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Abstract

An approximate model based on the ‘‘second-order” nonlinear homogenization method is proposed to estimate the
effective behavior of isotropic, viscoplastic, porous materials. The model is constructed in such a way that it reproduces
exactly the behavior of a ‘‘composite-sphere assemblage” in the limit of hydrostatic loadings, and therefore coincides with
the hydrostatic limit of Gurson’s criterion in the special case of ideal plasticity. As a consequence, the new model improves
on earlier homogenization estimates, which have been found to be quite accurate for low triaxialities but overly stiff for
sufficiently high triaxialities and nonlinearities. Additionally, the estimates delivered by the model exhibit a dependence
on the third invariant of the macroscopic stress tensor, which has a nontrivial effect on the effective response of the material
at moderate triaxialities. The proposed model is compared with exact results obtained for a special class of porous mate-
rials with sequentially laminated microstructures. The agreement is found to be quite good for the entire range of stress
triaxialities, and all values of the porosity and nonlinearity considered.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

During the last 20 years, several models have been proposed attempting to describe the possible implica-
tions of the existence of voids on the overall behavior of metals and other nominally incompressible materials.
Perhaps the most popular model for porous plastic solids is that proposed by Gurson (1977), following earlier
work by Rice and Tracey (1969). This model makes use of the exact solution for a shell (spherical or
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cylindrical cavity) under hydrostatic loadings, suitably modified, to obtain estimates for the effective behavior
of ideally-plastic solids with isotropic or transversely isotropic distributions of porosity. Several extensions of
this model have been proposed over the years, to account for more general constitutive behaviors and porosity
distributions. Gologanu et al. (1993, 1997) proposed a refined model for ideally-plastic porous media with
more general anisotropic microstructures which, in turn, was generalized to viscoplastic materials by Leblond
et al. (1994). Partially inspired by the aforementioned works, G�ar�ajeu et al. (2000) and Flandi and Leblond
(2005a,b) proposed improved models in separate attempts to describe more accurately the evolution of micro-
structure under axisymmetric loadings. More recently, Monchiet et al. (2007) have proposed a Gurson-type
model for ideally-plastic porous media containing prolate and oblate cavities by making use of Eshelby-like
trial velocity fields. While these models are exact for the effective behavior of composite-sphere assemblages
subjected to purely hydrostatic loadings, they become less accurate at low and moderate triaxial loadings.
In addition, they are all derived under the assumption of axisymmetric macroscopic deformations, neglecting
any dependence on the third invariant of the macroscopic loading.

In a separate development, Ponte Castañeda (1991) (see also Willis (1991) and Michel and Suquet (1992))
obtained rigorous bounds of the Hashin–Shtrikman type (Hashin and Shtrikman, 1963), as well as estimates
of the self-consistent type (Willis, 1977), for porous nonlinear materials by making use—via a suitably
designed variational principle—of an optimally chosen ‘‘linear comparison composite” (LCC). Generalizing
the notion of an optimally selected linear comparison composite to more general types of materials (aniso-
tropic thermoelastic phases), Ponte Castañeda (1996) and Nebozhyn and Ponte Castañeda (1999) proposed
improved estimates for two-phase composites, where the effect of the third invariant of the macroscopic stress
tensor has been taken into account. However, this so-called ‘‘tangent second-order” method can lead to unre-
alistic predictions for sufficiently strong constitutive nonlinearities (i.e., violation of rigorous bounds, noncon-
vex effective energy function).

To amend these drawbacks, Ponte Castañeda (2002a) proposed the ‘‘second-order” method, which
improved on the earlier methods described previously by accounting for the covariance of the local fields
in the linear comparison composite, and obtained more accurate estimates for the effective behavior of
isotropic porous nonlinear media (Ponte Castañeda, 2002b), when subjected to isochoric loading condi-
tions. However, these estimates have been found to be too ‘‘stiff” at sufficiently high triaxialities and non-
linearities (Pastor and Ponte Castañeda, 2002). Following Danas et al. (2008), the present work is focused
on improving the estimates delivered by the ‘‘second-order” method at high triaxialities, while preserving
the high accuracy of the estimates for low triaxialities, as well as the effects of the third invariant of the
macroscopic stress tensor on the effective response of the material. Interestingly, it turns out that the
dependence of the porous material on the third invariant has important implications on the behavior
of the material at high triaxial loadings.

In order to check the accuracy of the new model, the resulting estimates will be compared with exact results
for isotropic porous materials with a special class of microstructures known as ‘‘sequential laminates” (Ponte
Castañeda, 1992; deBotton and Hariton, 2002; Idiart, 2007). As will become clear below, sequential laminates
are particularly suitable for assessing the accuracy of ‘‘linear comparison” methods like the one considered in
this work.
2. Effective behavior

Consider a representative volume element X of a two-phase porous medium with each phase occupying a
sub-domain XðrÞðr ¼ 1; 2Þ. The vacuous phase is identified with phase 2, whereas the non-vacuous phase (i.e.,
matrix phase) is denoted as phase 1. The local behavior of the matrix phase is characterized by a convex iso-
tropic stress potential, such that the Cauchy stress r and the Eulerian strain-rate D at any point in Xð1Þ are
related by
D ¼ oU ð1Þ

or
ðrÞ; U ð1ÞðrÞ ¼ _eo ro

nþ 1

req

ro

� �nþ1

: ð1Þ
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The von Mises equivalent stress is defined in terms of the deviatoric stress tensor as req ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
r0 � r0

q
, whereas ro

and _eo denote the flow stress and reference strain-rate of the matrix phase, respectively. The nonlinearity of the
matrix phase is introduced through m ¼ 1=n, which denotes the strain-rate sensitivity parameter and takes val-
ues between 0 and 1. Note that the two limiting values m ¼ 1 and m ¼ 0 correspond to linear and ideally-plas-
tic behaviors, respectively.

The effective behavior of the porous material is defined as the relation between the average stress, �r ¼ hri,
and the average strain-rate, D ¼ hDi, which can also be characterized by an effective stress potential eU , such
that (Hill, 1963)
D ¼ o eU
o�r
ð�rÞ; eU ð�rÞ ¼ ð1� f Þ min

r � Sð�rÞ
hU ð1ÞðrÞið1Þ: ð2Þ
The brackets h�i and h�iðrÞ denote the volume averages over the representative volume element X and over the
phases XðrÞðr ¼ 1; 2), respectively, f denotes the volume fraction of the porous phase (i.e., the porosity), and
S ð�rÞ ¼ fr; divr ¼ 0 in X; rn ¼ 0 on oXð2Þ; hri ¼ �rg is the set of statically admissible stresses.

In the present work, the focus is on porous materials made up of a random and isotropic distribution of
voids in an isotropic matrix phase. It is further noted that overall isotropy implies that, in general, the effective
stress potential in relation (2)2 is a function of the three invariants of the stress tensor, �r.

In summary, the problem of estimating the effective behavior of the porous material is equivalent to that of
estimating the function eU in relation (2)2. However, computing this function exactly is an extremely difficult
task, in general. In the next section, a method for estimating this function is recalled and applied to the class of
porous materials of interest in this work. Before proceeding with the analysis, however, it is convenient to
introduce the so-called ‘‘gauge function.”
2.1. The gauge function

From the homogeneity of the local potential (1)2 in r, it follows that the effective potential (2) is a homo-
geneous function of degree nþ 1 in �r. It is then convenient to introduce the so-called gauge factor K, such that
(Leblond et al., 1994)
eU ð�rÞ ¼ _eo ro

nþ 1

Kð�r; f Þ
ro

� �nþ1

; ð3Þ
which, in turn, allows us to define the gauge function by
eUnðRÞ ¼ eU ðRÞ � _eo r�n
o

nþ 1
; R ¼ �r

Kð�r; f Þ ; ð4Þ
such that the gauge surface is given by eUnðRÞ ¼ 0. The gauge function is a positively homogeneous function of
degree zero in the macroscopic stress �r. Using standard definitions for the stress measures, the normalized
macroscopic stress tensor R is written relative to its principal axes as
R ¼ Rm I þ Req S ¼ diagfR1;R2;R3g: ð5Þ
The stress quantities Rm ¼ Rii=3 and Req are the normalized macroscopic mean and von Mises equivalent
stress, respectively, I is the identity tensor, S ¼ R 0=Req is a normalized stress tensor with R0 denoting the stress
deviator, while Ri with i ¼ 1; 2; 3 denote the three principal values of the normalized macroscopic stress tensor
R. Making use of the previous notation, it is pertinent to define the following stress invariants
X R ¼
Rm

Req

; cosð3hÞ ¼ 27

2
detðSÞ: ð6Þ
The first is the stress triaxiality, and the second is the Lode angle (Kachanov, 1971) in stress space, which is
related to the third invariant of the macroscopic stress tensor. The values h ¼ Np=3 and h ¼ ð2N þ 1Þp=6,
with N integer, correspond to axisymmetric and simple shear loading conditions, respectively. Relation (6)2
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may then be inverted so that, relative to its principal axes, S is represented in terms of the Lode angle h
through
S ¼ 2

3
diag � cos hþ p

3

� �
;� cos h� p

3

� �
; cosðhÞ

n o
: ð7Þ
Thus, the applied normalized stress tensor R is defined in terms of the three stress invariants, Rm, Req and h.
Overall isotropy of the material implies then that Un in relation (4) can be expediently written as
eUnðRÞ ¼ /nðR1;R2;R3Þ ¼ b/nðRm;Req; hÞ ¼ 0; ð8Þ
where /n is a symmetric function of its arguments. At this point, it is also important to mention that as a con-
sequence of definition (1) for the matrix phase, the overall response of the porous material is insensitive to the
sign of R. This condition may be expressed as eUnðRÞ ¼ eUnð�RÞ.

Based now on definition (8), it is convenient to define two cross-sections of the gauge function in order to
study in detail the effective response of the porous material. One cross-section of the gauge surface may be
defined by considering h ¼ const. This cross-section lies on a plane which is described by the Cartesian coor-
dinates Req and Rm, known as the meridional plane. In turn, an alternative cross-section of the gauge function
may be considered on a plane defined by a constant hydrostatic pressure, i.e. Rm ¼ const. This projection is
equivalent to the standard deviatoric P� plane (or octahedral plane) in the theory of plasticity. The polar
coordinates on this plane are r ¼

ffiffiffiffiffiffiffiffi
2=3

p
Req and the Lode angle h, respectively. In-plane Cartesian coordinates

may also be defined (Lubliner, 1990) by using relations (5) and (7), such that
x ¼ 2R3 � R1 � R2ffiffiffi
6
p ¼

ffiffiffi
2

3

r
Req cosðhÞ ð9Þ
and
y ¼ R1 � R2ffiffiffi
2
p ¼

ffiffiffi
2

3

r
Req sinðhÞ: ð10Þ
Similarly, it is useful to introduce the corresponding normalized, macroscopic strain-rate and strain-rate tri-
axiality measures
E ¼ D

_eo ðKð�r; f Þ=roÞn
¼ oKð�r; f Þ

o�r
; X E ¼

Em

Eeq

; ð11Þ
where the normalized, mean strain-rate is defined as Em ¼ Eii=3, whereas Eeq denotes the von Mises equivalent

part of the normalized strain-rate, defined in terms of the deviatoric strain-rate tensor as Eeq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3

E 0 � E 0
q

.

3. Variational estimates

To estimate the effective stress potential eU , the ‘‘second-order” method, originally proposed by Ponte Cas-
tañeda (2002a), is described next. The method is based on the construction of a ‘‘linear comparison composite”
(LCC), with the same microstructure as the nonlinear composite, whose constituent phases are identified with
appropriate linearizations of the given nonlinear phases resulting from a suitably designed variational princi-
ple. This allows the use of any already available method to estimate the effective behavior of linear composites
to generate corresponding estimates for nonlinear composites.

3.1. Linear comparison composite

For the class of porous materials considered in this work, the corresponding LCC is also a porous material,
with a matrix phase characterized by (Ponte Castañeda, 2002a)
ULðr; �r; MÞ ¼ Uð�rÞ þ oU
or
ð�rÞ � ðr� �rÞ þ 1

2
ðr� �rÞ � M ðr� �rÞ: ð12Þ
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The label ‘1’ for the matrix phase will be omitted for simplicity in the rest of the text, except in Section 4. In the
last expression, the tensor �r is a uniform, reference stress tensor, which is taken to be proportional to the devi-
atoric macroscopic stress tensor �r0, letting the magnitude of this tensor to be defined later. In turn, M is a sym-
metric, fourth-order, compliance tensor, which is initially assumed to be compressible (Ponte Castañeda,
2002a) (the incompressibility limit will be considered later), such that
M ¼ 1

2k
Eþ 1

2l
Fþ 1

3j
J; ð13Þ
with
E ¼ 3

2

�r0 � �r0

�r2
eq

¼ 3

2

�r0 � �r0

r2
eq

; and F ¼ K� E: ð14Þ
In the last two expressions, K and J are the standard, fourth-order, isotropic, shear and hydrostatic projection
tensors, respectively, while k and l are scalars to be defined later. Then, E and F correspond to the fourth-
order deviatoric eigen-tensors (Ponte Castañeda, 1996) of the tangent compliance tensor, defined as
Mt ¼ o

2Uð�rÞ=ðororÞ, and are such that EE ¼ E, FF ¼ F, EF ¼ 0. Making use of definitions (14), it is easily
verified that E �r ¼ �r0 and F �r ¼ 0. It is also important to note that E and F depend explicitly on the Lode angle
h introduced in relation (6)2, and therefore on the third invariant of the macroscopic stress tensor �r.

At this point, it is emphasized that, even though the nonlinear matrix phase is isotropic (see relation (1)), the
corresponding linearized phase in the LCC is, in general, anisotropic. This is in contrast with earlier methods,
like the ‘‘variational” method introduced by Ponte Castañeda (1991), where the corresponding LCC is locally
isotropic. A measure of this anisotropy is given by the ratio
k ¼ k=l; ð15Þ
such that k ¼ 1 and k ¼ 0 correspond to an isotropic and extremely anisotropic linear matrix phase. Once the
linear comparison composite is defined, linear homogenization theories, such as the Hashin–Shtrikman theory
(Hashin and Shtrikman, 1963), may be used to estimate the effective behavior of the porous LCC, which in
turn can be used, as discussed in the next subsection, to generate corresponding estimates for the nonlinear
composite of interest in this work.

Thus, making use of an appropriate specialization of the Levin relations for two-phase thermoelastic mate-
rials (Levin, 1967), the effective potential of the LCC can be written as
eU Lð�r; �r;MÞ ¼ ð1� f ÞUð�rÞ þ g � ð�r� ð1� f Þ�rÞ þ 1

2
�r �fM �r� 1� f

2
�r �M �r; ð16Þ
where g ¼ oU=o�r�M �r, and fM denotes the effective compliance tensor of the LCC. To estimate fM, use is
made of the Willis estimates (Willis, 1977; Ponte Castañeda and Willis, 1995), which are known to be quite
accurate for particulate random systems like the ones of interest in this work, up to moderate concentrations
of inclusions. For porous materials with isotropic distributions of spherical pores, these estimates take the
form
fM ¼Mþ f
1� f

Q�1: ð17Þ
Here, Q is a microstructural tensor, related to the Eshelby tensor (Eshelby, 1957), which depends on M and its
inverse L ¼M�1, and requires the numerical evaluation of certain integrals. In the special case of statistically
isotropic composites, the Q tensor is given by (Willis, 1977)
Q ¼ 1

4p

Z
jfj¼1

ĤðfÞdS; Ĥ ¼ L� LHL: ð18Þ
In this expression, H ijkl ¼ ðLiakbfafbÞ�1fjfljðijÞðklÞ, where the brackets denote symmetrization with respect to the
corresponding indices. In addition, incompressibility of the nonlinear matrix phase requires the consideration
of the incompressibility limit (i.e., j!1) in relation (18)2. Nonetheless, the final expression for fM in relation
(17) is compressible, since it corresponds to a porous material. It is also noted that the Q tensor does not have
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the same eigen-tensors as the compliance tensor M, and therefore it cannot be written explicitly in terms of E,
F and J (Nebozhyn and Ponte Castañeda, 1999). A direct consequence of this fact is that the deformation
modes in relation (16) are coupled, as will be seen later. In summary, expressions (16)–(18) completely char-
acterize the LCC in terms of the reference tensor �r and the matrix compliance M.

3.2. ‘‘Second-order” variational estimate

Once the LCC is defined, the ‘‘second-order” estimate for the effective stress potential of the nonlinear por-
ous material is given by (Ponte Castañeda, 2002a; Idiart et al., 2006)
eU SOMð�rÞ ¼ stat

k; l
f eU Lð�r; �r; MÞ þ ð1� f ÞV ð�r;MÞg; ð19Þ
where eU L is given by (16), and the ‘‘corrector” function V is defined as
V ð�r;MÞ ¼ stat
r̂
½Uðr̂Þ � ULðr̂; �r; MÞ�: ð20Þ
The stationary operation (stat) consists in setting the partial derivative of the argument with respect to the
variable equal to zero, which yields a set of nonlinear equations for the variables k, l and r̂, as shown next.

Making use of the special form (13) of the tensor M, we can define two components of the tensor r̂ that are

‘parallel’ and ‘perpendicular’ to the corresponding reference tensor �r, respectively, r̂k ¼ ð32 r̂ � E r̂Þ1=2 and

r̂? ¼ ð32 r̂ � F r̂Þ1=2, such that the equivalent part of the tensor r̂ reduces to r̂eq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2
k þ r̂2

?

q
. The stationarity

operation in (20) then leads to two equations which can be combined into the single equation
k
r̂eq

�req

� �1�n

¼ ðk � 1Þ r̂k
�req

þ 1; ð21Þ
where k is the ratio defined by (15).
The scalar quantities r̂k and r̂? are functions of the applied macroscopic loading �r, the material properties

and the microstructure, and result from the stationarity conditions in relation (19) with respect to k and l
(Ponte Castañeda, 2002a; Idiart et al., 2006):
r̂k � �req ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

1� f
o eU L

oð2kÞ�1

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

1� f
hðrL � �rÞ � E ðrL � �rÞið1Þ

s
ð22Þ
and
r̂? ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

1� f
o eU L

oð2lÞ�1

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

1� f
hrL � F rLið1Þ

s
: ð23Þ
The last identities in (22) and (23) are formal and serve to show that the variables r̂k and r̂?, and thus the
linearization scheme, depend on certain traces—given by E and F—of the fluctuations of the stress field rL

in the LCC. The derivatives o eU L=oð2kÞ�1 and o eU L=oð2lÞ�1 required for the calculation are obtained by dif-
ferentiation of (16), but are not spelled out here for conciseness. It is noted, however, that they are homoge-
neous functions of degree zero in M, and therefore, the quantities r̂k and r̂? depend on the moduli k and l
only through the anisotropy ratio k. Thus, introducing these expressions for r̂k and r̂? into (21), we obtain
a single algebraic, nonlinear equation for k, which must be solved numerically for a given choice of the refer-
ence tensor �r. The evaluation of the two moduli then follows from the relations l ¼ rn

o=ð3_eoÞ r̂1�n
eq and k ¼ k l.

Finally, making use of relations (21)–(23), the estimate (19) for the effective stress potential of the nonlinear
porous composite can be simplified to
eU SOMð�rÞ ¼ ð1� f Þ _eo ro

1þ n
r̂eq

ro

� �nþ1

� _eo
�req

ro

� �n

r̂k �
req

ð1� f Þ

� �" #
; ð24Þ
where the tensor �r remains to be specified.
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The corresponding macroscopic stress–strain-rate relation then follows by differentiation of (19) or, equiv-
alently, (24). In the present case, the resulting expression can be shown to reduce to (Idiart and Ponte Castañ-
eda, 2006)
Dij ¼ ðDLÞij þ ð1� f Þgmn
o�rmn

orij
; ð25Þ
where DL ¼ fM �rþ g is the macroscopic strain-rate in the LCC, and the second-order tensor g is given by
gij ¼
1

2k
� 1

2kt

� �
r̂k �

�req

ð1� f Þ

� �
�r0ij
�req

þ f

2ð1� f Þ2
�rkl T klmnij �rmn; ð26Þ
with
T klmnij ¼
o½QðEð�rÞÞ��1

klmn

o�rij

�����
k; l

ð27Þ
and kt ¼ ro
3_eon

�req

ro

� �1�n
. It is emphasized that the strain-rate in the nonlinear porous material is not the same as in

the LCC. It is also worth noting that in the case of isotropic microstructures considered here, the estimate (25)

for D is coaxial (i.e., has the same principal directions), but not proportional to, �r. Indeed, the projections of
the first term in (25) and the second term in (26) onto the fourth-order tensor F, defined in relation (14), are
generally not zero.

3.3. Choices for the reference stress tensor

The estimate (24) requires a prescription for the reference stress tensor �r. Physically motivated prescriptions
have been proposed by Ponte Castañeda (2002a) and Idiart and Ponte Castañeda (2005). Unfortunately, in the
limiting case of hydrostatic loadings, the resulting ‘‘second-order” estimates reduce to the earlier ‘‘variational”
bound of Ponte Castañeda (1991), which is known to be overly ‘‘stiff” in that limit. On the other hand, it is
precisely in the hydrostatic limit that the effective behavior of ‘composite sphere assemblages’ (CSAs)—a com-
monly used model for porous materials—is known exactly and in closed form (Hashin, 1962). Thus, given that
a rigorous prescription for �r is yet to be found, an ad-hoc prescription is proposed next, in such a way that the
resulting ‘‘second-order” estimates recover the exact result for CSAs.

To that end, we begin by recalling that the hydrostatic behavior of a CSA can be obtained from the solution
of the isolated shell problem, and is characterized by (Leblond et al., 1994)
eU shellðrmÞ ¼
_eo erH

1þ n
3

2

rmerH

� �1þn

;
erH

ro
¼ 1

m
ðf �m � 1Þ; ð28Þ
where erH is the effective flow stress of the shell, which depends on the porosity f and the strain-rate sensitivity
parameter of the matrix m ¼ 1=n. On the other hand, the effective flow stress delivered by the ‘‘variational”
procedure of Ponte Castañeda (1991) (VAR), in the special case of purely hydrostatic loading, reduces to
(28)1, with
erHVAR

ro
¼ 1� fffiffiffi

f
p
ð Þ1þm ; ð29Þ
which clearly deviates from the exact solution (28) for values of m different from 1 (i.e., the linear case), espe-
cially for small porosities.

Recall also that the reference tensor �r has been assumed proportional to �r0, in order to ensure that the effec-
tive stress potential eU SOM is a scalar isotropic function of the macroscopic stress tensor �r. Thus, the following
prescription for the reference stress tensor is proposed here:
�r ¼ nðX R; hÞ�r0; ð30Þ

where
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nðX R; hÞ ¼
1� t f
1� f

þ amðhÞ j X R j � exp
�aeqðhÞ
j X R j

� 	
þ b

X 4
R

1þ X 4
R

� �
ð31Þ
is an empirically chosen interpolating function. In this expression, the coefficients t and b are chosen in an ad-
hoc manner to ensure the convexity of the effective stress potential, and are spelled out in Appendix A. On the
other hand, the coefficients am and aeq are, in general, functions of the microstructure, the nonlinearity m of the
matrix, the Lode angle h, but not of the stress triaxiality X R.

The coefficient am is computed such that the estimate for the effective stress potential eU SOM, delivered by the
‘‘second-order” method in relation (24), coincides with the analytical solution for eU shell in relation (28) in the
hydrostatic limit. This condition may be written formally as
eU SOM ! eU shell as j X R j! 1; ð32Þ
which yields a nonlinear algebraic equation for am as a function of m, f and h. In addition to the analytical
estimate (28) for the effective stress potential, the solution of the shell problem also requires that the macro-
scopic deviatoric strain-rate be zero under purely hydrostatic loads. This condition, in turn, provides an equa-
tion for the coefficient aeq, which can be written as
o eU SOM

o�r

 !
eq

! o eU shell

o�r

 !
eq

) Deq ! 0 as j X R j! 1: ð33Þ
While, the computation of the coefficient am needs to be performed numerically, the evaluation of aeq can be
further simplified to the analytical expression
aeq ¼ a�1
m 1þ

3
2

_eo ð�req=roÞn � �reqð2kÞ�1 þ dk
ð1� f Þ r̂k

1

2k
� 1

2kt

� ��1
" #

: ð34Þ
All the quantities involved in the last relation are evaluated in the hydrostatic limit j X R j! 1, while
dk ¼ ð3=2ÞS �fM �r and kt is defined by relation (26). Note that aeq is also a function of m, f and h.

In summary, relation (30), together with relations (32) and (33) (or (34)), completely define the reference
stress tensor �r, and thus, the estimate (24) can be used to estimate the effective behavior of the porous material
as characterized by relation (24). The strategy followed above was originally put forward by Danas et al.
(2008) for transversely isotropic porous media.

At this point, several observations are in order. First, the choice (30) guarantees that the resulting effective
stress potential is a homogeneous function of degree nþ 1 in the average stress �r for all triaxialities
X R 2 ð�1;þ1Þ, as it should. Second, it is noted that the choice (30) reduces to
�r ¼ �r 0; ð35Þ
for X R ¼ 0. This is precisely the prescription earlier proposed by Idiart and Ponte Castañeda (2005) (see also
Idiart et al. (2006)) for general loadings, which has been found to deliver accurate estimates when the porous
composite is subjected to isochoric loadings. Third, because the new prescription (30) is non-zero in the hydro-
static limit, the matrix phase in the LCC remains anisotropic in this limit, in contrast with the earlier choice
(35) which leads to an isotropic LCC. This result, together with the fact that the coefficients am and aeq depend
on the Lode angle h, implies that the anisotropy ratio k is also a function of h. Consequently, the effective
stress potential eU L defined in relation (16) depends on h in the hydrostatic limit. However, it should be empha-
sized that the predicted effective behavior for hydrostatic loadings is isotropic and depends only on the hydro-
static part of the stress tensor rm, the porosity f and the strain-rate sensitivity parameter m. On the other hand,
the curvature tensor (Hessian matrix) of the corresponding gauge function in the hydrostatic limit is aniso-
tropic (i.e., it is not proportional to the identity tensor and depends on the Lode angle h), in contrast to exist-
ing methods that do not incorporate any dependence on the third invariant (e.g., the Gurson model).

Ideal plasticity. For the special case of ideal plasticity ðm ¼ 0Þ, relation (28) reduces to
erH

ro
¼ ln

1

f

� �
; ð36Þ
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and am and aeq are determined by relations (32) and (33). On the other hand, the equation describing the effec-
tive yield surface, predicted by the ‘‘second-order” method, simplifies to
eUðrÞ ¼ r̂eq � ro ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2
k þ r̂2

?

q
� ro ¼ 0; ð37Þ
where r̂k and r̂? are defined in relations (22) and (23). In the context of these results for the special case of
ideally-plastic porous materials, expressions (33) (or (34)) have been assumed to continue to hold for the deter-
mination of aeq, which implies that the resulting effective yield surface remains smooth for the whole range of
stress triaxialities. Further support for this last assumption arises from the fact that—to the best knowledge of
the authors—there is no definitive numerical or experimental evidence implying the existence of a vertex in the
hydrostatic limit for general isotropic microstructures (but see also Bilger et al. (2005)), in contrast with trans-
versely isotropic microstructures, where the existence of a corner has been observed in yield surfaces obtained
by limit analysis procedures (Pastor and Ponte Castañeda, 2002). Note that, for the case of a vertex-like yield
surface, the strain-rate D would not be uniquely determined at the hydrostatic point.
4. Porous materials with sequentially laminated microstructures

The ‘‘second-order” estimate (19) of the previous section involves two approximations: the linearization of
the nonlinear phases (relation (12)) and the homogenization of the LCC (relation (16)). For the second approx-
imation, use was made of the Willis estimates (17). These linear estimates are known (Francfort and Murat,
1986; Milton, 2002) to be exact for composites with a special class of ‘‘sequentially laminated” microstruc-
tures. For this reason, nonlinear sequential laminates are particularly appropriate to assess the accuracy of
the ‘‘second-order” method and, in general, of any LCC-based homogenization method (such as the ‘‘varia-
tional” method of Ponte Castañeda (1991)), on condition that the Willis estimates be used for the LCC. In this
section, exact results for this special class of nonlinear sequential laminates are provided.

A sequential laminate is an iterative construction obtained by layering laminated materials (which in turn
have been obtained from lower-order lamination procedures) with other laminated materials, or directly with
the homogeneous phases that make up the composite, in such a way as to produce hierarchical microstructures
of increasing complexity (e.g., Milton, 2002). The rank of the laminate refers to the number of layering oper-
ations required to reach the final sequential laminate. Of the many possible types of sequential laminates, we
restrict attention to porous sequential laminates formed by layering at every step a porous laminate with the
matrix phase (denoted as phase 1).

Thus, a rank-1 laminate corresponds to a simple laminate with a given layering direction nð1Þ, with matrix and
porous phases in proportions 1� f1 and f1. In turn, a rank-2 laminate is constructed by layering the rank-1 lam-
inate with the matrix phase, in a different layering direction nð2Þ, in proportions f2 and 1� f2, respectively. Rank-
M laminates are obtained by iterating this procedure M times, layering the rank-ðM � 1Þ laminate with the matrix
phase in the direction nðMÞ, in proportions fM and 1� fM , respectively. A key point in this procedure is that the
length scale of the embedded laminate is assumed to be much smaller than the length scale of the embedding lam-
inate. This assumption allows to regard the rank-ðM � 1Þ laminate in the rank-M laminate as a homogeneous
phase, so that available expressions for the effective potential of simple laminates (e.g., deBotton and Ponte Cas-
tañeda, 1992) can be used at each step of the process to obtain an exact expression for the effective potential of the
rank-M sequential laminate (e.g., Ponte Castañeda, 1992; deBotton and Hariton, 2002). From this construction
process, it follows that the microstructure of these sequential laminates can be regarded as random and particu-

late, with phase 1 playing the role of the (continuous) matrix phase embedding the (discontinuous) porous phase.
A distinctive feature of this very special class of porous materials is that the strain-rate and stress fields in the inclu-

sion phase (in this case, the pores, denoted as phase 2) are uniform.
The effective stress potential of the resulting rank-M porous laminate can be shown to be (deBotton and

Hariton, 2002; Idiart, 2006)
eU Mð�rÞ ¼ min
wðiÞj

�rð2Þ¼0

XM

i¼1

ð1� fiÞ
YM

j¼iþ1

fj

 !
U ð1Þð�rð1Þi Þ; ð38Þ
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where U ð1Þ is the matrix potential given by relation (1), and the stress tensors in the matrix phase, �r
ð1Þ
i

(i ¼ 1; . . . M), and the pore phase, �rð2Þ, are given by
�r
ð1Þ
i ¼ �rþ fi wðiÞ �

XM

j¼iþ1

ð1� fjÞ wðjÞ; ð39Þ

�rð2Þ ¼ �r�
XM

i¼1

ð1� fiÞ wðiÞ: ð40Þ
In these expressions, the wðiÞ, i ¼ 1; . . . ;M , are second-order tensors of the form
wðiÞ ¼ wðiÞ1 m
ðiÞ
1 �m

ðiÞ
1 þ wðiÞ2 m

ðiÞ
2 �m

ðiÞ
2 þ wðiÞ3 m

ðiÞ
1 �sm

ðiÞ
2 ; ð41Þ
where m
ðiÞ
1 and m

ðiÞ
2 are two orthogonal vectors lying on the plane with normal nðiÞ, and �s denotes the sym-

metric part of the outer product. The total porosity f in this rank-M laminate is given in terms of the partial
volume fractions fi by
f ¼
YM
i¼1

fi: ð42Þ
Thus, expression (38) requires the solution of a 3M-dimensional convex minimization with respect to the sca-
lar variables wðiÞa (i ¼ 1; ::;M , a ¼ 1; 2; 3), which, for a given set of fi and nðiÞ and macroscopic stress �r, can be
solved numerically using standard numerical techniques. This minimization problem is constrained by the fact
that the (uniform) stress in the porous phase �rð2Þ, as given by (40), must be zero. This constraint (in the vari-
ables wðiÞj ) can be enforced in two different ways. One way is to enforce that the magnitude of the second-order
tensor �rð2Þ be zero, in which case there is a single non-linear constraint, while a different, equivalent way is to
enforce that each component of �rð2Þ be zero, in which case there are six linear constraints (see (40)). The latter
approach has been found easier to implement and was therefore adopted in this work.

It is important to note that the effective behavior of the sequential laminates considered here, unlike that of
typical nonlinear composites, does not depend on all the details of the microstructure, but only on partial
information of it in the form of the volume fractions fi and lamination directions nðiÞ. Of particular interest
here are porous materials exhibiting overall isotropic symmetry. In general, the effective potential (38) will
be anisotropic, even if the matrix potential is isotropic. However, appropriate lamination sequences, i.e., par-
ticular choices of fi and nðiÞ, can be found such that the effective potential (38) tends to be isotropic as the rank
M increases (deBotton and Hariton, 2002). To that end, the following lamination sequence has been adopted
in this work:
fi ¼
1� i

M ð1� f Þ
1� i�1

M ð1� f Þ ; ð43Þ
and
nðiÞ ¼ sin wi sin /i e1 þ cos wi sin /i e2 þ cos /i e3; ð44Þ
where f is the prescribed porosity in the rank-M laminate, and the angles wi and /i, which determine the ith
direction ði ¼ 1; . . . ;MÞ of lamination relative to a reference basis feag, are given by
/jþkMg
¼ arccos hj; hj ¼ 2

j� 1

Mg � 1
� 1; j ¼ 1; . . . ;Mg; k ¼ 0; . . . ; g� 1 ð45Þ

wjþkMg
¼ wj�1 þ

3:6ffiffiffiffiffiffiffi
Mg

p 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

j

q
0B@

1CAmod 2p; j ¼ 2; . . . ;Mg � 1 w1 ¼ wMg
¼ 0: ð46Þ
In these expressions, g and Mg are two integers such that the rank of the laminate is M ¼ gMg. The set of an-
gles (45), (46) corresponds to Mg lamination directions (44), uniformly distributed on the unit sphere (Saff and
Kuijlaars, 1997), with g laminations for each direction. It has been verified numerically that, for this specific
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lamination sequence, the effective potential (38) becomes progressively less sensitive to the orientation of the
principal axes of �r as the parameters Mg and g increase, meaning that the effective potential tends to be more
isotropic with increasing rank. The results provided in the next section correspond to M ¼ 1500 with Mg ¼ 50
and g ¼ 30.

Finally, the macroscopic strain rate is obtained by differentiating (38) with respect to �r. Noting that the
expression is stationary with respect to the variables wðiÞj , we have that
D ¼
XM

i¼1

ð1� fiÞ
YM

j¼iþ1

fj

 !
oU ð1Þ

or
ð�rð1Þi Þ þ kð2Þ; ð47Þ
where the second-order tensor kð2Þ is the optimal Lagrange multiplier associated with the traction-free con-
straint in (38).

5. Results and discussion

This section presents results for the effective behavior and the macroscopic strain-rate fields of isotropic,
power-law, porous materials, delivered by the second-order method (SOM), when the choice (30) is made
for the reference stress tensor. The predictions of the model proposed in this work are compared with corre-
sponding results generated by the high-rank sequential laminates (LAM) described in Section 4. This compar-
ison is particularly pertinent in view of the fact that power-law, porous, sequential laminates with isotropic
microstructures have been found (Idiart, 2007) to reproduce exactly the hydrostatic behavior of the compos-
ite-sphere assemblage, as given by (28). For completeness, the SOM estimates are also compared with the ear-
lier ‘‘variational” bound (Ponte Castañeda, 1991) (VAR), the Leblond–Perrin–Suquet (LPS) model (Leblond
et al., 1994), which reduces to the Gurson model (GUR) (Gurson, 1977) for ideally-plastic media.

Before proceeding with the discussion of the results, it is useful to first introduce the various material and
loading parameters used in the plots that follow. The present study is focused on high nonlinearities such as
m ¼ 0:1 and m ¼ 0 (i.e., ideally-plastic materials) and small to moderate porosities, f ¼ 1; 5; 10%. Results for
porosity levels below 1%—relevant to ductile fracture—have not been included due to difficulties encountered
in the numerical computation of the LAM values. In contrast, it is emphasized that SOM estimates have been
obtained for small and dilute porosities and will be reported elsewhere. It is noted, however, that the conclu-
sions drawn below are expected to remain valid at those porosity levels.

As already discussed in a previous section in the context of expression (8), the SOM and the LAM estimates
can depend a priori on all three invariants of the macroscopic stress tensor (i.e., on Rm, Req and h). For com-
pleteness, appropriate cross-sections of the gauge surfaces are shown for three representative values of the
Lode angle, h ¼ 0; p=4; p=2. The value h ¼ 0 is associated with axisymmetric shear loading. In turn, the value
h ¼ p=2 corresponds to simple shear loading, whereas h ¼ p=4 corresponds to a combination of axisymmetric
and simple shear loading. It is emphasized that the rest of the models (VAR, LPS and GUR) depend only on
the first two invariants, i.e., on Rm and Req.

5.1. Gauge surfaces

Fig. 1 presents various cross-sections of the effective gauge surfaces in the Rm � Req plane for a fixed non-
linearity m ¼ 0:1. In Fig. 1 a the various models are compared for axisymmetric loadings ðh ¼ 0Þ and a typical
porosity f ¼ 5%. The main result in the context of this figure is that the SOM estimates are in very good agree-
ment with the LAM predictions for the entire range of the stress triaxialities ðX R 2 ð�1;1ÞÞ, recovering the
exact effective response of a hollow shell subjected to pure hydrostatic loading, as described by relation (28).
The fact that the LAM results of Section 4 should agree exactly with the hydrostatic behavior of CSAs in the
limit of infinite rank has been shown rigorously by Idiart (2007). Furthermore, the SOM improves ‘‘signifi-
cantly” on the earlier VAR estimate, which in spite of being in good agreement with the LAM results at
low triaxialities, it is found to be too stiff at high triaxialities. Indeed, for the given porosity f ¼ 5%, the
VAR method predicts that the effective response of the porous material is almost 50% stiffer than the exact
shell result of relation (28), when subjected to pure hydrostatic loading. It can be easily verified by comparing
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Fig. 1. Gauge surfaces in the Req � Rm plane; (a) comparison between the various models (‘‘second-order” method SOM, sequential
laminates LAM, ‘‘variational” bound VAR and Leblond–Perrin–Suquet LPS) for f ¼ 5% and h ¼ 0; SOM vs. LAM estimates for (b)
f ¼ 1; 5; 10% and h ¼ 0; c) f ¼ 1; 5; 10% and h ¼ p=4; d) f ¼ 1; 5; 10% and h ¼ p=2.
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relations (28) and (29), that the VAR estimate deviates significantly from the analytical shell result for small
porosities. On the other hand, the LPS model, even though exact for hydrostatic loading, deviates from the
LAM results for moderate to high triaxialities (i.e., approximately 1 6 X R 6 10). On the other hand, the
LPS model coincides—by construction—with the VAR bound for isochoric loadings ðX R ¼ 0Þ.

Fig. 1b–d, show cross-sections of the effective gauge surfaces for three different Lode angles,
h ¼ 0; p=4; p=2, and porosities, f ¼ 1; 5; 10%. In these plots, it is seen that the SOM and the LAM estimates
are in very good agreement for the whole range of stress triaxialities, porosities and Lode angles shown. Fur-
thermore, it is interesting to note that for h ¼ 0 and h ¼ p=4, the gauge curves predicted by both the SOM and
the LAM methods are found to be slightly ‘‘asymmetric” about the Req-axis, in contrast with the case of
h ¼ p=2, where the SOM and the LAM curves are completely symmetric. This ‘‘asymmetry” is a direct con-
sequence of the coupling between the three invariants (i.e., Rm, Req, h) in the expression for the gauge function
introduced in relation (8). While the SOM and the LAM curves exhibit this particularly interesting behavior,
the VAR and the LPS models show a perfect symmetry about the Req-axis. This is a direct consequence of the
fact that the VAR and the LPS models involve no dependence on the third invariant of the macroscopic stress
tensor, and thus they cannot capture this effect, which, as will be seen later, can become non negligible at high
stress triaxialities.

More specifically, for the case of axisymmetric loading ðh ¼ 0Þ (see Fig. 1b), the SOM and the LAM esti-
mates are found to be slightly stiffer in the negative pressure regime ðRm < 0Þ, while the opposite is observed
when h ¼ p=4 (see Fig. 1c), i.e., the porous material is stiffer in the positive pressure regime ðRm > 0Þ. On the
other hand, for h ¼ p=2 (see Fig. 1d), the corresponding gauge curves are completely symmetric about the Req-
axis. This can be explained by noting that in the case of h ¼ p=2, the term detðR0=ReqÞ ¼ 0, which has the
implication that the gauge function becomes an even function of the mean macroscopic stress, and therefore
is independent of the sign of Rm. In contrast, for h ¼ 0 and h ¼ p=4, the term detðR0=ReqÞ is not zero and hence
the gauge function is not an even function of Rm. In addition, it is important to remark that the observed
asymmetry of the SOM and the LAM gauge curves about the Req-axis is more pronounced at moderate poros-
ities ðf ¼ 10%Þ than small ones ðf ¼ 1%Þ, as can be seen in Fig. 1b–d.
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The special case of ideally-plastic porous materials is studied next. Specifically, yield surfaces (m ¼ 0) are
shown in Fig. 2 for a fixed porosity f ¼ 5% and h ¼ 0; p=2. Here, the GUR model is also included, whereas
LAM estimates are not available for this case due to numerical difficulties. The main observation in the con-
text of this figure is that even though all but the VAR estimate recover the analytical hydrostatic point as dis-
cussed in relation (36), the SOM exhibits a softer behavior than the LPS and the GUR models at moderate
and high stress triaxialities. In addition, similar to Fig. 1, an interesting effect of the presence of the third
invariant is the asymmetry of the yield curve predicted by the SOM about the Req-axis, for the case of
h ¼ 0, as shown in Fig. 2a. In this case, the SOM estimates are found to be slightly stiffer in the negative pres-
sure regime ðRm < 0Þ than in the positive pressure regime ðRm > 0Þ. On the contrary, for h ¼ p=2, the corre-
sponding yield curve is symmetric about the Req-axis, since in this case detðR0=ReqÞ ¼ 0. Furthermore, it is
emphasized that the GUR model violates, as already mentioned, the VAR bound at low triaxialities. To
amend this drawback of the GUR model at low triaxialities, the LPS model was constructed such that it recov-
ers the VAR bound for isochoric loadings (i.e., X R ¼ 0), while it lies very close to the GUR model for mod-
erate and high triaxialities.

In summary, the previous analysis, made in the context of Figs. 1 and 2, shows that the effective response of
the porous material as predicted by the SOM and the LAM models exhibits somewhat softer behavior when
compared with the estimates obtained by the LPS and the GUR models. In addition, the SOM and the LAM
estimates depend on the third invariant of the macroscopic stress tensor R, in contrast with the rest of the
models (VAR, LPS and GUR) which depend only on the first two invariants of R. Similar observations have
been made in the context of porous, periodic media by Shtern et al. (2002a,b), who introduced the effect of the
third invariant of the macroscopic stress tensor in a somewhat ad-hoc manner.

For a better understanding of the effect of the third invariant on the effective response of the porous mate-
rial, it is useful to show different cross-sections of the gauge surface, as done in Fig. 3 for a fixed porosity
f ¼ 10% and strain-rate sensitivity parameter m ¼ 0:1. This cross-section lies on the deviatoric or P-plane
which is defined (see Section 2.1) by considering constant mean stresses, Rm ¼ 0 and Rm ¼ 0:99RH

m , with RH
m

denoting the mean stress delivered by the analytical shell result for a given porosity and nonlinearity. The ori-
gin of these two graphs corresponds to zero deviatoric macroscopic stress R0, while R01, R02 and R03 are the three
principal values of R0.

Fig. 3a thus presents the deviatoric cross-sections of the gauge functions obtained by the SOM, the LAM
and the LPS models for Rm ¼ 0. It is recalled that for isochoric loadings, the LPS model is identical to the
VAR bound. In this figure, all the methods give very similar predictions for all h. However, in order to under-
stand further these results, it is useful to recall that overall isotropy of the porous material together with the
fact that the corresponding effective gauge function in relation (8) is insensitive to the sign of R (see Section
2.1) yields the continuous and the dotted symmetry lines on the P-plane (see Fig. 3a). This implies that the
whole gauge curve may be constructed by considering stress states in any one of the twelve ðp=6Þ segments
defined by the continuous and dotted lines, which can be easily verified for all the models shown in
Fig. 3a. However, because of the fact that the SOM and the LAM estimates depend slightly on h in this case
of isochoric loadings, the corresponding gauge curves do not form a perfect circular arc at the interval
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0 < h < p=6. On the other hand, the LPS (and the VAR) model, which is independent of h, does form a circle
with radius r ¼

ffiffiffiffiffiffiffiffi
2=3

p
Req.

Considering now the second set of gauge curves in Fig. 3b, it is observed that the shape of the curves deliv-
ered by the SOM and the LAM models no longer conform to the above-mentioned p=6-symmetry. This is
because in this case the origin corresponds to zero deviatoric stresses, while the total stress at this point is
R ¼ Rm I with I denoting the identity tensor. For this reason, the dotted lines no longer form axes of symme-
try, since the corresponding gauge function in relation (8) is insensitive to the sign of R and not the sign of the
deviatoric stress R0. On the other hand, isotropy of the porous material still requires that the continuous lines
form axes of symmetry. This last observation implies that the shape of the gauge curve is determined by each
of the ‘‘six” ðp=3Þ segments formed by the continuous lines. Evidently, all the gauge curves shown in Fig. 3b
comply to this requirement. However, as a result of the dependence on the third invariant, the shape of the
SOM and LAM cross-sections is substantially different from that of the LPS model which is a perfect circle.
The importance of this difference in shape stems from the fact that the normal to the gauge surface prescribes
the macroscopic direction of flow.

Before proceeding to the discussion of the corresponding macroscopic strain-rates, it is worth mentioning
that McElwain et al. (2006) have recently obtained numerical estimates (using the finite element method) for
the effective behavior of periodic, ideally-plastic porous media at high porosities ðf > 20%Þ. In particular, the
resulting yield curves have qualitatively similar shapes to the ones generated by the SOM and the LAM meth-
ods in Fig. 3b. These authors have also remarked on the inaccuracy of models making use of only the first two
invariants of the macroscopic stress tensor.
5.2. Macroscopic strain rates

For completeness, estimates for the macroscopic equivalent and mean strain-rates, Eeq and Em, respectively,
are presented in this subsection. Thus, Fig. 4 shows estimates for the macroscopic equivalent strain-rate Eeq as
a function of the porosity and the stress triaxiality X R, for a fixed value of h ¼ 0 (i.e., axisymmetric loads) and
strain-rate sensitivity parameter m ¼ 0:1. In particular, Fig. 4a compares the macroscopic equivalent strain-
rate estimates obtained by the various models for a porosity, f ¼ 5%. In this case, all the methods are shown
to be in good agreement at low stress triaxialities, while they are all somewhat different from the LAM results
with increasing stress triaxiality. The SOM estimates are in better agreement with the LAM results in the
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positive triaxiality regime, whereas for negative triaxialities the LPS estimates lie closer to the LAM results, for
this particular choice of the porosity and nonlinearity. In turn, the VAR estimates differ significantly from the
LAM results at moderate triaxialities. Note that, by definition, all the methods deliver zero equivalent strain-
rate in the hydrostatic limit ðj X R j! 1Þ. In turn, in Fig. 4b, the SOM estimates are compared with the LAM
estimates for two different porosities, f ¼ 1; 10%. In this figure, a clear trend is observed for both the SOM
and the LAM curves at low stress triaxialities, where Eeq takes higher values at larger porosities, while no such
pattern could be observed at higher triaxialities. Nonetheless, the SOM remains in good agreement with the
LAM results for the whole range of triaxialities and porosities considered here.

Next, Fig. 5 shows estimates for the mean (hydrostatic) macroscopic strain-rate Em as a function of the
porosity and the stress triaxiality X R, for a fixed value of h ¼ 0 (i.e., axisymmetric loads) and strain-rate sen-
sitivity parameter m ¼ 0:1. The SOM and the LAM results are in very good agreement for the whole range of
the stress triaxialities and porosities shown here. Particularly, in Fig. 5a, the SOM is found to improve signif-
icantly on the earlier ‘‘variational” bound VAR, which severely underestimates the macroscopic mean strain-
rate at high triaxialities. The LPS model is also in good agreement with the LAM results, although at mod-
erate triaxialities it tends to be slightly stiffer than the SOM estimates. In addition, Fig. 5b shows that the SOM
estimates are in excellent agreement with the LAM results for all the porosities considered.

Lastly, it should be emphasized from Figs. 4 and 5 that the equivalent part of the macroscopic strain-rate,
Eeq, is predominant over the corresponding hydrostatic part, Em, at low triaxialities, and therefore controls the
effective response of the porous material in this regime. For the case of low triaxialities, the SOM is found to
be in good agreement with the LAM estimates as discussed in the context of Fig. 4. In turn, the hydrostatic
part of the macroscopic strain-rate, Em, dominates over the corresponding equivalent part, Eeq, in the high-
triaxiality regime, where the SOM is also found to be in excellent agreement with the LAM, while improving
significantly on the earlier VAR estimates. These two observations together suggest that the SOM should be
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Fig. 5. Plot of the mean macroscopic strain-rate Em as a function of the stress triaxiality X R for h ¼ 0 and m ¼ 0:1; (a) comparison of the
various models for a porosity of f ¼ 5%; (b) effect of porosity (f ¼ 1; 10%) on SOM predictions vs. LAM results for Em.
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able to predict accurately the effective response of the porous material for the entire range of the stress triax-
ialities, porosities and nonlinearities.

6. Concluding remarks

In this work, a constitutive model for isotropic, porous media has been proposed based on the ‘‘second-
order” homogenization theory of Ponte Castañeda (2002a). The new model makes use of a novel prescription
for the reference stress tensor, given by relation (30), which is such that the resulting ‘‘second-order” estimate
reproduces exactly the behavior of the ‘‘composite-sphere assemblage” in the limit of hydrostatic loading, and
therefore coincides with the hydrostatic limit of Gurson’s criterion for plastic porous materials.

The new ‘‘second-order” model was found to improve significantly on the earlier ‘‘variational” estimates of
Ponte Castañeda (1991), especially at high stress triaxialities, low porosities and high nonlinearities, where the
‘‘variational” bound was known to be overly stiff. Furthermore, the new ‘‘second-order” estimates were com-
pared with exact results obtained by high-rank sequential laminates and were found to be in very good agree-
ment for the entire range of stress triaxialities. In comparison, the Leblond et al. (1994) and the Gurson (1977)
models were found to be stiffer than the ‘‘second-order” estimates for a large range of the stress triaxialities.

In addition, both the ‘‘second-order” model and the sequential laminates were found to depend on all the
three invariants of the macroscopic stress tensor. Interestingly, the effect of the third invariant was found to be
non negligible even at moderate and high triaxialities and moderate porosities leading to an ‘‘asymmetric”
response of the composite in the P-plane. On the other hand, the Leblond et al. (1994), the Gurson (1977)
and the ‘‘variational” model (Ponte Castañeda, 1991) exhibit dependence only on the first two invariants of
the macroscopic stress tensor.

It is worth mentioning that even though the interest in this work is on small concentration of the vacuous
phase, the above homogenization methods (i.e., ‘‘second-order” theory and ‘‘variational” bound) may be also
applied for composites with high concentration of voids. For example, Despois et al. (2006) have used the
‘‘variational” bound to fit experimental data in the context of metal foams. For such high-porosity materials,
however, the improvements documented in this work relative to the earlier ‘‘variational” model are expected
to be comparatively smaller.

As a closing remark, it is emphasized that the new ‘‘second-order” model is based on a rigorous variational
principle which may be generalized to more complex anisotropic microstructures (arbitrary pore shapes and
orientation) and general, three-dimensional loadings, in contrast to the Gurson’s model which is restricted to
isotropic microstructures, and the Leblond et al. (1994) (Gologanu et al., 1993; Gologanu et al., 1997) method
which is valid only for axisymmetric loading conditions (aligned with the pore symmetry axis). The strategy
followed in this work can be extended, in principle, to more general constitutive laws (non-power law) for the
matrix phase. In fact, the ultimate objective is to develop a completely general constitutive model for porous
media with evolving anisotropy in the spirit of the earlier works of Ponte Castañeda and Zaidman (1994) and
Kailasam and Ponte Castañeda (1998) in the context of the ‘‘variational” procedure (Ponte Castañeda, 1991).
Such work is in progress (Danas, 2008) and will be reported elsewhere.
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Appendix A. The coefficients of the reference stress tensor

The coefficients introduced in relation (31) are given by
t ¼ 1þ X 4
R

1þ 2 t1 X 2
R þ X 4

R

; ð48Þ
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with
t1 ¼ 10 1�
arctan 104f 3

expð�f Þ

� �
p=2

0@ 1A4
0B@

1CA; ð49Þ
and
b ¼ 2

e
38m2

1þ 10m2
1�

arctan 104f 2

expð�500f Þ

� �
p=2

0@ 1A6
0B@

1CA: ð50Þ
It should be emphasized that the coefficient b becomes approximately zero for porosities larger than 1% and
for very high nonlinearities (i.e., m smaller than 0.05) and hence the terms containing b in the definition of the
reference stress tensor in relation (31) could be neglected in these cases.
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Ponte Castañeda, P., 1991. The effective mechanical properties of nonlinear isotropic composites. J. Mech. Phys. Solids 39, 45–71.
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