞3. Most of the calculations are presented
for either Bc/Bg � ∞ or Bc/Bg = 104; Bc/Bg = ∞ shall be referred to as the glide-only
case while the cases with finite values of Bc shall be referred to as climb-assisted glide to
emphasize the fact that even though the glide rates are significantly higher than the climb
rates, dislocation climb assists in increasing the glide rates by enabling dislocations to bypass
obstacles.

Crystals with two slip geometries are considered in this study: (i) crystals oriented
for single slip with φ(1) = 45◦ and (ii) crystals with three slip systems oriented such that
φ(1) = 60◦, φ(2) = −60◦ and φ(3) = 90◦. The sources and obstacles in the crystal had a density
ρsrc = 7 µm−2 and ρobs = 14 µm−2, respectively, per slip system. Thus, the crystal with three
slip systems had an overall source and obstacle density of 21 µm−2 and 42 µm−2, respectively.
In order to reduce the statistical variations inherent in discrete dislocation calculations, all
results presented here are averages over five realizations of sources and obstacles (i.e. different
spatial distributions of the sources and obstacles but with the same overall density).

Since the ( ˜ ) fields are given analytically, the finite element mesh needs to resolve the
( ˆ ) fields, but not the total fields. Thus, the element size is taken so as to resolve the ( ˆ )
field gradients. Typically, for the uniaxial tension and bending problems under consideration,
wavelengths associated with the ( ˆ ) fields scale with the specimen size and thus in all the
calculations, a uniform finite element grid was employed comprising of 120 × 80 bilinear
quadrilaterals. This corresponds to a maximum element size of 0.0125 µm and 0.1 µm
for the H = 1 µm and 8 µm crystals, respectively. Mesh sensitivity studies were carried
out on the H = 2 µm crystals, and revealed that decreasing the mesh size by a factor
of two had little effect on the numerical results presented subsequently. A time step of
�t = 0.5 ns was employed in all the calculations in order to adequately resolve the dislocation
dynamics.

3 A dislocation climb rate that is 104 times lower compared with the glide rate might be unrealistic for diffusion-
limited climb. For example, Bakó et al [26] argue that climb rates are 10 orders of magnitude smaller than glide
rates at T ≈ 0.3Tm. Here we illustrate the effects of climb over a wide range of climb rates and hence also use some
accelerated rates in order to better illustrate the effects of dislocation climb.
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Figure 5. The normalized tensile stress σ/τ̄nuc versus strain U/L response of crystals with one
active slip system. The response of crystals with glide-only (Bc/Bg = ∞) motion of dislocations
is shown in (a) while in the case for climb-assisted glide (Bc/Bg = 104) is included in (b). Results
are shown for four selected values of the specimen size H .

4. Crystals oriented for single slip

We first present results for crystals oriented such that only one slip system is active. This simple
crystallographic orientation enables us to illustrate the effects of climb without the additional
complications introduced by multiple slip systems. We then proceed to quantify the effect of
multiple slip systems in section 5.

The two boundary value problems analysed are uniaxial tension and pure bending. Recall
that while a macroscopic strain gradient is imposed in pure bending, the strain state is expected
to be macroscopically uniform under imposed uniaxial tension. The imposed strain gradients
in bending require the presence of geometrically necessary dislocations (GNDs) in addition
to the statistically stored dislocations (SSDs) [27]. On the other hand, SSDs are expected to
be predominant under uniaxial tension with no imposed strain gradients. The GND density is
directly a consequence of the imposed strain gradients and hence not expected to be affected by
dislocation climb. By contrast, the additional kinematic freedom provided to dislocations by
dislocation climb should tend to allow the annihilation of a large fraction of the SSDs. Thus,
dislocation climb is expected to have contrasting effects on the tensile and bending response
of crystals. This is the primary reason for choosing these relatively simple but illustrative
problems to demonstrate the effect of dislocation climb.

4.1. Uniaxial tension of crystals oriented for single slip

The applied nominal tensile stress σ is computed as

σ = − 1

H

∫ H/2

−H/2
T1(−L, x2) dx2 (43)

to give the stress versus strain U/L response of the crystals. The predicted normalized
stress σ/τ̄nuc versus U/L response of four specimen sizes are plotted in figures 5(a) and (b),
respectively, for the glide-only (Bc/Bg = ∞) and climb-assisted glide case with Bc/Bg = 104.
The corresponding predictions of the evolution of the dislocation density ρ are included in
figure 6(a), where ρ is the areal density of the dislocations over the entire specimen area 2LH .

First consider the glide-only case corresponding to Bc/Bg = ∞. In all the calculations, the
first dislocation activity occurs at σ/τ̄nuc ≈ 2, since the Schmidt factor for the single available
slip system is (sin 2φ(1)) = 0.5. Subsequently, for the H = 4 and 8 µm specimens, there is a
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Figure 6. The evolution of the dislocation density ρ with imposed uniaxial strain U/L in the
crystals with one active slip system corresponding to the tensile curves shown in figure 5. Results
for (a) glide-only (Bc/Bg = ∞) motion of dislocations and (b) climb-assisted glide (Bc/Bg = 104)
are included for four selected values of the specimen size H .
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Figure 7. (a) The normalized flow strength σf/τ̄nuc and (b) the corresponding dislocation density
ρf as a function of specimen size H for the crystal with one active slip system subjected to uniaxial
tension. Results are shown for selected values of the climb to glide mobility ratio Bc/Bg.

sharp drop in the stress followed by essentially an ideally plastic response. On the other hand,
there is nearly no stress drop in the H = 1 and 2 µm specimens with periodic fluctuations in
the applied stress about a fixed mean value of the applied stress. In order to quantify the size
dependence of the results we define the flow stress σf and the corresponding dislocation density
ρf as the average values of σ and ρ, respectively, over the range 0.02 � U/L � 0.03. These
results are summarized in figures 7(a) and (b), where σf and ρf , respectively, are plotted as a
function of the specimen size H : σf decreases with increasing H while ρf increases. These
results are consistent with the dislocation starvation picture proposed by Greer et al [15] and
confirmed in the calculations of Deshpande et al [5]. At small specimen sizes, the rate at which
dislocations exit the specimen is approximately equal to the rate at which they are nucleated
and hence very few dislocations are present in the specimen. This means that the stress state in
the specimen is approximately uniform and a stress σ = 2τ̄nuc/ sin φ(1) needs to be applied to
nucleate dislocations and get continued plastic flow. However, in the larger specimens, the rate
of dislocation nucleation is greater than the rate at which dislocations exit the specimen and thus
eventually a steady state is reached where a significant number of dislocations remain within
the specimen: the stress concentrations associated with these dislocations enables continued
nucleation of new dislocations at an applied stress below 2τ̄nuc/ sin φ(1).

Next consider the case of climb-assisted glide with Bc/Bg = 104. The σ and ρ versus
U/L responses plotted in figures 5(b) and 6(b), respectively, are seen to be significantly less
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(a)

(b)

Figure 8. The dislocation structure and associated distribution of the normalized stress σ11/τ̄nuc
in the H = 1 µm specimens subjected to uniaxial tension. Results are shown for the case of one
active slip system with (a) glide-only and (b) climb-assisted glide (Bc/Bg = 104) motion of the
dislocations.

sensitive to specimen size compared with the glide-only case and the corresponding dislocation
densities are also significantly lower. Predictions of σf and ρf are summarized in figures 7(a)
and (b), respectively, for selected values of Bc/Bg ranging from 104 to the glide-only case
of Bc/Bg = ∞. In line with the discussion above, it is clear that the size dependence of σf

reduces significantly with decreasing Bc/Bg. Moreover, the increased mobility of dislocations
and their ability to bypass obstacles means that ρf is lower in the cases with a low Bc/Bg,
especially in the larger specimens. The reduced size effect is then rationalized as follows.
Climb plus glide motions of the dislocations allows dislocations to ‘climb’ around obstacles
and break up any pile-ups that might otherwise be formed. Thus, dislocations can now more
freely escape to the free surfaces which results in a low dislocation density for all specimen
sizes considered here. This means that specimens of all sizes analysed here are starved of
dislocations resulting in a negligible size effect. This also results in the counterintuitive result
that the tensile strength of the large crystals is higher when climb is enabled (i.e. low values
of Bc/Bg) compared with the reference glide-only case with Bc/Bg = ∞ (see figure 7(a)).
We expect this to be an artefact of the assumptions that the glide mobility is unaffected by
temperature as discussed further in section 6.

In order to illustrate the observation that dislocation starvation occurs in both the glide-
only and the climb enabled cases in the small crystals while dislocation starvation only occurs
in the larger crystals when climb is enabled, we plot in figures 8 and 9 the dislocation structures
along with the normalized stress distribution σ11/τ̄nuc at an applied strain U/L = 0.03. The
H = 1 µm crystals with Bc/Bg = ∞ and 104 are shown in figures 8(a) and (b), respectively,
while the corresponding H = 4 µm crystals are shown in figures 9(a) and (b). First consider
the H = 1 µm case. There are less than 10 dislocations present in the crystal for both values
of Bc/Bg and the stress field within the crystals is approximately homogeneous consistent
with the dislocation starvation picture. Next consider the H = 4 µm case. It is clear that a
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(a)

(b)

Figure 9. The dislocation structure and associated distribution of the normalized stress σ11/τ̄nuc
in the H = 4 µm specimens subjected to uniaxial tension (U/L = 0.03). Results are shown for
the case of one active slip system with (a) glide-only and (b) climb-assisted glide (Bc/Bg = 104)
motion of the dislocations.

large pile-up is formed on a slip plane in the Bc/Bg = ∞ case as dislocations get pinned at
an obstacle. The dislocations in this pile-up capture dislocations on adjacent planes creating
a high local dislocation density with a strong inhomogeneity in the stress field in the vicinity
of this cluster of dislocations. On the other hand, there are significantly fewer dislocations
that are evenly distributed throughout the crystal in the Bc/Bg = 104 case. Furthermore, the
stress field too is more homogeneous indicating that this crystal is in the dislocation starvation
regime.

The deformed configurations at an applied strain U/L = 0.03 of the H = 4 µm crystals
are illustrated in figures 10(a) and (b) for the glide-only (Bc/Bg = ∞) and climb-assisted
glide (Bc/Bg = 104) cases, respectively. The deformed configurations are plotted using the
FE mesh used in the DDP calculations with the deformations magnified by a factor of five.
Note that these meshes are only used to illustrate the deformations and the intense localizations
seen do not result in numerical difficulties as in continuum plasticity calculations: in DDP the
FE calculations are only used to calculate the smooth ( ˆ ) fields that correct the boundary
conditions. On comparing figures 10(a) and (b) it is clear that while large surface steps due
to localized slip form in the glide-only case, deformation is much more distributed in the
climb-assisted glide case. This is consistent with recent observations on the compression of
micro-pillars. Room temperature compression of Ni and Ni3Al single crystal micro-pillars
by Uchic et al [16] (dislocation motion at room temperature in Ni and Ni3Al is expected
to primarily occur by dislocation glide) results in the formation of large surface steps. By
contrast, Lee et al [13] observed that the surface of the deformed Indium micro-pillars was
relatively smooth when those were subjected to room temperature compression (Indium at
room temperature is in the power-law creep regime with climb-assisted glide expected to
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(a)

(b)

Figure 10. The deformed configurations of the H = 4 µm specimens with one active slip system
subjected to uniaxial tension. The deformations at an applied U/L = 0.03 are illustrated on the FE
meshes with the deformations magnified by a factor of five for (a) glide-only and (b) climb-assisted
glide (Bc/Bg = 104) motion of the dislocations.

be the primary mechanism of dislocation motion). Furthermore, Lee et al [13] observed a
significantly smaller size effect of the compressive strength of Indium compared with the size
effect observed in Ni and Ni3Al by Uchic et al [16]. The results presented here are consistent
with these observations and provide a possible explanation of the underlying mechanisms.

4.2. Bending of crystals oriented for single slip

The applied bending moment is calculated as

M =
∫ H/2

−H/2
x2T1(L, x2) dx2, (44)

while the curvature κ is related to the applied end rotations θ via the relation κ ≡ θ/L.
Predictions of the normalized moment M/Mref versus normalized applied curvature κH/2
curves are included in figures 11(a) and (b) for the glide-only (Bc/Bg = ∞) and Bc/Bg = 104

cases, respectively. In each case results are shown for four values of the specimen size H . The
normalization moment Mref is defined as

Mref = 2

H

∫ H/2

−H/2
τ̄nucx

2
2 dx2 = 2

3
τ̄nuc

(
H

2

)2

, (45)

corresponding to the moment for a linear stress distribution 2τ̄nucx2/H . The normalizations
of the moment and curvature in figure 11 are chosen so as to give a unique curve for a size-
independent material response.

First consider the glide-only case, shown in figure 11(a). Following an initial elastic
response, the first dislocation activity occurs at M/Mref ≈ 2 in all cases. The subsequent
response is strongly size dependent with the H = 1 µm displaying a strongly hardening
response while the H = 8 µm crystal displays a mildly softening response. This size effect
is summarized in figure 12 where the normalized average moment Mf/Mref (Mf is defined as
the average applied moment over the range 0.004 � κH/2 � 0.005) and the corresponding
average dislocation density ρf are included as a function of the specimen size H . Both Mf

and ρf increase with decreasing H . This increase in both bending strength and dislocation
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Figure 11. The normalized bending moment M/Mref versus applied normalized curvature κH/2
response of crystals with one active slip system. The response of crystals with glide-only
(Bc/Bg = ∞) motion of dislocations is shown in (a) while in the case for climb-assisted glide
(Bc/Bg = 104) is included in (b). Results are shown for four selected values of the specimen
size H .
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Figure 12. (a) The normalized flow moment Mf/Mref and (b) the corresponding dislocation
density ρf as a function of specimen size H for the crystal with one active slip system subjected
to pure bending. Results are shown for both the glide-only (Bc/Bg = ∞) and climb-assisted glide
case of Bc/Bg = 104. In (b) the predictions of the GND density, equation (46), are included.

density with decreasing size is consistent with the DDP predictions of Cleveringa et al [3].
The predicted size effect is attributed to the presence of GNDs whose density increases with
decreasing specimen. Ashby [27] developed a simple analytical expression for the GND
density of a nominally isotropic plastic material subjected to bending given by

ρ
Ashby
f = κp

b
, (46)

where κp is the plastic curvature that is related to the applied total curvature κ via

κp = κ − κe. (47)

The elastic curvature κe at an applied moment M is κe = 12M(1 − ν2)/EH 3. The prediction
based on the Ashby [27] formula is included in figure 12(b): while the qualitative trend for
the variation of ρf with H is captured by the equation (46), the formula predicts a higher
dislocation density compared with the DDP simulations. This discrepancy was also reported
by Cleveringa et al [3] and is attributed to the fact that the Ashby [27] formula assumes a
plastically isotropic material while the crystal employed in the DDP calculations reported here
is highly anisotropic with only one slip system.

Now consider the case of climb-assisted glide with Bc/Bg = 104. Again, deviation
from the linear elastic curves of the normalized moment M/Mref versus κH/2 curves first
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(a)

(b)

Figure 13. The dislocation structure and associated distribution of the normalized stress σ11/τ̄nuc
in the H = 1 µm specimens subjected to pure bending (κH/2 = 0.005). Results are shown for
the case of one active slip system with (a) glide-only and (b) climb-assisted glide (Bc/Bg = 104)
motion of the dislocations.

occurs at M/Mref ≈ 2. While the subsequent response displays some size sensitivity, this
size dependence is significantly less than in the glide-only case. In fact, the response of the
H = 1 µm crystal is nearly ideally plastic while the H = 8 µm crystal displays a softening
response over the range of κ computed here. The corresponding predictions of Mf and ρf

(using the same definitions as in the glide-only case) are included in figures 12(a) and (b),
respectively. Intriguingly, while ρf in the glide-only and climb-assisted glide cases are nearly
identical, the bending strength Mf of the crystals with climb-assisted glide is significantly less
than in the glide-only case, especially at small values of H . We proceed to try and understand
these apparently conflicting results.

Contours of the normalized bending stress σ11/τ̄nuc along with the associated dislocation
structures at κH/2 = 0.005 in the H = 1 µm crystal are included in figures 13(a) and (b),
for the glide-only and climb-assisted glide case (Bc/Bg = 104), respectively. Two key
observations can be made: (i) there is a significantly larger boundary layer of higher stresses
near the top and bottom surfaces of the crystal with glide-only dislocation motion and (ii)
while lines of dislocation pile-ups along the φ(1) = 45o slip planes form in the glide-only
case, lower energy dislocation wall structures form perpendicular to the active slip system
in the climb-assisted glide case. Thus, even though the dislocation densities in both cases
are nearly identical, the dislocation wall structures that form in the climb-assisted glide case
store significantly less elastic energy and this results in the reduced hardening and size effects
compared with the glide-only case.

These differences in the dislocation structures in the glide-only and climb-assisted glide
cases also manifest themselves in the unloading response of the crystals included in figure 11.
Some reverse plasticity is observed in both glide-only and climb-assisted glide cases and we
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Figure 14. The reverse plastic deformation as quantified via the measure � as a function of the
specimen size H in the specimens with one active slip system subjected to pure bending. Results
are shown for both the glide-only and climb-assisted glide (Bc/Bg = 104) cases for unloading
from κH/2 = 0.005. The definition of � is illustrated in the inset.

quantify this using the non-dimensional measure � defined as

� ≡ κrp

κep
, (48)

where κrp and κep are defined in the inset in figure 14. Pure elastic unloading corresponds
to κrp = 0 while reverse plasticity that results in unloading such that M = 0 when κ = 0
gives the other limit of κrp = κep. Thus, the non-dimensional measure � varies between
0 and 1 with higher values of � signifying high levels of reverse plasticity or kinematic
hardening. Predictions of � as a function of the specimen size H are included in figure 14 for
both the glide-only and the climb-assisted glide case with Bc/Bg = 104 for unloading from
κH/2 = 0.005. Reverse plasticity (and �) is seen to dramatically increase with decreasing
H for the glide-only case due to the formation of the high energy dislocation structures as
seen in figure 13(a). On the other hand, � remains approximately constant at a relatively low
value of � ≈ 0.1 over the full range of sizes analysed here for the climb-assisted glide case
with Bc/Bg = 104. This can be traced back to the fact that the dislocation wall structures are
relatively low energy structures which give rise to minimal kinematic hardening.

5. Crystals with three active slip systems

In this section, we present selected results for crystals with three active slip systems (φ(1,2) =
±60◦ and φ(3) = 90◦) subjected to simple tension and pure bending loading conditions. The
aim here is to highlight the differences between single and multiple slip rather than investigate
the response of crystals with multiple slip systems in an exhaustive manner. Hence results for
the climb-assisted glide case are only shown for the reference value of Bc/Bg = 104.

Predictions of the variation of the tensile flow strength σf and the corresponding average
dislocation density ρf are plotted in figures 15(a) and (b), respectively. Unlike in the single
slip case, a significant size effect is observed in both the glide-only and climb-assisted glide
cases with σf decreasing with increasing H . In fact, the tensile flow strength in both the
glide-only and climb-assisted glide cases are nearly indistinguishable over the whole range of
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Figure 15. (a) The normalized flow strength σf/τ̄nuc and (b) the corresponding dislocation density
ρf as a function of specimen size H for the crystal with three active slip system subjected to uniaxial
tension. Results are shown for both the glide-only (Bc/Bg = ∞) and climb-assisted glide case of
Bc/Bg = 104.
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Figure 16. (a) The normalized flow moment Mf/Mref and (b) the corresponding dislocation density
ρf as a function of specimen size H for the crystal with three active slip system subjected to pure
bending. Results are shown for both the glide-only (Bc/Bg = ∞) and climb-assisted glide case of
Bc/Bg = 104. In (b) the predictions of the GND density, equation (46), are included.

specimen sizes considered here. By contrast, while ρf increases with increasing H in both the
glide-only and climb-assisted glide cases, the dislocation densities are significantly lower when
dislocations are permitted to climb. However, a comparison with figure 7(b) illustrates that
even when climb is permitted the dislocation densities are significantly higher in the multiple
slip case compared with when only one slip system is active. Thus, unlike in the single slip
case, dislocation starvation does not occur in the larger specimens with multiple active slip
systems even though dislocation motion is by climb-assisted glide.

Predictions of the normalized average moment Mf/Mref and the average dislocation
density ρf as a function of specimen size H are included in figures 16(a) and (b), respectively.
The results are in line with the single slip case, namely, while the dislocation density is
unaffected by dislocation climb, the size dependence of the bending strength of the crystal
is considerably reduced compared with the glide-only case. The reasons for this are similar
to the single slip case; namely, climb permits dislocations to re-arrange themselves in lower
energy configurations. This is clearly seen in figures 17(a) and (b) where contours of the
normalized bending stress σ11/τ̄nuc are plotted along with the predicted dislocation structure
in the H = 1 µm specimen at an applied κH/2 = 0.005 for the glide-only and climb-assisted
glide cases, respectively. Again, climb is seen to break-up the dislocation pile-ups and form
low energy wall structures. However, a comparison with figure 13 clearly shows that the
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(a)

(b)

Figure 17. The dislocation structure and associated distribution of the normalized stress σ11/τ̄nuc
in the H = 1 µm specimens subjected to pure bending (κH/2 = 0.005). Results are shown for the
case of three active slip systems with (a) glide-only and (b) climb-assisted glide (Bc/Bg = 104)
motion of the dislocations.

dislocation density is considerably higher in these crystals with multiple active slip systems.
In fact, the DDP predictions of the dislocation density are now in excellent agreement with
the Ashby [27] formula (equation (46)) as the crystal with multiple slip systems is nearly
plastically isotropic.

6. Discussion

The simulations for climb-assisted dislocation glide presented here pertain to plasticity at
elevated temperatures when dislocation climb rates become appreciable. However, a number
of temperature-dependent mechanisms have been neglected in these analysis in order to
emphasize and clarify the role of dislocation climb. Notably as discussed by Frost and
Ashby [28], dislocation glide is a kinetic process with the average velocity of dislocations
determined almost entirely by their waiting time at obstacles. In particular, there are two
broad class of obstacles: discrete obstacles which are bypassed individually by a moving
dislocation (e.g. precipitates) or cut by it (e.g. forest dislocations or weak precipitates); and
extended, diffuse barriers to dislocation motion which are overcome collectively (e.g. lattice
friction). Dislocations require to acquire certain activation energy to overcome either of these
obstacles which results in a Arrhenius type temperature dependence of the average dislocation
velocities: the often observed reduction in the yield strength with increasing temperature is
attributed to the enhanced dislocation velocities at higher temperatures. We note from figure 5
that the tensile strength of the crystals with climb-assisted dislocation glide is approximately
equal to the crystals wherein dislocation motion is by glide-only. Thus, the calculations do
not predict the reduction in strength that is typically observed at high temperatures when
dislocation climb is active. This is primarily due to the fact that we have kept both the glide
drag coefficient Bg and the obstacle strength τobs fixed in all the simulations presented here.
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Therefore, the effective glide velocities of the dislocations remain unchanged between the
glide-only and climb-assisted glide cases resulting in σf being insensitive to the ratio Bc/Bg.
We note in passing that a temperature-dependent obstacle strength and glide drag coefficient
can easily be incorporated within the DDP framework employed here.

The results presented here demonstrate that climb has contrasting effects in specimens
subjected to uniaxial tension or pure bending. Consider the case of crystals with three active
slip systems (there are some subtle differences when only one slip system is active but the
multiple slip system case is more relevant from a practical perspective). Climb is shown to
have a negligible effect on the tensile stress versus strain response of these crystals although
the dislocation density when climb is enabled is significantly lower due to the ability of
dislocations to bypass obstacles by climb. The dislocations in these crystals under tensile
loading are primarily statistical in nature and the density of the statistical dislocations does
not significantly affect the predicted strengths in these 2D discrete dislocation calculations
(recall that Taylor [29] hardening effects are not included in these calculations). By contrast,
dislocation climb significantly reduces the size effect of the bending strength Mf of the crystals
even though the dislocation densities in the glide-only and climb-assisted glide cases are nearly
identical; see figure 16(b). The imposed strain gradients in bending require the presence
of GNDs: the results here suggest that most of the dislocations are GNDs and hence their
densities are unaffected by permitting dislocations to climb. However, the additional kinematic
freedom permitted by dislocation climb allows dislocations to form lower energy wall structures
compared with the pile-ups in the glide-only case; compare figures 17(a) and (b). This results
in significantly lower hardening in the climb-assisted glide case which results in the reduced
size effect. These predictions are supported by recent indentation size effect measurements
in Copper for temperatures ranging from ambient to 200 ◦C by Franke et al [17]. Similar to
bending, the indentation size effect is also primarily attributed to the GND effect and Franke
et al [17] demonstrated that the indentation size effect is reduced considerably with increasing
temperature.

7. Concluding remarks

A new framework for incorporating dislocation climb in addition to dislocation glide into a two-
dimensional discrete dislocation plasticity (DDP) framework to solve boundary value problems
is presented here. The climb velocity of the dislocations is shown to be governed by a drag-
type relation for both diffusion-limited and sink-limited vacancy kinetics. A key difference
between glide-only motion of dislocations and climb plus glide motion of dislocations is
that the deformation state of the body cannot be constructed from only the knowledge of the
current positions of the dislocations. The small-strain DDP problem was solved using a rate
formulation with the displacement rate fields due to the motion of the dislocations calculated
by accounting for both the climb and glide motions of the dislocations.

Predictions of this formulation are illustrated using two simple problems, namely, uniaxial
tension and pure bending. Results are presented for cases where there is only one active
slip system as well as for cases with three active slip systems. First consider the case of
single slip. When dislocation motion is by climb-assisted glide, the ability of dislocations
to bypass obstacles results in low dislocation densities for all specimen sizes under uniaxial
loading conditions. This results in dislocation starvation for all specimens sizes considered
here and only a small size effect in the tensile strength. By contrast, when dislocation motion
is only by glide, dislocation starvation occurs only in the smaller specimens resulting in a
pronounced size effect with the tensile strength reducing with increasing specimen size. These
predictions thus provide a possible explanation for the absence of a size effect for the room
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temperature compressive strength of Indium as observed by Lee et al [13] in contrast to the
strong size effect observed in Ni by Uchic et al [16]. Under pure bending loading conditions,
geometrically necessary dislocations (GNDs) dominate and the dislocation densities in both
the climb-assisted glide and glide-only cases are nearly identical. Also, the GNDs result
in the normalized bending strength increasing with decreasing specimen size. The additional
kinematic freedom available to dislocations when climb is enabled allows them to re-arrange in
wall structures that have a significantly lower elastic energy compared with the dislocation pile-
up structures that form in the glide-only case. This results in a significantly reduced bending
size effect in the climb-assisted glide case. Recent high temperature indentation hardness
measurements by Franke et al [17] show that the plasticity size effect related to GNDs is
reduced with increasing temperature. While there are numerous thermally activated processes
that can result in the change in the intrinsic material length scale with increasing temperature,
climb motion of dislocations is one such process. The climb-assisted glide DDP framework
presented here suggests that dislocation climb can give rise to this reduced plasticity size effect
by allowing dislocations to rearrange themselves into lower energy structures. The response of
crystals with multiple active slip systems is qualitatively similar to the case of single slip with
one key difference. With the increased number of dislocation sources, dislocation starvation
does not occur even in the climb-assisted glide case over the entire range of specimen sizes
considered here.
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