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Abstract

An approximate model based on the so-called ‘second-order’ nonlinear homogenization method is proposed to estimate the
effective behavior of viscoplastic porous materials exhibiting transversely isotropic symmetry. The model is constructed in such
a way that it reproduces exactly the behavior of a ‘composite-cylinder assemblage’ in the limit of in-plane hydrostatic loading,
and therefore coincides with the hydrostatic limit of Gurson’s criterion for plastic porous materials. As a consequence, the new
model improves on earlier ‘second-order’ homogenization estimates, which have been found to be overly stiff at sufficiently high
triaxialities and nonlinearities. The proposed model is compared with exact results obtained for a special class of porous materials
with sequentially laminated microstructures. The agreement is found to be excellent for the entire range of stress triaxialities, and
all values of the porosity and nonlinearity considered. To cite this article: K. Danas et al., C. R. Mecanique 336 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Un modèle d’homogénéisation pour les matériaux poreux viscoplastiques bi-dimensionnels. On propose un modèle ap-
proximatif fondé sur la méthode d’homogénéisation non-linéaire dite du « second-ordre » pour estimer le comportement effectif
des matériaux poreux viscoplastiques isotropes transverses. Le modèle est construit de manière à reproduire exactement le com-
portement hydrostatique des « assemblages de cylindres composites », c’est-à-dire la limite hydrostatique des matériaux poreux
plastiques fournie par le critère de Gurson. Par conséquent, le nouveau modèle améliore les estimations de « second-ordre » exis-
tantes, qui se sont avérées excessivement raides aux triaxialités et aux non-linéarités suffisamment élevées. Le modèle proposé est
comparé aux résultats exacts obtenus pour une classe particulière de matériaux poreux présentant des microstructures séquentielle-
ment stratifiées. L’accord s’avère excellent pour la gamme entière des triaxialités, ainsi que pour toutes les valeurs de la porosité et
de l’exposant caractérisant la non-linéarité du comportement. Pour citer cet article : K. Danas et al., C. R. Mecanique 336 (2008).
© 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

The modeling of void growth and ductile damage of viscoplastic composites has been the subject of numerous
works over the past forty years. Various models have been proposed for the estimation of the effective behavior of
isotropic porous materials starting with the Gurson model [1]. Gurson made use of the exact solution for a shell
(spherical or cylindrical cavity) subjected to hydrostatic loading, together with a uniform, purely deviatoric field, to
obtain estimates for the effective behavior of rigid-perfectly plastic, porous solids. About fifteen years earlier than
Gurson, Hashin [2] proposed an exact solution for the effective behavior of a special class of linear-elastic composites
known as the composite-sphere assemblage (CSA), and composite-cylinder assemblage (CCA), when subjected to
hydrostatic loading. Leblond et al. [3] generalized these results for nonlinear porous media and proposed approximate
models for porous viscoplastic composites, with cylindrical and spherical microstructures.

In a separate development, Ponte Castañeda [4] (see also Willis [5] and Michel and Suquet [6]) obtained rigorous
bounds of the Hashin–Shtrikman type [7] for porous nonlinear materials by making use—via a suitably designed
variational principle—of an optimally chosen ‘linear comparison composite’ with the same microstructure as the
nonlinear composite. Generalizing the notion of an optimally selected linear comparison composite to more general
types of comparison materials (anisotropic thermoelastic phases), Ponte Castañeda [8] proposed the ‘second-order’
method, which improved on the earlier ‘variational’ method by accounting for the anisotropic distribution of the
local fields in nonlinear media, and obtained more accurate estimates for the effective behavior of isotropic porous
nonlinear media [9]. However, these estimates have been found to be too ‘stiff’ at sufficiently high triaxialities and
nonlinearities [10]. Even though, the interest in this work is for small porosities, the above methods may also be
applied to composites with high porosities, where they are much more accurate. In this context, Despois et al. [11]
have used the variational estimate to compare with experimental data for metal foams.

Following deBotton and Ponte Castañeda [12], deBotton and Hariton [13] obtained exact results for a special class
of two-phase nonlinear composites with sequentially laminated random microstructures and isotropic, incompressible
phases. Their analysis can be generalized to the case of compressible phases [14], so that exact results for porous
sequential laminates can be obtained. In the context of the present work, the interest in porous materials with this
special type of microstructure stems from the fact that, in the linear case, their effective behavior can be shown
(e.g., [15,16]) to agree exactly with the Hashin–Shtrikman estimates, for any choice of the modulus tensors of the
phases. As will become evident later, sequential laminates are particularly appropriate for assessing the accuracy of
the aforementioned linear comparison methods.

The purpose of this work is to improve the high-triaxiality behavior of the second-order model for nonlinear porous
materials, and to compare the resulting estimates to (numerically) exact solutions for materials with sequentially lam-
inated microstructures, for the full range of triaxiality. Although in this work we will only consider porous power-law
materials with cylindrical pores (and transversely isotropic macroscopic behavior) subjected to plane-strain loading,
the ideas are general and can be used for more general types of porous materials, including fully isotropic materials
subjected to three-dimensional loading. The objective here is to test the basic ideas of the improved second-order
model in the context of the simplest possible non-trivial case.

We consider a representative volume element Ω of a two-phase porous medium with each phase occupying a sub-
domain Ω(r) (r = 1,2). The vacuous phase is identified as phase 2, while the non-vacuous phase (i.e., matrix phase)
is denoted as phase 1. The local behavior of the matrix phase is characterized by a convex isotropic stress potential,
such that the Cauchy stress σ and the Eulerian strain-rate D at any point in Ω(1) are related by

D = ∂U(1)

∂σ
(σ ), with U(1)(σ ) = σo

n + 1

(
σeq

σo

)n+1

(1)

Here, the von Mises stress is defined in terms of the deviatoric stress tensor as σeq =
√

3
2σ d · σ d , σo denotes the

flow stress of the matrix phase, and m = 1/n is the strain-rate sensitivity parameter, which takes values between 0
and 1. Note that the two limiting values m = 1 and m = 0 correspond to linear and rigid-perfectly plastic behaviors,
respectively.

The effective behavior of the porous material is defined as the relation between the average stress, σ = 〈σ 〉, and the
average strain-rate, D = 〈D〉, which can also be characterized by an effective stress potential Ũ , such that [17]

D = ∂Ũ
(σ ), Ũ (σ ) = (1 − f ) inf

〈
U(1)(σ )

〉(1) (2)

∂σ σεS(σ )
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Here, 〈·〉 and 〈·〉(r) denote the volume averages over the representative volume element Ω and over the sub-domains
Ω(r) (r = 1,2), respectively, f denotes the volume fraction of the porous phase (i.e., the porosity), and S(σ ) =
{σ ,divσ = 0 in Ω,σn = 0 on ∂Ω(2), 〈σ 〉 = σ } is the set of statically admissible stresses.

In the present work, the focus is on porous materials containing cylindrical voids aligned with the x3-axis, which
are randomly and isotropically distributed in the transverse plane x1–x2. The material is subjected to plane-strain
loadings, so that Di3 = 0 with i = 1,2,3.

From the homogeneity of the local potential (1)2 in σ , it follows that the effective potential (2) is a homogeneous
function of degree n + 1 in σ . It is then convenient to introduce the so-called gauge factor Λ, such that [3]

Ũ(σ ) = σo

n + 1

(
Λ(σ ;f )

σo

)n+1

(3)

which, in turn, allows us to define the gauge function via

Φn(Σ) = Ũ(Σ) − σ−n
o

n + 1
= 0, with Σ = σ

Λ(σ ;f )
(4)

This gauge function is a suitably normalized quantity that is homogeneous of degree zero in the stress σ . It is also
convenient to introduce the normalized, macroscopic strain-rate

E = D

(Λ(σ ;f )/σo)n
= ∂Λ(σ ;f )

∂σ
(5)

and the macroscopic stress and strain-rate triaxialities

XΣ = Σm

Σeq
= σm

σ eq
and XE = Em

Eeq
= Dm

Deq
(6)

where the normalized, in-plane mean stress and strain-rate are defined as Σm = (Σ11 +Σ22)/2, Em = (E11 +E22)/2,
and Σeq and Eeq denote the von Mises equivalent parts of the normalized stress and strain-rate, respectively.

Thus, the problem of estimating the effective behavior of the porous material is equivalent to that of estimating the
function Ũ in relation (2)2. However, computing this function exactly is an extremely difficult task, in general. In the
next section, a method for estimating this function is recalled and applied to the class of porous materials of interest
in this work.

2. Second-order variational estimates

To estimate the effective stress potential Ũ , the second-order method, originally proposed by Ponte Castañeda [8],
is described next. The method is based on the construction of a “linear comparison composite” (LCC), with the same
microstructure as the nonlinear composite, whose constituent phases are identified with appropriate linearizations
of the given nonlinear phases resulting from a suitably designed variational principle. This allows the use of any
method already available to estimate the effective behavior of linear composites to generate corresponding estimates
for nonlinear composites.

For the class of materials considered in this work, the LCC is a porous material, with a matrix phase characterized
by

UL(σ ; σ̌ ,M) = U(σ̌ ) + ∂U

∂σ
(σ̌ ) · (σ − σ̌ ) + 1

2
(σ − σ̌ ) · M(σ − σ̌ ) (7)

where the label ‘1’ (denoting the matrix phase) will be omitted for simplicity in the rest of the section. In this ex-
pression, the tensor σ̌ is a uniform reference stress tensor to be defined later, and M is a symmetric, fourth-order,
compliance tensor of the form [8]

M = 1

2λ
E + 1

2μ
F, with E = 3

2

σ̌ d ⊗ σ̌ d

σ̌ 2
eq

, F = K − E (8)

In this last expression, K denotes the in-plane components of the standard, fourth-order, isotropic, shear projection
tensor, whereas the subscript d denotes the deviatoric part of σ̌ . The quantities E and F correspond to the fourth-

order eigen-tensors of the tangent compliance tensor [18], defined by Mt = ∂2U (σ̌ ), and they are such that EE =

∂σ∂σ



82 K. Danas et al. / C. R. Mecanique 336 (2008) 79–90
E, FF = F, EF = 0. It is emphasized that, even though the nonlinear matrix phase is isotropic (see relation (1)),
the corresponding linearized phase in the LCC is, in general, anisotropic, in contrast with earlier methods, like the
variational method introduced by Ponte Castañeda [4], where the corresponding LCC is isotropic. A measure of
this anisotropy is given by the ratio k = λ/μ, such that k = 1 and k = 0 correspond to an isotropic and extremely
anisotropic linear matrix phase. Once the linear comparison composite is defined, then linear homogenization theories,
such as the Hashin–Shtrikman theory [7], may be used to deliver estimates for the effective behavior of the LCC, which
in turn can be used to generate corresponding estimates for the nonlinear composite.

Making use of an appropriate specialization of the Levin [19] relations for two-phase thermoelastic materials, the
effective potential of the LCC can be written as

ŨL(σ ; σ̌ ,M) = (1 − f )U(σ̌ ) + η · (σ − (1 − f )σ̌
) + 1

2
σ · M̃σ − 1 − f

2
σ̌ · Mσ̌ (9)

where η = ∂U/∂σ̌ − Mσ̌ , and M̃ denotes the effective compliance tensor of the LCC. Thus, expression (9) requires
an estimate for M̃. In this work, use is made of the generalized Hashin–Shtrikman estimates of Willis [20], which
are known to be quite accurate for particulate random systems like the ones of interest in this work, up to moderate
concentrations of inclusions. For porous materials, these estimates take the form

M̃ = 1

1 − f
M + f

1 − f

(
P−1 − M−1)−1 (10)

Here, P is a microstructural tensor, related to the Eshelby tensor [21], which depends on M and requires, in general,
the numerical evaluation of certain integrals. However, for the case of interest here, the tensor P is such that [9](

P−1 − M−1)−1 = 1

2
√

λμ
I = 1

2
√

λμ
(K + J) (11)

with I and J denoting the in-plane components of the standard, fourth-order, symmetric, identity and hydrostatic pro-
jection tensor, respectively. In the last relation, the relevant hydrostatic components associated with the hydrostatic
projection tensor J, imply that the effective behavior of the corresponding LCC (i.e., in relation (9)) is compress-
ible. Thus, expressions (9)–(11) completely characterize the LCC in terms of the reference tensor σ̌ and the matrix
compliance M.

Then, the ‘second-order’ estimate for the effective stress potential of the nonlinear porous material is given by [8]

ŨSOM(σ ) = stat
λ,μ

{
ŨL(σ ; σ̌ ,M) + (1 − f )V (σ̌ ,M)

}
(12)

where ŨL is given by (9), and the ‘corrector’ function V is defined as

V (σ̌ ,M) = stat
σ̂

[
U(σ̂ ) − UL(σ̂ ; σ̌ ,M)

]
(13)

In these expressions, the stationary operation (stat) consists in setting the partial derivative of the argument with
respect to the variable equal to zero, which yields a set of nonlinear equations for the variables λ, μ and σ̂ , as shown
next.

Making use of the special form of the tensor M, we can define two components of the tensor σ̂ that are parallel
and perpendicular to the corresponding reference tensor σ̌ , respectively, σ̂‖ = ( 3

2 σ̂ · Eσ̂ )1/2 and σ̂⊥ = ( 3
2 σ̂ · Fσ̂ )1/2,

such that the equivalent part of the tensor σ̂ reduces to σ̂eq =
√

σ̂ 2‖ + σ̂ 2⊥. The stationarity operation in (13) then leads

to two equations which can be combined to obtain the relation

k

(
σ̂eq

σ̌eq

)1−n

= (k − 1)
σ̂‖
σ̌eq

+ 1 (14)

The scalar quantities σ̂eq and σ̂‖ are functions of the applied macroscopic loading σ , the material properties and the
microstructure, and result from the stationarity condition in relation (12) with respect to λ and μ, such that [22]

σ̂‖ − σ̌eq =
√

3

1 − f

∂ŨL

∂(2λ)−1
=

√
3

1 − f

〈
(σL − σ̌ ) · E(σL − σ̌ )

〉(1)

σ̂⊥ =
√

3

1 − f

∂ŨL

∂(2μ)−1
=

√
3

1 − f
〈σL · FσL〉(1) (15)
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where the right-hand sides of these relations depend on certain traces of the field fluctuations in the LCC, and σL

denotes the local stress field in the LCC. It should be noted that the right-hand side of the last two equations are
homogeneous functions of degree zero in M, and therefore, the quantities σ̂‖ and σ̂⊥ depend on the moduli λ and μ

only through the anisotropy ratio k. Thus, introducing these expressions for σ̂‖ and σ̂⊥ into (14) we obtain a single
algebraic, nonlinear equation for k, which must be solved numerically, in general, for a given choice of the reference
tensor σ̌ . The evaluation of the two moduli, then, follows simply by noting that μ = (σ−n

o /3)σ̂ 1−n
eq and λ = kμ.

Finally, taking into account the two stationarity operations described previously in relations (14) and (15), the
expression (12) for the effective stress potential of the nonlinear porous composite can be further simplified to

ŨSOM(σ ) = (1 − f )

[
σo

1 + n

(
σ̂eq

σo

)n+1

−
(

σ̌eq

σo

)n(
σ̂‖ − σ eq

(1 − f )

)]
(16)

where the tensor σ̌ still remains to be defined.
It should be emphasized at this point that the ‘second-order’ estimate (12) involves two approximations: the homog-

enization of the LCC and the linearization of the nonlinear composite. The first one is associated with the estimation
of the effective behavior of the LCC by making use of the Willis estimates (see relations (7)–(11)), which are ex-
pected to be sufficiently good for low to moderate porosities. The second approximation lies in the construction and
optimization of the LCC, as described in relations (12)–(16).

The corresponding macroscopic stress-strain-rate relation follows from differentiation of (12) or, equivalently, (16).
In the present case, the resulting expression can be shown to reduce to [23]

D = DL + (1 − f )

(
∂σ̌

∂σ

)T

g (17)

where DL = M̃ σ + η is the macroscopic strain-rate of the LCC, and the second-order tensor g is given by

g =
(

1

2λ
− 1

2λt

)(
σ̂‖ − σ eq

(1 − f )

)
σ̌

σ̌eq
, with λt = σo

3n

(
σ̌eq

σo

)1−n

(18)

2.1. Choices for the reference stress tensor

The estimate (16) requires a prescription for the reference stress tensor σ̌ . In this section, a prescription suitable
for the class of porous materials considered in this work is proposed. As already discussed in previous works ([8,24]),
it has not yet been possible to optimize the choice of the reference stress tensor. Nonetheless, it is still possible to
propose physically motivated choices for the reference stress tensor, that in turn, satisfy certain special properties
to be made explicit in the following discussion. Here, we restrict our attention to the specific problem described in
the beginning of the section, but before proceeding to specific propositions for the reference stress tensor, it is worth
recalling first some basic results that will prove helpful in the discussion below.

It is well known that, when an aggregate of an infinite hierarchy of sizes of cylindrical shells, called the composite
cylinder-assemblage (CCA) of Hashin [2], is subjected to hydrostatic loading conditions (i.e., |XΣ | → ∞), the last
admits an exact solution [3]. The effective behavior of such a composite is obtained by solving the isolated shell
problem, and is given by

Ũshell(σm) = σ̃H

1 + n

(
σm

σ̃H

)1+n

, with
σ̃H

σo

= 1

m

(
1

f m
− 1

)
1

3(1+m)/2
(19)

Here, σ̃H is the effective flow stress of the shell, which is a function of the porosity f and the strain-rate sensitivity
parameter of the matrix m. On the other hand, the effective flow stress delivered by the variational procedure of Ponte
Castañeda [4] (VAR), in the special case of pure hydrostatic loading, reduces to

σ̃HVAR

σo

= (1 − f )

(
1

3f

)(1+m)/2

(20)

which clearly deviates from the exact solution (19) for values of m different from 1 (i.e., the linear case), particularly
for small porosities.
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Now, in the context of the second-order method, Ponte Castañeda [9] proposed the choice σ̌ = σ
(1)
d = σ d/(1 − f )

for the reference stress tensor, where the subscript d denotes the deviatoric part of a second-order tensor. Unfortu-
nately, this reference tensor tends to zero as the stress triaxiality tends to infinity, and consequently, in the hydrostatic
limit, the resulting effective flow stress of this estimate is identical to the one obtained by the variational method (i.e.,
in relation (20)). In addition, Idiart et al. [22] proposed the following simple choice for the reference stress tensor

σ̌ = σ d (21)

This choice has been shown to deliver reasonably good estimates when the porous composite is subjected to isochoric
loadings (i.e., XΣ = 0), but like the aforementioned choice of σ̌ = σ

(1)
d , it also becomes zero for the case of hydrostatic

loading, and thus it leads to the variational estimate (20).
Motivated by these observations, we propose the following ad-hoc choice for the reference stress tensor, which

reads as

σ̌ = ξ(XΣ)σ d, ξ(XΣ) = 1 − tf

1 − f
+ αm

√
X2

Σ

(
exp

[−αeq/

√
X2

Σ

] + β exp
[−1/X2

Σ

])
(22)

with t and β being empirical coefficients that ensure the convexity of the gauge function at dilute concentrations and
are detailed in Appendix A. The coefficients αm and αeq are, in general, functions of the microstructure, the nonlinear-
ity m of the matrix, but not of the loading and the stress triaxiality. Before discussing the estimation of the coefficients
αm and αeq, it is essential to note that the choice (22) reduces to the choice (21) for XΣ = 0, while it remains non-zero
in the hydrostatic limit |XΣ | → ∞, unlike choice (21) which becomes zero. It also guarantees that the effective stress
potential is a homogeneous function of degree n + 1 in the average stress σ for all triaxialities XΣ ∈ (−∞,+∞). In
particular, the coefficient αm is computed such that the estimate for the effective stress potential Ũ coincides with the
analytical solution for Ũshell in relation (19) in the hydrostatic limit. This condition may be written as

ŨSOM → Ũshell as |XΣ | → ∞ ⇒ αm = αm(m,f ) (23)

In addition to the analytical estimate (19) for the effective stress potential, the solution of the shell problem also
requires that the macroscopic deviatoric strain-rate be zero under purely hydrostatic loads. This condition in turn
provides an equation for the estimation of the coefficient αeq, which can be written as(

∂ŨSOM

∂σ

)
eq

→
(

∂Ũshell

∂σ

)
eq

⇒ Deq → 0 as |XΣ | → ∞ ⇒ αeq = αeq(m,f ) (24)

The computation of the coefficient αm needs to be performed numerically, while the expression for αeq can be further
simplified to the analytical expression

αeq = α−1
m

(
1 +

3
2 (σ̌eq/σo)

n − σ̌eq(2λ)−1

(1 − f )σ̂‖

(
1

2λ
− 1

2λt

)−1)
(25)

where all the quantities involved in the last relation are evaluated in the hydrostatic limit |XΣ | → ∞, and λt is given
by relation (18)2. In summary, relation (22), together with relations (23), (24) and (25), completely define the reference
stress tensor σ̌ , and thus, relation (16) can be used to estimate the effective behavior of the porous material of interest
in this work.

For the special case of ideal plasticity (m = 0), relation (19) reduces to

σ̃H

σo

= 1√
3

ln

(
1

f

)
(26)

and αm can be determined explicitly (see Appendix B). On the other hand, the equation describing the effective yield
surface, predicted by the second-order method, simplifies to

Φ∞(Σ) = σ̂eq − σo =
√

σ̂ 2‖ + σ̂ 2⊥ − σo = 0 (27)

where σ̂‖ and σ̂⊥ are defined in relation (15). In the context of these results for the special case of ideally plastic
porous materials, it is important to emphasize that we have assumed here that expressions (24) and (25) continue to
hold for the determination of αeq. This is done for simplicity, in spite of existing evidence [10] suggesting that the
yield surface of ideally plastic porous materials may exhibit a corner on the hydrostatic axis and, consequently, D may
not be uniquely determined at that point (but see also [25]).
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3. Exact results for porous materials with sequentially laminated microstructures

While the effective stress potential Ũ cannot be computed exactly, in general, it can be determined for a very
special class of composites called ‘sequential laminates’. A sequential laminate is an iterative construction obtained
by layering laminated materials (which in turn have been obtained from lower-order lamination procedures) with other
laminated materials, or directly with the homogeneous phases that make up the composite, in such a way as to produce
hierarchical microstructures of increasing complexity (e.g., [16]). The rank of the laminate refers to the number of
layering operations required to reach the final sequential laminate. Of the many possible types of sequential laminates,
we restrict attention to porous sequential laminates formed by layering at every step a porous laminate with the matrix
phase (denoted as phase 1).

Thus, a rank-1 laminate corresponds to a simple laminate with a given layering direction n(1), with matrix and
porous phases in proportions 1 − f1 and f1. In turn, a rank-2 laminate is constructed by layering the rank-1 laminate
with the matrix phase, in a different layering direction n(2), in proportions f2 and 1 − f2, respectively. Rank-M
laminates are obtained by iterating this procedure M times, layering the rank-(M − 1) laminate with the matrix phase
in the direction n(M), in proportions fM and 1 − fM , respectively. It should be mentioned that in this procedure, it
is assumed that the length scale of the embedded laminate is much smaller than the length scale of the embedding
laminate. This assumption allows to regard the rank-(M − 1) laminate in the rank-M laminate as a homogeneous
phase, so that available expressions for the effective potential of simple laminates (e.g., [12]) can be used at each step
of the process to obtain an exact expression for the effective potential of the rank-M sequential laminate (e.g., [26,13]).
From their construction process, it follows that the microstructure of these sequential laminates can be regarded as
random and particulate, with phase 1 playing the role of the (continuous) matrix phase embedding the (discontinuous)
porous phase. A distinctive feature of this very special class of porous materials is that the strain-rate and stress fields
are uniform in the inclusion phase (in this case, the pores) but non-uniform in the matrix phase.

Because the interest here is on porous materials exhibiting overall transverse isotropy, the layering directions n(i)

(i = 1, . . . ,M) will be taken to lie on the plane with normal e3. Let m(i) (i = 1, . . . ,M) denote unit vectors orthogonal
to e3 and the corresponding n(i). Then, it can be shown that the effective stress potential of the resulting rank-M porous
laminate may be written as [13,14]

ŨM(σ ) = min
w(i)

σ (2)=0

M∑
i=1

(1 − fi)

(
M∏

j=i+1

fj

)
U(1)

(
σ

(1)
i

)
(28)

where the stress tensors σ
(1)
i (i = 1, . . . ,M) and σ (2) are given in terms of the optimization variables w(i) by

σ
(1)
i = σ + fiw

(i)m(i) ⊗ m(i) −
M∑

j=i+1

(1 − fj )w
(j)m(j) ⊗ m(j), i = 1, . . . ,M (29)

σ (2) = σ −
M∑
i=1

(1 − fi)w
(i)m(i) ⊗ m(i) (30)

The total porosity in this rank-M laminate is given by

f =
M∏
i=1

fi (31)

Thus, expression (28) requires the solution of an M-dimensional convex minimization problem, which must be solved
numerically for a given macroscopic stress σ . This minimization problem is constrained by the fact that the (uniform)
stress in the porous phase (denoted as phase 2) must be zero. It is noted that this constraint (in the variables w(i))
can be enforced in two different ways. One way is to enforce that the magnitude of the second-order tensor σ (2) be
zero, in which case there is a single nonlinear constraint, while a different, equivalent way is to enforce that each
component of σ (2) be zero, in which case there are several (three in the present case) linear constraints (see (30)). The
latter approach has been found easier to implement and was therefore adopted in this work.

As already mentioned, of particular interest here are porous materials exhibiting transversely isotropic macroscopic
response. In this connection, it should be noted that even if the matrix potential is isotropic, the effective potential (28)
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is, in general, anisotropic. However, deBotton and Hariton [13] have shown, albeit numerically, that there are appro-
priate lamination sequences, i.e., particular choices of fi and n(i), for which the effective potential (28) tends to be
transversely isotropic as the rank M increases. Motivated by those findings, the following lamination sequence has
been adopted in this work:

fi = 1 − i
M

(1 − f )

1 − i−1
M

(1 − f )
(32)

n(i) = cosψie1 + sinψie2, ψi = η

2π

i − 1

Mη

, i = 1, . . . ,M (33)

where f is the prescribed porosity in the rank-M laminate, and the angles ψi determine the ith direction of lamination
relative to the basis {ei}. In (33)2, η and Mη are two integers such that the rank of the laminate is M = ηMη. Thus,
the set of angles ψi corresponds to Mη lamination directions (33)1, uniformly distributed on the unit circle, with η

laminations for each direction. The potential (28) is insensitive to η in the linear case, but becomes more sensitive to
this parameter with increasing nonlinearity. It has been verified numerically that, for this specific lamination sequence,
the effective flow stress (28) becomes progressively less sensitive to the in-plane orientation of σ , as the parameters
Mη and η increase. The values η = 20 and Mη = 50, which correspond to M = 1000, have been found adequate for
the purposes of this work.

4. Results and discussion

In this section, the second-order estimates (SOM) proposed above for the effective behavior and the macroscopic
strain-rates in transversely isotropic, power-law, porous materials, are compared with corresponding results generated
by the sequential laminates (LAM) described in the previous section. In addition, these results are compared with the
earlier ‘second-order’ (SOMS) estimates using the simpler prescription (21), as well as with the ‘variational’ estimates
(VAR) and the Gurson [1] criterion (GUR) (for the case of ideally plastic materials). Note that Leblond et al. [3] only
considered axisymmetric loadings for the cylindrical microstructures, and therefore it was not possible to compare
with their estimates for power-law porous materials in this work. However, comparisons will be carried out elsewhere
for the isotropic microstructures.

Fig. 1 shows the various estimates for the gauge function and the corresponding macroscopic triaxialities, for
moderate values of the porosity (f = 10%) and nonlinearity (m = 1/n = 0.2). The main observation in the context of
this figure is that the SOM estimates proposed in this work are in very good agreement with the exact LAM results,
for the entire range of macroscopic triaxialities. In contrast, the agreement exhibited by the SOMS estimates is very
good for low triaxialities, but deteriorates for sufficiently large triaxialities.

In the hydrostatic limit, the SOM estimates coincide, by construction, with the exact result for CCAs, denoted by
� in Fig. 1(a). In turn, the LAM results, which correspond to high but finite rank laminates, also appear to tend to

Fig. 1. (a) Gauge surfaces and (b) strain-rate – stress triaxiality plots for f = 10% and m = 0.2.
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Fig. 2. Yield and gauge surfaces, as a function of (a) the porosity f and (b) the strain-rate sensitivity parameter m.

this exact result. Further support to the fact that the LAM results should agree exactly with the hydrostatic behavior
of CCAs in the limit of infinite rank has been provided in [27]. On the other hand, both the SOMS curve (which
corresponds to the choice (21) for the reference stress tensor), and the VAR estimates are seen to deviate from the
analytical solution (19) in the hydrostatic limit. Note that Fig. 1(b) shows that, although the VAR prediction for the
strain-rate triaxiality XE tend to infinity as the stress triaxiality XΣ becomes infinite, it deviates significantly from
the SOM and the LAM estimates for the whole range of the stress triaxialities. On the other hand, the SOMS curve in
this figure reaches an asymptotic value at high stress triaxialities (i.e., Deq = 0 as |XΣ | → ∞), which is consistent
with the existence of a corner in the Σeq–Σm plot. As already pointed out in Section 2, corners of this type have been
observed by Pastor and Ponte Castañeda [10] for the case of ideal plasticity (i.e., m = 0), which may be caused by
the development of shear bands in the matrix phase. However, it is unrealistic to expect formation of shear bands for
a porous material whose matrix phase is described by an exponent m > 0. For this reason, we have assumed our new
yield surfaces to be smooth on the hydrostatic axis (even in the ideally plastic limit).

Fig. 2 shows effective gauge surfaces, Φn(Σeq,Σm) = 0, for different values of the porosity f and the strain-rate
sensitivity parameter m. The gauge surfaces delivered by the SOM are in very good agreement with the LAM estimates
for the whole range of Σeq–Σm. In particular, gauge surfaces are shown in Fig. 2(a) as functions of the porosity f for
a given value of m = 0.2, where it is clearly observed that the VAR estimate significantly overestimates the resistance
of the porous medium at high stress triaxialities and low porosities, when compared with the SOM and LAM estimates.
However, it is worth noting that the estimate delivered by the VAR method in the hydrostatic limit improves at higher
porosities (see corresponding curve for f = 20% in Fig. 2(a)). This observation is a simple consequence of the fact
that the VAR estimate (20) approaches the exact hydrostatic solution, given by relation (19), at high porosities.

Fig. 2(b) shows gauge surfaces as a function of the strain-rate sensitivity parameter m for a given value of porosity
f = 10%. Due to numerical difficulties, LAM results are only provided for m � 0.2. Similar to Fig. 2(a), the SOM
and the LAM estimates are in very good agreement for the entire range of macroscopic triaxialities, while the VAR
estimate, albeit a rigorous upper bound, remains too stiff as the nonlinearity of the matrix phase increases (i.e., m

decreases). In addition, for the special case of ideally plastic materials, the GUR estimate deviates significantly from
the SOM estimate, despite the fact that it recovers the exact hydrostatic solution. As already anticipated, it violates the
variational bound, VAR, for small stress triaxialities, in which case it tends to the Voigt bound. In any event, all the
methods indicate a softening of the composite as the porosity or the nonlinearity increase, which is consistent with
the contraction of the effective gauge surfaces.

In order to complete the study of the macroscopic properties of the porous composite, Fig. 3 shows the two ‘modes’
of the normalized, macroscopic strain-rate E, the equivalent (Eeq) and the hydrostatic (Em) mode, as functions of
the strain-rate triaxiality XE and the porosity f , for a fixed value of the nonlinearity m = 0.2. The estimates obtained
by the SOM for the modes Eeq and Em are found to be quite good, when compared with the LAM estimates, for the
whole range of triaxialities and porosities, considered here. On the other hand, the VAR bound underestimates Eeq

at low triaxialities and Em at high triaxialities, when compared with the LAM and the SOM estimates. In particular,
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Fig. 3. Macroscopic strain-rates for m = 0.2 as a function of the porosity f and the strain-rate triaxiality XE . (a) shows the equivalent part Eeq and
(b) shows the hydrostatic part Em of the macroscopic strain-rate.

Fig. 4. Macroscopic strain-rates for f = 10% as a function of the strain-rate sensitivity parameter m and the strain-rate triaxiality XE . (a) shows the
equivalent part Eeq and (b) shows the hydrostatic part Em of the macroscopic strain-rate. The SOM estimates are compared with the VAR bound,
the exact LAM results, and the GUR criterion.

at high triaxialities, it predicts an asymptotic value for Em that is 40% lower than the SOM estimate (see Fig. 3 for
f = 1%), and thus than the exact result for Em obtained by direct derivation of the exact relation (19) with respect
to σm.

Finally, Fig. 4 shows Eeq and Em, as functions of the strain-rate triaxiality XE and the nonlinearity m, for a fixed
value of the porosity f = 10%. Note that for the case of m = 0 (i.e., ideal plasticity) the GUR estimates are also
shown. The SOM estimates are in very good agreement with the LAM results for the entire range of the strain-rate
triaxiality and nonlinearities considered. On the other hand, as already anticipated, the VAR method underestimates
the two modes Eeq and Em at low and high strain-rate triaxialities, respectively. In addition, it is further noted that,
although GUR recovers by construction the analytical estimate for Em and Eeq = 0 in the limit of hydrostatic loading
for the case of ideally plastic materials (provided that the case of a corner in the yield surface is excluded), as shown in
Fig. 4, it is found to underestimate both modes of the strain-rate for moderate to low triaxialities, when compared with
the SOM estimates. It should be emphasized that the accurate prediction of Em is critical, as it controls the dilatation
rate of the voids, which is even more sensitive at high triaxialities. The dilatation of the voids may lead to a significant
increase of the porosity measure and eventually to the failure of the material. Therein lies the significance of the GUR
model which was the first to be able to account for this effect.
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5. Concluding remarks

In this work, a new model for transversely isotropic, porous media has been proposed. The new predictions were
compared with exact LAM results and were found to be in excellent agreement for the whole range of triaxialities,
porosities and nonlinearities considered. More specifically, the model is based on the ‘second-order’ nonlinear ho-
mogenization method, and makes use of a new prescription for the stress reference tensor, given by relation (22),
which is such that the resulting second-order estimate reproduces exactly the in-plane hydrostatic behavior of the
CCA microstructure.

The new estimates were found to improve significantly on earlier estimates, particularly at high triaxialities where
both the variational method and the earlier versions of the second-order method had been found to significantly
underestimate the hydrostatic part of the macroscopic average strain-rate, which is very important in the evolution of
the porosity and failure of porous materials when subjected to high triaxial loads.

The encouraging results obtained in this work for two-dimensional microstructures, provide motivation to apply the
same general ideas for more realistic three-dimensional microstructures, where it is expected that similarly accurate
results will be obtained. In the context of these materials, it is also important to emphasize that the new model may be
extended for arbitrary pore shapes, where the effective behavior of the porous material turns out to be anisotropic and
thus the estimation of its overall response becomes a more challenging task.
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Appendix A. Definition of the reference coefficients

The coefficients introduced in relation (22) are given by

t = 1 + X4
Σ

1 + 2t1X
2
Σ + X4

Σ

, with t1 = 10

(
1 −

(arctan(
104f 3

exp(−f )
)

π/2

)4)
(A.1)

and

β = 40m2

1 + 10m2

(
1 −

(arctan(
104f 2

exp(−500f )
)

π/2

)6)
(A.2)

It should be emphasized that the coefficient β becomes approximately zero for porosities larger than 1% and for very
high nonlinearities (i.e., m smaller than 0.05) and hence it could be neglected in these cases.

Appendix B. Computation of the coefficients αm and αeq in ideal plasticity

In the special case of hydrostatic loading and rigid-perfectly plastic behavior (m = 0), the equation (14) for the
anisotropy ratio k simplifies significantly, which allows the analytical evaluation of the αm factor of the reference
stress tensor (see relation (22)), which is given by

αm = 3

2

f (1 − kH )2√kH

(1 − f )2(2kH − 1)
(B.1)

where

kH =
(3 + 2

√
3
√

3 + 2g2 cos[ 1
3 arccos(−3

√
3(−1+g2)√

(3+2g2)
3

)])2

36g2
, with g = 2(1 − f )2

f ln(1/f )2
(B.2)

It is worth noting from relation (B.1), that kH � 1
2 . The coefficient αeq may be further simplified in this case to

αeq = 1 kH − f
(B.3)
αm 1 − f
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