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In this work, we propose an approximate homogenization-based constitutive model for estimating
the effective response and associated microstructure evolution in viscoplastic (including ideally-plastic)
porous media subjected to finite-strain loading conditions. The proposed model is based on the “second-
order” nonlinear homogenization method, and is constructed in such a way as to reproduce exactly
the behavior of a “composite-sphere assemblage” in the limit of hydrostatic loading and isotropic
microstructure. However, the model is designed to hold for completely general three-dimensional
loading conditions, leading to deformation-induced anisotropy, whose development in time is handled
through evolution laws for the internal variables characterizing the instantaneous “ellipsoidal” state
of the microstructure. In Part II of this study, results will be given for the instantaneous response
and microstructure evolution in porous media for several representative loading conditions and
microstructural configurations.

© 2008 Elsevier Masson SAS. All rights reserved.
1. Introduction

This work is intended to provide an approximate homogeniza-
tion-based model for the prediction of the effective behavior and
microstructure evolution of anisotropic viscoplastic (and ideally-
plastic) porous materials subjected to general three-dimensional
loading conditions. Even though, in several cases, these materi-
als can be regarded as initially isotropic, it is well understood by
now that when they are subjected to finite deformations, their
microstructure evolves leading to an overall anisotropic response.
From this viewpoint, the main purpose of this study is to develop
constitutive models for viscoplastic porous materials that are ca-
pable of handling the nonlinear response of the porous medium,
microstructural information, such as the volume fraction, the av-
erage shape and orientation of the voids, the evolution of the
underlying microstructure and possible development of instabili-
ties. Moreover, these models need to be simple and robust enough
to be easily implemented in finite element codes.

In this quest, numerous constitutive theories and models have
been proposed in the last forty years. Possibly, these studies could
be classified in two main groups; those concerned with a dilute
concentration of voids and those dealing with finite porosities.
In the first group of dilute porous media, major contributions
are due to McClintock (1968), Rice and Tracey (1969), Budiansky
et al. (1982), Duva and Hutchinson (1984), Fleck and Hutchinson
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(1986), Duva (1986) and Lee and Mear (1992a, 1992b, 1994, 1999).
These methods are based on the minimum principle of velocities
as stated by Hill (1956), as well as on the choice of a stream func-
tion via the Rayleigh–Ritz procedure allowing for the description
of the actual field in terms of an approximate field consisting of
a sum of linearly independent functions. A significant application
of these techniques is associated with cavitation instabilities in
metal-matrix materials (Huang, 1991; Huang et al., 1991), where
a sudden increase of initially small voids can cause failure of the
medium at high stress triaxial loads. Nevertheless, the extension of
these methodologies to general three-dimensional ellipsoidal mi-
crostructures and loading conditions is not straightforward, due to
the fact that the stream function technique is restricted to prob-
lems with two-dimensional character, such as for porous media
with cylindrical voids of circular or elliptical cross-sections, as well
as for porous materials consisting of spheroidal voids subjected
to axisymmetric loading conditions (aligned with the pore sym-
metry axis). Nonetheless, these limitations do not eliminate the
usefulness of such methods, which were able to predict interesting
nonlinear effects to be discussed in Part II of this work.

In the second group of porous media with finite porosities,
we distinguish first the well-known work of Gurson (1977), who
makes use of the exact solution for a shell (spherical or cylindri-
cal cavity) under hydrostatic loadings, suitably modified, to obtain
estimates for the effective behavior of ideally-plastic solids with
isotropic or transversely isotropic distributions of porosity. In this
context, Aravas (1987) has successfully developed a numerical inte-
gration scheme for elasto-plastic porous media based on the Gur-
son model, which is widely used in commercial applications. On
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the other hand, Tvergaard (1981) found that the Gurson model is
stiff when compared with finite element unit-cell calculations. To
amend this, the same author proposed a modification of the Gur-
son criterion, by introducing an ad-hoc scalar factor, which led to
more compliant estimates. In turn, the Gurson model was gener-
alized to isotropic viscoplastic porous materials by Leblond et al.
(1994).

Even though the Gurson model has been shown to deliver suffi-
ciently accurate predictions for isotropic porous solids under high
triaxial loads, it contains no information about the shape of the
voids and thus is expected to give very poor estimates in the
case of low and moderate triaxial loadings. In an attempt to over-
come this otherwise important shortcoming of the model, Golo-
ganu et al. (1993, 1994, 1997) and later Gǎrǎjeu et al. (2000),
Flandi and Leblond (2005a, 2005b) and Monchiet et al. (2007) pro-
posed improved Gurson-type criteria for porous media with an
ideally-plastic and viscoplastic matrix phase, which made use of
a spheroidal shell containing a confocal spheroidal void (leading
to transversely isotropic symmetry for the material) subjected to
axisymmetric loading conditions aligned with the pore symmetry
axis. These refined criteria allowed these authors to study suc-
cessfully practical problems of interest involving coalescence of
voids at high triaxial loadings. Nonetheless, all these studies are
based on prescriptions for a trial velocity field similar to the di-
lute stream function methods discussed earlier. For this reason, an
extension of these techniques to more general microstructures and
loading conditions is not simple and—to the best knowledge of the
authors—there exist no results for such more general cases.

Based on nonlinear homogenization techniques, an alternative
class of constitutive models for dilute and non-dilute porous
materials that are capable of handling general “ellipsoidal” mi-
crostructures (i.e., particulate microstructures with more gen-
eral orthotropic overall anisotropy) and general three-dimensional
loading conditions (including nonaligned loadings) has been de-
veloped in the last twenty years. More specifically, following the
work of Willis (1977, 1978) on linear composites, Talbot and Willis
(1985) used a “linear homogeneous comparison” material to pro-
vide a generalization of the Hashin–Shtrikman bounds (Hashin
and Shtrikman, 1963) in the context of nonlinear composites.
A more general class of nonlinear homogenization methods has
been introduced by Ponte Castañeda (1991, 1992) (see also Willis
(1991)), who obtained rigorous bounds by making use—via a suit-
ably designed variational principle—of an optimally chosen “linear
comparison composite” (LCC) with the same microstructure as the
nonlinear composite. Michel and Suquet (1992) and Suquet (1993)
derived independently an equivalent bound for two-phase power-
law media using Hölder-type inequalities, while Suquet (1995)
made the observation that the optimal linearization in the “vari-
ational” bound (VAR) of Ponte Castañeda (1991) is given by the
secant moduli evaluated at the second moments of the local fields
in each phase in the LCC.

Because the VAR method delivers a rigorous bound, it tends
to be relatively stiff for the effective behavior of nonlinear com-
posites. In this connection, Ponte Castañeda (2002a) proposed the
“second-order” method (SOM), which made use of more general
types of linear comparison composites (anisotropic thermoelas-
tic phases). While the VAR method provides a rigorous bound,
the SOM method delivers stationary estimates. In addition, the
optimal linearization in the SOM method, which improves signif-
icantly on the previous methods, is identified with generalized-
secant moduli of the phases that depend on both the first and the
second moments of the local fields. The main conclusions drawn
by these and other works (Ponte Castañeda and Zaidman, 1994;
Ponte Castañeda and Suquet, 1998; Ponte Castañeda, 2002b) is
that the LCC-based methods lead to estimates that are, in general,
more accurate than those resulting from the earlier methodolo-
gies mentioned above. However, all of these LCC estimates remain
overly stiff in the case of porous viscoplastic materials, particularly
for high triaxial loadings (Ponte Castañeda and Zaidman, 1994;
Pastor and Ponte Castañeda, 2002). As suggested in Ponte Cas-
tañeda and Suquet (1998) and demonstrated in Bilger et al. (2002)
for a composite-sphere assemblage, the “variational” estimates
may be improved by discretizing the modulus of the matrix phase
in the LCC. However, this approach is much more difficult to im-
plement for more general microstructures.

In this context, the main objective of this work is to propose
a general, three-dimensional model based on the SOM nonlinear
homogenization method of Ponte Castañeda (2002a) to estimate
accurately the effective behavior of anisotropic viscoplastic porous
solids subjected to finite deformations. One of the main issues in
this study is the improvement of this new model relative to the
earlier VAR method for high triaxiality loading conditions, while
still being able to handle completely general loading conditions and el-
lipsoidal microstructures. Then, building on prior work by Ponte Cas-
tañeda and Zaidman (1994), Kailasam and Ponte Castañeda (1998)
and Aravas and Ponte Castañeda (2004), the model is also comple-
mented with appropriate evolution laws for the internal variables
characterizing the underlying microstructure.

In Part I of this work, we present the theoretical issues as-
sociated with the proposed constitutive model, while in Part II
we attempt to validate the model against finite element unit-cell
calculations, as well as to present representative results that evi-
dence the importance of being able to handle general ellipsoidal
microstructures and loading conditions. Specifically, in Section 2 of
this paper, we pose the problem under consideration by identify-
ing two distinct procedures; (a) the prediction of the instantaneous
effective behavior of the porous material and (b) the evolution of
microstructure during the deformation process. In Section 3, we
describe the homogenization model by making use of the SOM and
by extending the work of Danas et al. (2008a, 2008b) for isotropic
and transversely isotropic porous media to general ellipsoidal mi-
crostructures. Section 4 presents the evolution laws for the internal
variables that are used to describe the underlying microstructure.
Section 5 is devoted to the special case of porous media with an
ideally-plastic matrix phase. Finally, Appendix D presents the nu-
merical integration of the equations describing the instantaneous
effective behavior and microstructure evolution of the porous ma-
terial subjected to finite deformations.

2. Problem setting

Consider a representative volume element (RVE) Ω of a two-
phase porous medium with each phase occupying a sub-domain
Ω(r) (r = 1,2). It is important to note that the RVE is much larger
than the size of the typical heterogeneity in the solid, i.e., it satis-
fies the “separation of the length scale” hypothesis (Hill, 1963).

Local constitutive behavior. Let the vacuous phase be identified
with phase 2 and the nonvacuous phase (i.e., matrix phase) with
phase 1. For later reference, the brackets 〈·〉 and 〈·〉(r) are used to
denote volume averages over the RVE (Ω) and the phase r (Ω(r)),
respectively. While the stress potential of the porous phase U (2)

is equal to zero, the local behavior of the matrix phase is char-
acterized by a convex, incompressible, isotropic stress potential
U ≡ U (1) , such that the Cauchy stress σ and the Eulerian strain-
rate D at any point in Ω(1) are related by

D = ∂U

∂σ
(σ ), with U (σ ) = ε̇oσo

n + 1

(
σeq

σo

)n+1

, n = 1

m
. (1)

The von Mises equivalent stress is defined in terms of the de-

viatoric stress tensor σ ′ as σeq =
√

3
2 σ ′ · σ ′ , and σo and ε̇o de-

note the flow stress and reference strain-rate of the matrix phase,



K. Danas, P. Ponte Castañeda / European Journal of Mechanics A/Solids 28 (2009) 387–401 389
Fig. 1. Representative volume element of a “particulate” porous medium at two
given instants. The ellipsoidal voids are distributed randomly with “ellipsoidal sym-
metry.” The solid ellipsoids denote the voids, and the dashed ellipsoids, their distri-
bution.

respectively. The nonlinearity of the matrix phase is introduced
through m, which denotes the strain-rate sensitivity parameter and
takes values between 0 and 1. Note that the two limiting values
m = 1 (or n = 1) and m = 0 (or n → ∞) correspond to linear and
ideally-plastic behaviors, respectively.

2.1. Description of the microstructure

Due to the Eulerian kinematics used for the description of the
phases, it is appropriate to adopt an incremental formalism for the
solution of the finite deformation problem. At a given instant in
time t , we take a snapshot of the microstructure (see Fig. 1) and
we attempt to provide an estimate for the instantaneous behav-
ior of the material. In the sequel, we update the microstructure
and proceed to the next time step t + �t . This procedure is re-
peated until we reach the final prescribed total time. Thus, for the
prediction of the instantaneous effective behavior of the porous
material, it is necessary to describe, first, the microstructure—at a
fixed time t—in terms of certain internal variables.

In this connection, following the work of Willis (1978), we con-
sider a porous material that comprises a matrix phase in which
voids of known shapes and orientation are embedded. This de-
scription represents a “particulate” microstructure and is a gen-
eralization of the Eshelby (1957) dilute microstructure in the non-
dilute regime. More specifically, we consider a “particulate” porous
material (see Fig. 1) consisting of ellipsoidal voids aligned at a
certain direction, whereas the distribution function, which is also
taken to be ellipsoidal in shape, provides information about the
distribution of the centers of the inclusions. Note that the shape of
the distribution function and the shape of the voids need not be
identical (Ponte Castañeda and Willis, 1995).

Nevertheless, the effect of the shape and orientation of the dis-
tribution function on the effective behavior of the porous material
becomes less important at low and moderate porosities (Kailasam
and Ponte Castañeda, 1998) due to the fact that the contribution of
the distribution function is only of order two in the volume frac-
tions of the voids. This assumption ceases to be valid for conditions
leading to void coalescence. For such cases, the contribution of the
distribution function to the overall behavior of the porous medium
is expected to be rather significant and it should not be neglected.
Nonetheless, this work is mainly concerned with low to moderate
concentrations of voids prior to coalescence, and for simplicity, we
will make the assumption, which will hold for the rest of the text,
that the shape and orientation of the distribution function is iden-
tical to the shape and orientation of the voids and hence it evolves
in the same fashion when the material is subjected to finite de-
formations. In view of this hypothesis, the basic internal variables
characterizing the instantaneous state of the microstructure are:

1. the volume fraction of the voids or porosity f = V2/V , where
V = V1 + V2 denotes the total volume, with V1 and V2 being
the volume occupied by the matrix and the vacuous phase,
respectively,
Fig. 2. Representative ellipsoidal void.

2. the two aspect ratios w1 = a3/a1, w2 = a3/a2 (w3 = 1), where
2ai with i = 1,2,3 denote the lengths of the principal axes of
the representative ellipsoidal void,

3. the orientation unit vectors n(i) (i = 1,2,3), defining an or-
thonormal basis set, which coincides with the principal axes
of the representative ellipsoidal void.

The above set of the microstructural variables is expediently de-
noted by

sα = {
f , w1, w2,n(1),n(2),n(3) = n(1) × n(2)

}
. (2)

A schematic representation of the above-described microstructure
is shown in Fig. 2.

Note that as a consequence of the above-defined microstructure
the porous medium is, in general, orthotropic, with the axes of or-
thotropy coinciding with the principal axes of the representative
ellipsoidal void, i.e., with n(i) . Nevertheless, some special cases of
interest could be identified. Firstly, when w1 = w2 = 1, the result-
ing porous medium exhibits an overall isotropic behavior, provided
that the matrix phase is also characterized by an isotropic stress
potential. Secondly, if w1 = w2 	= 1, the corresponding porous
medium is transversely isotropic about the n(3)-direction, provided
that the matrix phase is isotropic or transversely isotropic about
the same direction.

For later reference, it is relevant to explore other types of par-
ticulate microstructures, which can be derived easily by appropri-
ate specialization of the aforementioned variables sα (Budiansky et
al., 1982). In this regard, the following cases are considered:

• a1 → ∞ or a2 → ∞ or a3 → ∞. Then, if the porosity f
remains finite, the cylindrical microstructure is recovered,
whereas if f → 0, a porous material with infinitely thin nee-
dles is generated.

• a1 → 0 or a2 → 0 or a3 → 0. Then, if the porosity f remains
finite, the laminated microstructure is recovered (or alterna-
tively a “porous sandwich”), whereas if f → 0, a porous mate-
rial with penny-shaped cracks is formed and thus the notion
of density of cracks needs to be introduced. This special case
will not be studied here, rather it will be reported elsewhere.

To summarize, the set of the above-mentioned microstructural
variables sα provides a general three-dimensional description of a
particulate porous material. It is evident that in the general case,
where the aspect ratios and the orientation of the ellipsoidal voids
are such that w1 	= w2 	= 1 and n(i) 	= e(i) , the porous medium
becomes highly anisotropic and estimating the overall response of
such materials exactly is a real challenge. However, linear and non-
linear homogenization methods have been developed in the recent
years that are capable of providing estimates and bounds for the
overall behavior of such particulate composites. In the following
subsection, we present a general framework which will allow us to
obtain estimates for the instantaneous effective behavior and the
microstructure evolution of viscoplastic porous media.
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2.2. Instantaneous response and microstructure evolution –
preliminaries

Let L (= ∇v), D and Ω denote the velocity gradient, strain-
rate and spin tensors, respectively. Then, under the affine boundary
condition v = L̄x on ∂Ω , the corresponding macroscopic quantities
are obtained as averages over the representative volume element,
L̄ = 〈L〉, D̄ = 〈D〉, and Ω̄ = 〈Ω〉, and satisfy the relations

D̄ = 1

2

(
L̄ + L̄

T )
and Ω̄ = 1

2

(
L̄ − L̄

T )
. (3)

We also define the macroscopic Cauchy stress tensor σ̄ = 〈σ 〉, as
well as the stress triaxiality by

XΣ = σ̄m/σ̄eq, σ̄eq =
√

3σ̄ ′ · σ̄ ′/2, σ̄m = σ̄ii/3, i = 1,2,3, (4)

where σ̄m and σ̄eq are the macroscopic hydrostatic and von Mises
equivalent stresses, respectively, and σ̄ ′ denotes the deviatoric part
of the macroscopic stress σ̄ .

The instantaneous effective behavior of the porous material is
defined as the relation between the average stress, σ̄ , and the aver-
age strain-rate, D̄ , which can also be characterized by an effective
stress potential Ũ , such that (Hill, 1963)

D̄ = ∂ Ũ

∂σ̄
(σ̄ ), Ũ (σ̄ ; sα) = (1 − f ) min

σ εS(σ̄ )

〈
U (σ )

〉(1)
. (5)

In this expression, S(σ̄ ) = {σ ,divσ = 0 in Ω,σn = 0 on ∂Ω(2),

〈σ 〉 = σ̄ } denotes the set of statically admissible stresses.
The homogenized constitutive relation (5) provides information

about the instantaneous effective response of the porous material
for a given microstructural configuration sα . However, these mate-
rials are often subjected to finite deformations inducing the evo-
lution of the underlying microstructure. Thus, the instantaneous
description (5) needs to be supplemented with evolution laws for
the internal variables sα that characterize the microstructure, i.e.,

ṡα = fcn(σ̄ , sα), (6)

where the “dot” denotes the standard time derivative.
The above relations provide a general framework for the pre-

diction of the instantaneous effective behavior and microstructure
evolution in particulate porous media. Note, however, that the de-
termination of Ũ exactly is an extremely difficult task, in general.
In the next section, a homogenization method for estimating Ũ is
recalled and applied to the class of particulate viscoplastic porous
materials. Before proceeding with the analysis, it is convenient to
extract some general information about Ũ by making use of the
notion of the “gauge function.”

2.3. Gauge function

Using the homogeneity of the local stress potential U in σ and
of the effective stress potential Ũ in σ̄ (Suquet, 1993), it is con-
venient to introduce the so-called gauge factor Γn (the subscript
being used to denote dependence on the nonlinear exponent n),
such that (Leblond et al., 1994)

Ũ (σ̄ ; sα) = ε̇oσo

n + 1

(
Γn(σ̄ ; sα)

σo

)n+1

. (7)

It is then sufficient to study only one of the equipotential surfaces
{σ̄ , Ũ (σ̄ ) = const}, i.e., the so-called gauge surface Pn of the porous
material defined by

Pn ≡
{
Σ̄, Ũ (Σ̄; sα) = ε̇oσ

−n
o

n + 1

}
. (8)
Consequently, the value of Ũ for any stress tensor σ̄ is given by (7),
with Γn satisfying the relation

σ̄ = Γn(σ ; sα)Σ̄ or Σ̄ = σ̄

Γn(σ̄ ; sα)
. (9)

Note that Γn is homogeneous of degree one in σ̄ , and therefore Σ̄
is homogeneous of degree zero in σ̄ .

In view of relation (8) and the definition of the gauge factor
Γn in (7), it is pertinent to define the gauge function Φ̃n , which
provides the equation for the gauge surface via the expression

Σ̄ ∈ Pn ⇐⇒ Φ̃n(Σ̄; sα) = Γn(Σ̄; sα) − 1 = 0. (10)

The above definitions of the gauge surface and the gauge func-
tion are analogous to the corresponding well known notions of
the yield function and the yield surface in the context of ideal-
plasticity. Such discussion is made in Section 5, where the case of
ideal-plasticity is considered separately.

Making use of the above definitions, we can redefine the stress
triaxiality XΣ in terms of Σ̄ as

XΣ = Σ̄m/Σ̄eq, Σ̄eq =
√

3Σ̄
′ · Σ̄ ′

/2, Σ̄m = Σ̄ii/3, (11)

where Σ̄m and Σ̄eq denote the mean and equivalent parts of Σ̄ ,
respectively.

On the other hand, it follows from definitions (5) and (7) that

D̄ = ε̇o

(
Γn(σ̄ ; sα)

σo

)n
∂Γn(σ̄ ; sα)

∂σ̄
, or Ē = D̄

ε̇o(Γn(σ̄ ; sα)/σo)n
,

(12)

where Ē is a suitably normalized macroscopic strain-rate that is
homogeneous of degree zero in σ̄ . Note that the terms ∂Γn/∂σ̄
and ε̇o(Γn/σo)

n in (12) correspond to the direction and the magni-
tude, respectively, of D̄ .

3. Variational estimates for the instantaneous effective behavior

In this section, we make use of the “second-order” method
(SOM) of Ponte Castañeda (2002a) to estimate the effective stress
potential Ũ . This method is based on the construction of a “linear
comparison composite” (LCC), with the same microstructure as the
nonlinear composite, whose constituent phases are identified with
appropriate linearizations of the given nonlinear phases resulting
from a suitably designed variational principle. This allows the use
of any available method to estimate the effective behavior of lin-
ear composites to generate corresponding estimates for nonlinear
composites.

3.1. Linear Comparison Composite

For the class of porous materials considered in this work, the
corresponding LCC is a viscous porous material, with a matrix
phase characterized by a stress potential of the form (Ponte Cas-
tañeda, 2002a)

U L(σ ; σ̌ ,M)

= U (σ̌ ) + ∂U

∂σ
(σ̌ ) · (σ − σ̌ ) + 1

2
(σ − σ̌ ) · M(σ − σ̌ ). (13)

In this expression, σ̌ is a uniform, reference stress tensor, which is
taken to be proportional to the deviatoric macroscopic stress ten-
sor σ̄ ′ , letting the magnitude of this tensor to be defined later.

For viscoplastic composites, the following choice has been pro-
posed by Ponte Castañeda (2002b) for the viscous compliance ten-
sor M or, equivalently, for the modulus tensor L of the matrix
phase in the LCC,

M = 1
E + 1

F + 1
J, L = M−1 = 2λE + 2μF + 3κJ. (14)
2λ 2μ 3κ
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Here, λ and μ are shear viscous moduli to be defined later, and κ
is the bulk viscosity of the matrix phase; the limit of incompress-
ibility, i.e., κ → ∞, will be considered later. For the above choice
of σ̌ , the projection tensors E and F can be expressed as (Ponte
Castañeda, 1996)

E = 3

2
S̄ ⊗ S̄, F = K − E, E + F + J = I,

EE = E, FF = F, EF = 0, (15)

where

S̄ = 1

σ̄eq
σ̄ ′ (16)

and I, K and J are the standard, fourth-order, identity, deviatoric
and spherical projection tensors, respectively.

It should be emphasized that even though the nonlinear matrix
phase is isotropic, the corresponding linearized phase in the LCC
is, in general, anisotropic, in contrast with earlier methods, like the
VAR method (Ponte Castañeda, 1991), where the corresponding LCC
was isotropic. A measure of this anisotropy is given by the ratio

k = λ

μ
, (17)

such that k = 1 and k = 0 correspond to an isotropic and strongly
anisotropic linear matrix phase.

Using the appropriate specialization of the Levin (1967) rela-
tions for two-phase “thermoelastic” materials, we can write the
effective potential of the LCC as (Talbot and Willis, 1992)

Ũ L(σ̄ ; σ̌ ,M) = (1 − f )U (σ̌ ) + η · (σ̄ − (1 − f )σ̌
)

+ 1

2
σ̄ · M̃σ̄ − 1 − f

2
σ̌ · Mσ̌ , (18)

where M̃ denotes the effective compliance tensor of the LCC and

η = ∂U

∂σ̌
− Mσ̌ = 3ε̇o

2σo

(
σ̌eq

σo

)n−1

σ̌ − Mσ̌ . (19)

In this expression, use of (1) has been made for the computation
of the term ∂U/∂σ̌ .

To estimate M̃, use is made of the Willis estimates (Willis, 1978;
Ponte Castañeda and Willis, 1995), which are known to be quite
accurate for particulate random systems like the ones of interest
in this work, up to moderate concentrations of inclusions. For the
above-mentioned class of porous materials, these estimates take
the form

M̃ = M + f

1 − f
Q−1. (20)

In this expression, Q is a microstructural tensor, related to the
Eshelby (1957) and Hill (1963) polarization tensor, which contains
information about the shape and orientation of the voids and their
distribution function, and is given by (Willis, 1978)

Q = 1

4π det(Z)

∫
|ζ |=1

[
L − LH(ζ )L

]∣∣Z−1ζ
∣∣−3

dS, (21)

where H(i j)(kl) = (Liakbζaζb)
−1ζ jζl|(i j)(kl) (the parentheses denote

symmetrization with respect to the corresponding indices), and ζ
is a unit vector. The symmetric second-order tensor Z character-
izes the instantaneous shape and orientation of the inclusions and
their distribution function, and can be expressed as (Willis, 1978)

Z = w1n(1) ⊗ n(1) + w2n(2) ⊗ n(2) + n(3) ⊗ n(3),

det(Z) = w1 w2. (22)

Note that incompressibility of the nonlinear matrix phase requires
the consideration of the incompressibility limit (i.e., κ → ∞) in
the kernel of the integral (21) but the resulting expressions are
too cumbersome to be reported here. The final expression for M̃
in relation (20) is compressible, since it corresponds to a porous
material.

It should be emphasized that the above Willis estimates for M̃
lead to uniform fields in the porous phase (Willis, 1978), which
is consistent with the work of Eshelby (1957) in the dilute case.
In fact, the above Willis estimates are exact for dilute compos-
ites. On the other hand, for non-dilute media, the fields within
the voids are, in general, nonuniform, but this “nonuniformity” is
negligible (Bornert et al., 1996) provided that the pores are not in
close proximity to each other, i.e., their volume fraction is not so
large compared to that of the matrix phase. This is an important
observation we should bear in mind when the application of the
Willis-type linear homogenization techniques is used for materials
consisting of high concentrations of voids. Nevertheless, the focus
of this work is on porous media with low to moderate concentra-
tions of voids, and hence the Willis procedure is expected to be
sufficiently accurate.

3.2. “Second-order” variational estimate

Once the LCC is specified, the SOM estimate for the effective
stress potential of the nonlinear porous material is given by (Ponte
Castañeda, 2002a; Idiart et al., 2006; Danas et al., 2008b)

ŨSOM(σ̄ ) = stat
λ,μ

{
Ũ L(σ̄ ; σ̌ , λ,μ) + (1 − f )V (σ̌ , λ,μ)

}
, (23)

where Ũ L is given by (18), and the “corrector” function V is de-
fined as

V (σ̌ , λ,μ) = stat
σ̂

[
U (σ̂ ) − U L(σ̂ ; σ̌ , λ,μ)

]
. (24)

The stationary operation (stat) consists in setting the partial
derivative of the argument with respect to the appropriate vari-
ables equal to zero, which yields a set of nonlinear equations for
the variables λ, μ and σ̂ , as shown next.

Making use of the special form (14) of the tensor M (in the
limit κ → ∞), we can define two components of the tensor σ̂ that
are “parallel” and “perpendicular” to the corresponding reference
tensor σ̌ , respectively, i.e., σ̂‖ = ( 3

2 σ̂ ·Eσ̂ )1/2 and σ̂⊥ = ( 3
2 σ̂ ·Fσ̂ )1/2,

such that the equivalent part of the tensor σ̂ reduces to

σ̂eq =
√

σ̂ 2‖ + σ̂ 2⊥. (25)

It is noted that the quantities σ̂eq, σ̂‖ and σ̂⊥ turn out to de-
pend on certain traces—specified by the projection tensors E and
F—of the fluctuations of the stress field in the LCC (Ponte Cas-
tañeda, 2002a; Idiart and Ponte Castañeda, 2005; Danas et al.,
2008a, 2008b).

It follows from the above definitions that the stationarity oper-
ation in (24) leads to two equations for the moduli λ and μ, which
read

ε̇o

(
σ̂eq

σo

)n
σ̂‖
σ̂eq

− ε̇o

(
σ̌eq

σo

)n

= 1

3λ
(σ̂‖ − σ̌eq),

ε̇o

(
σ̂eq

σo

)n−1

= σo

3μ
. (26)

These two relations can then be combined into the single equation

k

(
σ̂eq

σ̌eq

)1−n

= (k − 1)
σ̂‖
σ̌eq

+ 1, (27)

where k is the ratio defined by (17).
The scalar quantities σ̂‖ and σ̂⊥ are positively homogeneous

functions of degree one of the applied macroscopic loading σ̄ , and
result from the stationarity conditions in relation (23) with respect
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to λ and μ (Ponte Castañeda, 2002a; Idiart et al., 2006; Danas et
al., 2008b), such that

σ̂‖ = σ̌eq +
√

σ̌ 2
eq + σ̄ 2

eq

1 − f
− 2σ̌eqσ̄eq

1 − f
+ 3 f

(1 − f )2
σ̄ · ∂Q−1

∂λ−1
σ̄ ,

σ̂⊥ =
√

3 f

1 − f

√
σ̄ · ∂Q−1

∂μ−1
σ̄ , (28)

where use of relations (18)–(20) has been made. It is further noted
that σ̂‖ and σ̂⊥ are homogeneous functions of degree zero in M,
and therefore, depend on the moduli λ and μ only through the
anisotropy ratio k. Introducing expressions (28) for σ̂‖ and σ̂⊥ into
(27), we obtain a single algebraic, nonlinear equation for k, which
must be solved numerically for a given choice of the reference ten-
sor σ̌ .

Finally, making use of relations (27) and (28), the estimate (23)
for the effective stress potential of the nonlinear porous composite
can be simplified to

ŨSOM(σ̄ ) = (1 − f )

[
ε̇oσo

1 + n

(
σ̂eq

σo

)n+1

− ε̇o

(
σ̌eq

σo

)n(
σ̂‖ − σ̄eq

(1 − f )

)]
, (29)

where the tensor σ̌ remains to be specified.
The gauge factor Γ som

n associated with the SOM can be derived
by equating (7) with (29), such that

Γ som
n (σ̄ ) = (1 − f )

1
1+n σ̂eq

[
1 − (1 + n)

(
σ̌eq

σ̂eq

)n

×
(

σ̂‖
σ̂eq

− σ̄eq

(1 − f )σ̂eq

)] 1
1+n

. (30)

It should be remarked at this point that the earlier VAR method
of Ponte Castañeda (1991) can be formally obtained by letting σ̌eq
tend to zero in (29). This would further imply that the anisotropy
ratio becomes k = 1 in this case (by setting σ̌eq = 0 in (26)), i.e.,
the LCC becomes isotropic with λ = μ. Furthermore, note that the
corresponding gauge factor Γ var

n associated with the VAR method

is simply given by Γ var
n (σ̄ ) = (1 − f )

1
1+n σ̂eq.

The corresponding macroscopic stress–strain-rate relation then
follows by differentiation of (23) or, equivalently, (29). The re-
sulting expression can be shown to reduce to (Idiart and Ponte
Castañeda, 2007; Danas et al., 2008b)

D̄i j = (D̄ L)i j + (1 − f )gmn
∂σ̌mn

∂σ̄i j
, (D̄ L)i j = M̃i jklσ̄kl + ηi j, (31)

where D̄ L denotes the macroscopic strain-rate in the LCC, and the
second-order tensor g is given by

gij =
(

1

2λ
− 1

2λt

)(
σ̂‖ − σ̄eq

(1 − f )

)
σ̌i j

σ̌eq

+ f

2(1 − f )2
σ̄kl

∂[Q (σ̌ )]−1
klmn

∂σ̌i j

∣∣∣∣
λ,μ

σ̄mn, (32)

with λt = σo/(3ε̇on)(σ̌eq/σo)
1−n . Finally, it is worth noting that,

in (31), the strain-rate in the nonlinear porous material D̄ is not
equal to the average strain-rate D̄ L in the LCC.

3.3. Choices for the reference stress tensor

The estimate (29) requires a prescription for the reference stress
tensor σ̌ . Recently, Danas et al. (2008a, 2008b) suggested a pre-
scription for σ̌ in the context of isotropic and transversely isotropic
porous media. The advantage of that prescription lies in the fact
that in the limiting case of spherical or cylindrical with circular
cross-section pores subjected to purely hydrostatic loading, the re-
sulting SOM estimates recover the exact result for the composite
sphere or cylinder assemblage microstructures (CSA or CCA). The
CSA and CCA microstructures constitute commonly used models
for isotropic and transversely isotropic porous materials, respec-
tively, and the reason for this is linked to the fact that the effec-
tive response of such composites is known exactly (Hashin, 1962;
Gurson, 1977; Leblond et al., 1994) in closed form in the special
case of hydrostatic loading.

In contrast, there exist no analytical closed-form solution for
the analogous problem of ellipsoidal particulate microstructures,
although in certain special cases, such as for a confocal, spheroidal
shell subjected to a specific axisymmetric loading (Gologanu et al.,
1993, 1994), it is possible to develop analytical solutions. On the
other hand, the VAR method of Ponte Castañeda (1991), which is
capable of providing estimates (bounds) for the effective response
of a porous material consisting of ellipsoidal voids subjected to
general loading conditions, is known to be overly stiff, particu-
larly for isotropic porous materials and high triaxiality loadings.
In view of the above observations and the work of Danas et al.
(2008a, 2008b), an ad-hoc prescription for σ̌ is proposed in the
following paragraphs, in such a way that the resulting SOM esti-
mates recover the exact result for CSA and CCA microstructures in
the purely hydrostatic limit, while remaining sufficiently accurate
for arbitrary ellipsoidal microstructures.

Before proceeding to a specific prescription, it is necessary
to note that, in the special case of purely hydrostatic loading
(i.e., |XΣ | → ∞), the effective stress potential Ũ of a porous
medium with an isotropic matrix does not depend on the ori-
entation vectors n(i) (i = 1,2,3), i.e., Ũ (σ̄m; f , w1, w2,n(i)) =
Ũ (σ̄m; f , w1, w2). Consequently, any estimate for Ũ should reduce
to the following analytical results itemized below:

1. if w1 = w2 = 1, Ũ should recover the analytical result deliv-
ered when a spherical cavity (or CSA) is subjected to purely
hydrostatic loading.

2. if w1 = w2 → ∞ or w1 = 1 and w2 → ∞ or w1 → ∞ and
w2 = 1, Ũ should recover the analytical result obtained when
a cylindrical shell (or CCA) is subjected to purely hydrostatic
loading.

Thus, for purely hydrostatic loading, Ũ reduces to

Ũ H (σ̄ ; f , w1, w2) = ε̇oσ̃w

1 + n

(
3

2

|σ̄m|
σ̃w

)1+n

, (33)

where σ̃w (the subscript w is used to emphasize the dependence
on the aspect ratios w1 and w2) denotes the effective flow stress
of the porous medium. In this last expression, use has been made
of the fact that the effective stress potential Ũ is homogeneous of
degree n + 1 in σ̄ , whereas the form (33) implies that the estima-
tion of σ̃w determines fully the effective behavior of the porous
material in the hydrostatic limit.

In this connection, when a CSA and CCA is subjected to hy-
drostatic loading conditions (i.e., |XΣ | → ∞), the corresponding
effective flow stress can be computed exactly by solving the iso-
lated spherical or cylindrical shell problem, and is given by (Michel
and Suquet, 1992)

σ̃w=1

σo
= n

(
f −1/n − 1

)
and

σ̃w→∞
σo

=
(√

3

2

) 1+n
n σ̃w=1

σo
, (34)

where σ̃w=1 and σ̃w→∞ are the effective flow stresses of the
spherical and the cylindrical shells, respectively.

On the other hand, the corresponding effective flow stresses de-
livered by the VAR procedure (denoted with the subscript “var”),
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for porous media containing spherical (denoted with w = 1) and
cylindrical (denoted with w → ∞) voids subjected to purely hy-
drostatic loading, read

σ̃ var
w=1

σo
= 1 − f√

f
1+n

n

and
σ̃ var

w→∞
σo

=
(√

3

2

) 1+n
n σ̃ var

w=1

σo
. (35)

Clearly, the estimates (34) and (35) deviate significantly at low
porosities and high nonlinearities, whereas they coincide for lin-
ear porous media (i.e., n = 1).

By contrast, it should be emphasized that there exist no exact
solutions for the effective flow stress σ̃w of a porous material with
ellipsoidal voids of arbitrary shape. However, it is interesting to
note that the effective flow stresses delivered by the shell problem
and the VAR method satisfy the following non-trivial relation

σ̃w→∞
σ̃ var

w→∞
= σ̃w=1

σ̃ var
w=1

, or σ̃w→∞ = σ̃w=1

σ̃ var
w=1

σ̃ var
w→∞. (36)

Making use now of result (36) and due to lack of an analyti-
cal estimate in the case of general ellipsoidal microstructures, we
approximate the effective flow stress σ̃w , associated with arbitrary
aspect ratios w1 and w2, by

σ̃w

σ̃ var
w

= σ̃w=1

σ̃ var
w=1

= σ̃w→∞
σ̃ var

w→∞
, or σ̃w = σ̃w=1

σ̃ var
w=1

σ̃ var
w = σ̃w→∞

σ̃ var
w→∞

σ̃ var
w ,

(37)

where σ̃ var
w is the corresponding effective flow stress delivered by

the VAR procedure for any value of w1 and w2, determined by
(Ponte Castañeda, 1991; Willis, 1991; Michel and Suquet, 1992;
Danas, 2008)(

σ̃ var
w

σo

)−n

= (1 − f )

[
4δ · M̂δ

3(1 − f )

] n+1
2

, with M̂ = M̃|μ=1, k=1, (38)

with δ denoting the second-order identity tensor and M̃ given
by (20).

The main advantage of prescription (37) is that the estimate for
Ũ recovers automatically the two conditions described previously.
On the other hand, it should be noted that when the porous mate-
rial tends to a porous laminate or porous “sandwich” (for instance,
w1 = w2 → 0 with f finite), the VAR estimate can be shown to
be exact, i.e., the effective flow stress σ̃ var

w for such a microstruc-
ture is identically zero. This implies that (37)1 is not exact in this
case, in the sense that the ratio σ̃w/σ̃ var

w should go to unity. How-
ever, it follows from (37)2 that the absolute value for σ̃w is zero
and hence equal to the exact value. In this regard, the absolute er-
ror introduced by (37) for the determination of σ̃w in this extreme
case of a porous laminate is expected to be rather small.

Given the estimate (37) for the effective behavior of a porous
material containing ellipsoidal voids subjected to purely hydro-
static loading, we adopt an ad-hoc prescription for the reference
stress tensor, given by (Danas et al., 2008b)

σ̌ = ξ(XΣ, S̄, sα,n)σ̄ ′, (39)

where S̄ is defined by (16), sα denotes the set of the microstruc-
tural variables (see (2)), n is the nonlinear exponent of the matrix
phase, and

ξ(XΣ, S̄; sα,n) = 1 − β1(XΣ, f ) f

1 − f

+ αm( S̄)|XΣ |
(

exp

[
−αeq( S̄)

|XΣ |
]

+ β2( f ,n)
X4

Σ

1 + X4
Σ

)
, (40)

is a suitably chosen interpolation function which is homogeneous
of degree zero in σ̄ . The coefficients β1 and β2 are prescribed in
an ad-hoc manner to ensure the convexity of the effective stress
potential Ũsom and are detailed in Appendix A. The coefficients αm
and αeq are, in general, functions of the microstructural variables
sα , the nonlinearity n of the matrix, the stress tensor S̄ , but not of
the stress triaxiality XΣ .

The coefficient αm is computed such that the estimate for the
effective stress potential Ũsom, delivered by the SOM method in
relation (29), coincides with the approximate solution for Ũ in
relation (33) (with the use of (37)) in the hydrostatic limit. This
condition may be written schematically as

Ũsom → Ũ H as |XΣ | → ∞ ⇒ αm = αm( S̄, sα,n), (41)

which yields a nonlinear algebraic equation for αm .
On the other hand, computation of the coefficient αeq requires

an appropriate estimate for the deviatoric part of the normalized
strain-rate Ē

′
(the prime denotes the deviatoric part), defined in

(12), in the limit as XΣ → ±∞. In this regard, we first note that,
in general, there exists no exact result for Ē

′
, except for the special

cases of spherical or cylindrical with circular cross-section voids
and porous sandwiches, where Ē

′ = 0 as XΣ → ±∞. This result
is exact for finite nonlinearities, i.e., 1 < n < ∞, while the spe-
cial case of ideal plasticity will be considered in a separate section
later. On the other hand, the corresponding VAR estimate recovers
these exact solutions, i.e., Ē

′
var = 0 as XΣ → ±∞ for porous me-

dia with spherical or cylindrical with circular cross-section voids,
as well as for porous sandwiches.

In view of this and due to absence of any other information
regarding the computation of Ē

′
in the hydrostatic limit, the fol-

lowing prescription is adopted for Ē
′
som, and consequently for αeq:

Ē
′
som → Ē

′
var as XΣ → ±∞ ⇒ αeq = αeq( S̄, sα,n)

∀w1, w2,n(i). (42)

In this last relation, Ē
′
var is given by (Ponte Castañeda, 1991; Danas,

2008)

Ē
′
var = 3 sgn(XΣ)

(
Σ̄ H

m

∣∣
var

)n
(

3δ · M̂δ

1 − f

) n−1
2

KM̂δ,

Σ̄ H
m

∣∣
var = 2

3

(
σ̃ var

w

σo

) n
n+1

, (43)

for any value of w1 and w2 in the limit as XΣ → ±∞. Moreover,
M̂ is given by (38), whereas Σ̄ H

m |var is a normalized hydrostatic
stress detailed in Appendix B. The physical interpretation of con-
dition (42) is that the slope of the SOM gauge curve is identical
to the slope of the corresponding VAR gauge curve in the hydro-
static limit. In addition, it should be emphasized that condition
(42) implies that αeq does not depend on the magnitude of the
macroscopic stress tensor σ̄ , which is a requirement of definition
(39) and (40). This is a direct consequence of the fact that the
terms Ē

′
som and Ē

′
var are homogeneous of degree zero in σ̄ .

While the computation of the coefficient αm in (41) needs to be
performed numerically, the evaluation of αeq can be further sim-
plified to the analytical expression

αeq = α−1
m

[
1 +

3
2 σ̌eq(Σ̄)n − σ̌eq(Σ̄)(2λ̄)−1 + d̄‖ − d̄var

(1 − f )σ̂‖(Σ̄)

×
(

1

2λ̄
− 1

2λ̄t

)−1]
. (44)

Here, use has been made of definition (9) for the normalized
macroscopic stress tensor Σ̄ , as well as of the fact that σ̌eq, σ̂‖ and
σ̂eq are homogeneous functions of degree one in σ̄ . It is further
emphasized that all the quantities involved in the above relation
must be evaluated in the hydrostatic limit XΣ → ±∞, i.e., for

Σ̄ = sgn(XΣ) Σ̄ H
m

∣∣
somδ, Σ̄ H

m

∣∣
som = 2

3

(
σ̃w

σ

) n
n+1

, (45)

o
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where σ̃w is given by (37) and Σ̄ H
m |som denotes the corre-

sponding normalized hydrostatic stress obtained by the SOM (see
Appendix B). Then, the terms in (44) associated with the SOM
method are given by

λ̄ = kH μ̄, μ̄ = σ̂eq(Σ̄)1−n/3, λ̄t = 1

3n
σ̌eq(Σ̄)1−n,

d̄‖ = 3

2
sgn(XΣ)Σ̄ H

m

∣∣
som S̄ · M̃|kH ,μ̄δ,

with M̃ defined by (20). Furthermore, for the computation of kH

in (46), it is necessary to solve the nonlinear equation (27) for the
anisotropy ratio k in the hydrostatic limit. On the other hand, the
term d̄var in (44), associated with the VAR method, is given by

d̄var = 9

2
sgn(XΣ)

(
Σ̄ H

m

∣∣
var

)n
(

3δ · M̂δ

1 − f

) n−1
2

S̄ · M̂δ,

with M̂ and Σ̄ H
m |var defined in (38) and (43), respectively.

At this point, several observations are in order. First, the choice
(39) guarantees that the resulting effective stress potential (29) is
a homogeneous function of degree n + 1 in the average stress σ̄
for all triaxialities XΣ , as it should. Second, it is noted that the
choice (39) reduces to σ̌ = σ̄ ′ for XΣ = 0, which is precisely the
prescription earlier proposed by Idiart and Ponte Castañeda (2005)
(see also Idiart et al., 2006) for general loadings. This prescrip-
tion has been found to deliver accurate estimates when the porous
medium is subjected to isochoric loadings, but reduces to zero for
purely hydrostatic loadings and therefore coincides with the VAR
estimates in this limit (Danas et al., 2008a). Third, because the new
prescription (39) is nonzero for purely hydrostatic loading, the ma-
trix phase in the LCC remains anisotropic in this limit, in contrast
with the earlier choice, σ̌ = σ̄ ′ , which leads to an isotropic LCC. Fi-
nally, the above prescription for the reference stress tensor reduces
to the one provided by Danas et al. (2008a, 2008b) for isotropic
and transversely isotropic porous media.

In summary, relation (39), together with relations (41) and (42)
(or (44)), completely define the reference stress tensor σ̌ , and thus,
result (29) can be used to estimate the instantaneous effective be-
havior of the viscoplastic porous material.

3.4. Phase average fields

In this subsection, the focus is on estimating the average stress,
strain-rate and spin in each phase of the porous material. This is
necessary for the prediction of the evolution of the microstructural
variables sα to be discussed in the next section. Because of the
presence of the vacuous phase the phase average stress tensors in
the LCC and the nonlinear material are trivially given by

(1 − f )σ̄ (1) = σ̄ = (1 − f )σ̄ (1)
L = σ̄ L, σ̄ (2) = σ̄ (2)

L = 0, (46)

where the subscript L serves to denote quantities in the LCC,
whereas label 1 and 2 refer to the matrix and vacuous phase, re-
spectively.

The estimation of the average strain-rate and spin in each phase
is more complicated. Recall first that, regardless of any prescrip-
tion for the estimation of the average strain-rate and spin in each
phase, the following relations for the macroscopic and the phase
average quantities must always hold, both in the nonlinear com-
posite and the LCC

D̄ = (1 − f )D̄
(1) + f D̄

(2)
, D̄ L = (1 − f )D̄

(1)

L + f D̄
(2)

L , (47)

and

Ω̄ = (1 − f )Ω̄
(1) + f Ω̄

(2)
, Ω̄ L = (1 − f )Ω̄

(1)

L + f Ω̄
(2)

L , (48)

with Ω̄ and Ω̄ L denoting the macroscopic spin in the nonlinear
and LCC, respectively. The macroscopic spin is applied externally
in the problem, which implies that Ω̄ = Ω̄ L . In the following, the
discussion will be focused on the calculation of the average strain-

rate D̄
(2)

and spin Ω̄
(2)

in the vacuous phase; the corresponding

quantities D̄
(1)

and Ω̄
(1)

for the matrix phase are then determined
from (47) and (48) for given macroscopic D̄ and Ω̄ .

Making use of the identities (47) and the incompressibility of
the matrix phase, the hydrostatic part of the macroscopic strain-
rate D̄m = D̄ii/3, and the average strain-rate in the voids, D̄(2)

m , are
related through

D̄(2)
m = 1

f
D̄m, and D̄(1)

m = 0. (49)

It is easy to verify that D̄(2)
m cannot be equal to (D̄(2)

m )L since
D̄m 	= (D̄m)L in (31). The result (49) is exact and no approxima-
tions are involved, apart from those intrinsic to the calculation of
D̄m by (31).

The computation of the deviatoric part of the average strain-

rate, D̄
(2)′

, in the vacuous phase is nontrivial. In the work of

Idiart and Ponte Castañeda (2007), the idea of computing D̄
(2)

lies
in perturbing the local nonlinear phase stress potential U , given
by (1), with respect to a constant polarization type field p, solving
the perturbed problem through the homogenization procedure and
then considering the derivative with respect to p, while letting it
go to zero. Consequently, the expression for the average strain-rate
in the vacuous phase can be shown to be of the form (Idiart and
Ponte Castañeda, 2007)

D̄
(2) = D̄

(2)

L − 1 − f

f
g

∂σ̌

∂ p

∣∣∣∣
p→0

, (50)

with g given by (32). Also D̄
(2)

L can be shown to reduce to (Ponte
Castañeda, 2006; Danas, 2008)

D̄
(2)

L = 1

f
(M̃ − M)σ̄ + η = 1

1 − f
Q−1σ̄ + η, (51)

with Q and η given by (21) and (19), respectively.
Relation (50) necessitates the evaluation of the term ∂σ̌ /∂ p

or equivalently the variation of σ̌ with respect to the perturba-
tion parameter p, which, in turn, requires the computation of the
effective stress potential of a perturbed shell problem. The solu-
tion of the shell problem assuming a perturbed nonlinear potential
law for the matrix phase is too complicated and probably can be
achieved only by numerical calculations for general ellipsoidal mi-
crostructures. Another option is to evaluate the deviatoric part of

D̄
(2)

approximately, while the hydrostatic part of D̄
(2)

is obtained
by relation (49) exactly within the approximation intrinsic to the
method. In this regard, we set

D̄
(2)′ = D̄

(2)′
L ⇒ D̄

(2) = 1

f
D̄mδ + D̄

(2)′
L , (52)

and attempt to estimate the resulting error introduced by ignor-
ing the second term in (50). For this analysis, it is important to
mention that the reference stress tensor σ̌ prescribed in relation
(39) could depend on p only through the coefficients αm and αeq.
This implies that relation (52) is exact in the low triaxiality limit
XΣ = 0, since, in this case, σ̌ = σ̄ ′ and hence does not depend
on p by definition. Under this observation, it is expected that pre-
scription (52) is sufficiently accurate for low triaxiality loadings.

In contrast, at high triaxiality loadings the error is expected to
be maximum. Estimating this error is possible only in special cases.
In particular, in the cases of isotropic and transversely isotropic
porous media that are subjected to purely hydrostatic loading, the

exact result reads D̄
(2)′ = 0. It can be verified that in those cases

use of relation (52) introduces an error less than 1% in the compu-

tation of the deviatoric part of D̄
(2)

for small and moderate porosi-
ties. Furthermore, in this high triaxiality regime, it is expected (it
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will be verified in Part II of this work) that the hydrostatic part
of D̄ , i.e., D̄(2)

m , is predominant and controls the effective behavior
of the porous material. Therefore, evaluation of the average strain-
rate in the voids from relation (52) is expected to be sufficiently
accurate and simple for the purposes of this work.

Following a similar line of thought, and due to lack of results
for the estimation of the phase average spin of nonlinear mate-
rials, the assumption will be made here that the average spin in

the vacuous phase Ω̄
(2)

of the nonlinear porous material can be
approximated by the average spin in the vacuous phase of the

LCC, Ω̄
(2)

L . This approximation becomes (Ponte Castañeda, 2006;
Danas, 2008)

Ω̄
(2) = Ω̄

(2)

L = Ω̄ + �LQ−1σ̄ ,

� = 1

4π det(Z)

∫
|ζ |=1

Ȟ(ζ )|Z−1 · ζ |−3 dS, (53)

with Ȟi jkl = (Liakbζaζb)
−1ζ jζl|[i j](kl) (the square brackets denote the

skew-symmetric part of the first two indices, whereas the sim-
ple brackets define the symmetric part of the last two indices).
The second-order tensor Z serves to characterize the instantaneous
shape and orientation of the voids and their distribution function
and is given by relation (22). Note that the limit of incompress-
ibility (i.e., κ → ∞) needs to be considered for the evaluation of
the term ΠL in (53) (the expressions are too cumbersome to be
included here).

4. Evolution of microstructure

When viscoplastic porous materials undergo finite deforma-
tions, their microstructure and thus the anisotropy of the material
evolve. The evolution laws of the microstructural variables com-
plete the constitutive model. As discussed in prior work (Ponte
Castañeda and Zaidman, 1994; Kailasam and Ponte Castañeda,
1998; Aravas and Ponte Castañeda, 2004), the purpose of homoge-
nization theories is the description of the effective behavior of the
composite in average terms. For this reason, it makes sense to con-
sider that the initially ellipsoidal voids will evolve—on average—to
ellipsoidal voids with different shape and orientation. This consid-
eration suggests that the evolution of the shape and orientation of

the pores may be approximated by the average strain-rate D̄
(2)

and

spin Ω̄
(2)

in the vacuous phase, which can be easily obtained as a
byproduct of the homogenization methods described in the previ-
ous section. We can derive evolution laws for the microstructural
variables simply by making use of the kinematics of the problem.
These laws are presented below.

Porosity. The incompressibility of the matrix phase, implies that
the evolution law for the porosity is given by

ḟ = (1 − f )D̄ii, (54)

with D̄ given by relation (31).
Aspect ratios. The evolution of the aspect ratios of the ellipsoidal

void is defined by

ẇi = wi
(
n(3) · D̄

(2)
n(3) − n(i) · D̄

(2)
n(i))

= wi
(
n(3) ⊗ n(3) − n(i) ⊗ n(i)) · D̄

(2)
, (55)

(no sum on i = 1,2), where the average strain-rate in the void D̄
(2)

is computed by relation (52). It should be emphasized at this point
that, unlike expression (54), which is exact, relation (55) is only
approximate in the sense of the assumption (already discussed)
that the voids evolve—on average—to ellipsoidal voids (with differ-
ent size, shape and orientation).
Orientation vectors. The evolution of the orientation vectors n(i)

is determined by the spin of the Eulerian axes of the ellipsoidal
voids, or “microstructural” spin ω, via

ṅ(i) = ωn(i), i = 1,2,3. (56)

The microstructural spin ω is related to the average spin in the

void, Ω̄
(2)

, and the average strain-rate in the void, D̄
(2)

, by the
well-known kinematical relation, which is written in direct nota-
tion as (Hill, 1978; Aravas and Ponte Castañeda, 2004)

ω = Ω̄
(2) + 1

2

3∑
i, j=1
i 	= j

wi 	=w j

w2
i + w2

j

w2
i − w2

j

[(
n(i) ⊗ n( j) + n( j) ⊗ n(i)) · D̄

(2)]

× n(i) ⊗ n( j), (57)

with w3 = 1. The special case in which at least two aspect ratios
are equal is discussed in detail later in this section.

For later use, it is pertinent to discuss, here, the evaluation of

the Jaumann rate of the orientation vectors n(i) , denoted by
�
n

(i)

(i = 1,2,3), which is related to the standard time derivative of re-
lation (56) by

�
n

(i)
= ṅ(i) − Ω̄n(i) = (ω − Ω̄)n(i), i = 1,2,3. (58)

The last equation can be written in terms of the plastic spin
(Dafalias, 1985), which is defined as the spin of the continuum
relative to the microstructure, as follows

�
n

(i)
= −Ω pn(i) with Ω p = Ω̄ − ω. (59)

At this point, it should be remarked that special care needs to
be taken for the computation of the spin of the Eulerian axes in
the case of a spherical void, i.e., when w1 = w2 = w3 = 1, as
well as for a spheroidal void, i.e., when w1 = w2 	= w3 = 1 or
w1 	= w2 = w3 = 1 or w1 = w3 = 1 	= w2. More specifically, when
two of the aspect ratios are equal, for instance w1 = w2, the ma-
terial becomes transversely isotropic about the n(3)−direction, and
thus the component Ω

p
12 becomes indeterminate. Since the spin

Ω
p
12 is inconsequential in this case, it can be set equal to zero

(Aravas, 1992), which implies that ω12 = Ω̄12. This notion can be
applied whenever the shape of the void is spheroidal, in any given
orientation. Following a similar line of thought, when the voids
are spherical (w1 = w2 = w3 = 1) the material is isotropic so that

Ω p = 0,
�
n

(i)
= 0 and ṅ(i) = Ω̄n(i) .

5. Porous materials with an ideally-plastic matrix phase

In this section, we specialize the results reported in the previ-
ous sections to the special, albeit important, case of porous mate-
rials with an ideally-plastic matrix phase. For this, we need to con-
sider the ideally-plastic limit as n → ∞ (or, equivalently, m → 0)
for the nonlinear exponent of the matrix phase.

In this regard, it is useful to study this limit in connection with
the general definition of the gauge function in (10). Making use of
definition (7) in the ideally-plastic limit, the effective stress poten-
tial Ũ of the porous medium becomes (Suquet, 1983, 1993)

Ũ (σ̄ ; sα) =
{

0, if Γ∞(σ̄ ; sα)/σo � 1,

∞, otherwise.
(60)

This implies that the equation describing the yield locus is
Γ∞(σ̄ ) = σo , which together with (9) shows that Σ̄ = σ̄ /σo in
the limit as n → ∞. Then, in the ideally-plastic limit, it follows
from (10) that the gauge function can be expressed as
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Φ̃∞(Σ̄; sα) = Γ∞(Σ̄; sα) − 1 = Γ∞(σ̄ /σo; sα) − 1

= Φ̃∞(σ̄ /σo; sα), (61)

so that Φ̃∞(Σ̄) = 0 defines the corresponding gauge surface

P∞ ≡ {
Σ̄,Γ∞(Σ̄; sα) = 1

}
. (62)

It is convenient to define the yield criterion in terms of the macro-
scopic stress σ̄ . This can be easily extracted from (61) by making
use of the fact that Γn is a positively homogeneous function of de-
gree one in σ̄ /σo , so that

Φ̃(σ̄ ; sα) = σoΦ̃∞(σ̄ ; sα) = σoΓ∞(σ̄ /σo; sα) − σo

= Γ∞(σ̄ ; sα) − σo. (63)

Then, the yield criterion Φ̃(σ̄ ) = 0 describes the yield surface

P ≡ {
σ̄ ,Γ∞(σ̄ ; sα) = σo

}
, (64)

which is a homothetic expansion by a factor of σo of the gauge
surface P∞ defined by (62).

5.1. “Second-order” estimates

In the context of the SOM method, the definition of the effective
yield function requires special attention in that we first have to
identify the terms in (29) that remain in the ideally-plastic limit.
In this connection, it can be verified from definition (25) and (28)
that

σ̂eq > σ̂‖ � σ̌eq � 0. (65)

Consequently, as n → ∞ the second term of relation (29), (
σ̌eq
σo

)n ,

goes faster to zero than the first term (σ̂eq/σo)
n+1, provided that

σ̂eq < σo .
Then, by considering the limit n → ∞ in (30) and taking into

account the inequalities (65), the yield function (63) associated
with the SOM can be expressed by

Φ̃(σ̄ ; sα) = Γ som∞ (σ̄ ; sα) − σo = σ̂eq(σ̄ ; σ̌ ,k, sα) − σo, (66)

where sα is the set of the microstructural variables defined by (2),
k is the anisotropy ratio in the LCC defined by (17), and σ̌ is the
reference stress tensor given by (39), (40). The evaluation of σ̌
in the ideally-plastic limit is similar to that described in Subsec-
tion 3.3 and is detailed in Appendix C. On the other hand, k is
determined by the solution of (27), which reduces to

(k − 1)
σ̂‖
σ̌eq

+ 1 = 0, (67)

in the limit as n → ∞. (Recall that σ̂‖ is a function of k given
by (28).)

The corresponding macroscopic strain-rate is obtained by dif-
ferentiating the effective yield function with respect to σ̄ (i.e.,
associative flow rule), so that

D̄ = Λ̇
∂Φ̃

∂σ̄
= Λ̇

∂σ̂eq

∂σ̄
. (68)

Here, Λ̇ is a nonnegative plastic multiplier to be determined from

the consistency condition ˙̃
Φ = 0, which reads (by noting that Φ̃ is

an isotropic function of its arguments (Dafalias, 1985))

˙̃
Φ = ∂Φ̃

∂σ̄
·

�
σ̄ + ∂Φ̃

∂sα

�
sα = 0, (69)

with the symbol
�
() denoting the Jaumann rate of a given quantity.1

1 The Jaumann rates associated with a second-order tensor A, a vector a, and a

scalar f , are such that
�
A = Ȧ + AΩ̄ − Ω̄ A,

�
a = ȧ− Ω̄a, and

�
f = ḟ . Here, Ω̄ denotes

the macroscopic spin tensor.
The term
�
sα will be shown in the sequel to be proportional to

the plastic multiplier Λ̇. This proportionality (considered as given
here) allows us to define a scalar function, known as the Jaumann
hardening rate H J , which is independent of Λ̇, via

Λ̇H J = − ∂Φ̃

∂sα

�
sα. (70)

The Jaumann hardening rate H J is an objective measure of the
geometrical softening or hardening of the porous material to be
used in the prediction of macroscopic instabilities in Part II of this
work. Use of (70) in relation (69) gives

˙̃
Φ = ∂Φ̃

∂σ̄
·

�
σ̄ − Λ̇H J = 0 ⇒ Λ̇ = 1

H J

∂Φ̃

∂σ̄
·

�
σ̄ . (71)

Then, substituting (71) in (68), one finds that

D̄i j = 1

H J

∂Φ̃

∂σ̄i j

∂Φ̃

∂σ̄kl

�
σ̄ kl. (72)

It should be emphasized here that although the behavior of the
matrix is ideally-plastic, the corresponding effective behavior of
the porous medium can exhibit hardening (H J > 0) or softening
(H J < 0) due to the evolution of the underlying microstructure
when subjected to finite deformations.

It is important to note that strain hardening and tempera-
ture effects can be accounted for in a straightforward manner
by allowing the yield stress σo in (66) depend on the equivalent
plastic strain ε̄

(1)
p in the matrix phase (Aravas, 1987; Aravas and

Ponte Castañeda, 2004) and temperature T (Klöcker and Tveergard,
2003), such that σo = σo(ε̄

(1)
p , T ). However, the main goal in this

study is to examine the effect of the evolution of microstructure
on the overall behavior of the porous material and for this reason
we will assume that σo remains constant during the deformation
process, thus neglecting any temperature and strain hardening ef-
fects.

5.2. Relation between the plastic multiplier and the shear modulus

To establish relation (71), we have considered (as given) that
�
sα is proportional to the plastic multiplier Λ̇. To demonstrate this
proportionality condition, we will first show that 1/μ is propor-
tional to the plastic multiplier Λ̇. For this purpose, we consider
the derivative with respect to σ̄ in expression (29), which together
with the secant condition (26)2 and the inequalities (65), leads to
the following result:

D̄ = (1 − f )σo

3μ

(
σ̂eq

σo

)
∂σ̂eq

∂σ̄
as n → ∞. (73)

Comparing (68) with (73), one deduces that

Λ̇ = (1 − f )σo

3μ

(
σ̂eq

σo

)
. (74)

Obviously, when the yield condition (66) is not satisfied, i.e., σ̂eq <

σo , μ → ∞ (from (26)2) or equivalently Λ̇ = 0. On the other hand,
when σ̂eq = σo , relation (74) becomes

1

μ
= 3Λ̇

(1 − f )σo
. (75)

It follows from this relation that the inverse of the shear modu-
lus μ in the LCC is directly proportional to the plastic multiplier
Λ̇ in the ideally-plastic limit. Note that the above analysis is also
valid in the context of the VAR method of Ponte Castañeda (1991)
(see Danas (2008)). In the next subsection, we make use of (75) to

show that
�
sα is proportional to the plastic multiplier Λ̇.
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5.3. Computation of the Jaumann hardening rate

In order to derive an expression for H J , it is essential to write
the evolution laws for the microstructural variables, presented in
Section 4, in such a way that they are proportional to the plas-
tic multiplier Λ̇, or equivalently to 1/μ. From this viewpoint, it
is easily shown that in the incompressibility limit κ → ∞, the
fourth-order tensor M (see (14)) is proportional to 1/μ and conse-
quently to Λ̇, i.e., M = M(k)/μ, where M is independent of μ.
Similarly, it can be verified that the microstructural tensor Q is also
proportional to 1/μ, such that Q = μQ̂(k), whereas the tensor �L
is independent of μ (the relevant expressions are too cumbersome
to be included here).

In connection with these last results, it follows from (52) and
(75) that

D̄
(2) = Λ̇

{
1

3 f

∂Φ̃

∂σ̄ii
+ 3

1 − f
K
(

3

1 − f
Q̂(k)−1 σ̄

σo
− M(k)

σ̌

σo

)}
, (76)

where use was made of the fact that in the ideally-plastic limit η =
−Mσ̌ (see relation (19) and (65) noting that σ̌eq < σo as n → ∞).
In turn, making use of (53) and (75), we can express the relative

average spin tensor Ω̄
(2) − Ω̄ as

Ω̄
(2) − Ω̄ = �LQ−1σ̄ = Λ̇

3

1 − f
�LQ̂(k)−1 σ̄

σo
. (77)

Relations (76) and (77) allow us to write the evolution laws of
Section 4 in terms of Λ̇, such that

ḟ = (1 − f )D̄ii = Λ̇y f (σ̄ ; σ̌ ,k, sα)

with y f (σ̄ ; σ̌ ,k, sα) = (1 − f )
∂Φ̃

∂σ̄ii
, (78)

and

ẇi = wi
(
n(3) ⊗ n(3) − n(i) ⊗ n(i)) · D̄

(2) = Λ̇y(i)
w (σ̄ ; σ̌ ,k, sα) (79)

with

y(i)
w (σ̄ ; σ̌ ,k, sα) = wi

(
n(3) ⊗ n(3) − n(i) ⊗ n(i))

× 3

1 − f
K
(

3

1 − f
Q̂(k)−1 σ̄

σo
− M(k)

σ̌

σo

)
, (80)

(no sum on i = 1,2). In these expressions, y f and y(i)
w are smooth

functions of their arguments. In turn, it follows from (57), (58),
(59)2 and (76) that

Ω p = Ω̄ − ω = −Λ̇y(i)
n (σ̄ ; σ̌ ,k, sα)

⇒ �
n

(i)
= Λ̇y(i)

n (σ̄ ; σ̌ ,k, sα)n(i). (81)

In this expression, y(i)
n are skew-symmetric, second-order tensors

defined as

y(i)
n (σ̄ ; σ̌ ,k, sα)

= 3

1 − f
�LQ̂(k)−1 σ̄

σo
+ 1

2

3∑
i, j=1
i 	= j

wi 	=w j

X(i j)n
(i) ⊗ n( j), (82)

with

X(i j) = w2
i + w2

j

w2
i − w2

j

[(
n(i) ⊗ n( j) + n( j) ⊗ n(i))

× 3

1 − f
K
(

3

1 − f
Q̂(k)−1 σ̄

σo
− M(k)

σ̌

σo

)]
. (83)

Finally, it follows from (70), that the Jaumann hardening rate is
given by
H J = − 1

Λ̇

∂Φ̃

∂sα

�
sα

= −
{

y f
∂Φ̃

∂ f
+

2∑
i=1

y(i)
w

∂Φ̃

∂ wi
+

3∑
i=1

∂Φ̃

∂n(i)
· y(i)

n n(i)

}
. (84)

6. Concluding remarks

In this work, a constitutive model has been developed for
porous media with viscoplastic (including ideally-plastic) matrix
phases and particulate microstructures subjected to general three-
dimensional finite deformations. The theoretical framework of the
model is based on the rigorous nonlinear “second-order” homog-
enization method of Ponte Castañeda (2002a), which is valid for
general “ellipsoidal” microstructures and loading conditions. In
particular, the present study comprised two main parts: (1) the
determination of the instantaneous effective behavior of a porous
medium with aligned ellipsoidal voids distributed randomly in the
representative volume element for general loading conditions and
(2) the characterization of the microstructure via appropriate evo-
lution laws for the internal variables defining the state of the mi-
crostructure at a given instant.

The main improvement of the present model over the ear-
lier “variational” model of Ponte Castañeda (1991) (Ponte Cas-
tañeda and Zaidman, 1994; Kailasam and Ponte Castañeda, 1998;
Aravas and Ponte Castañeda, 2004) is a result of the fact that
the new model is able to reproduce exactly the behavior of a
“composite-sphere assemblage” in the limit of hydrostatic load-
ings, and therefore coincides with the hydrostatic limit of Gurson’s
criterion in the special case of ideal plasticity and isotropic mi-
crostructures. In addition, the model has been extended to general
ellipsoidal microstructures and loading conditions by appropriate
scaling of the “variational” estimates, which are known to be too
stiff at purely hydrostatic loadings.

By contrast with other models proposed in the literature
(Gologanu et al., 1997; Gǎrǎjeu et al., 2000; Flandi and Leblond,
2005a; Monchiet et al., 2007) that are valid only for spheroidal
voids (i.e., transversely isotropic symmetry of the material) and
axisymmetric loading conditions aligned with the pore symmetry
axis, the present model is capable of handling more general “ellip-
soidal” microstructures (i.e., orthotropic symmetry of the material)
and arbitrary three-dimensional loading conditions. This, in turn,
allows for the implementation of the present model in a general
purpose subroutine—similar to the earlier works of Kailasam et al.
(2000) and Aravas and Ponte Castañeda (2004) in the context of
the “variational” method—appropriate for large-scale finite element
calculations to study complex problems of practical and theoreti-
cal interest (i.e., forming processes, structural integrity assessment,
ductile fracture of voided metals, plastic flow localization and
necking in plane-strain or plane-stress tension, structural behav-
ior of porous metals with directional pores, etc.).

Finally, it should be mentioned that several important issues,
such as elasticity, strain-hardening and thermal effects, that were
neglected for simplicity in this first paper will be considered in fu-
ture work. We are confident that the present model can be readily
extended to deal with the aforementioned issues in a straight-
forward manner while still being able to account for anisotropic
microstructures and general loading conditions. Thus, the new
model is expected to be complementary to the recent studies of
Gologanu et al. (2001a, 2001b), Pardoen and Hutchinson (2000)
and Benzerga (2002) for coalescence and Nahshon and Hutchin-
son (2008), Leblond and Mottet (2008) and Xue (2008) for shear
failure, which are strictly valid only for loading conditions that
are consistent with the development of isotropic or transversely
isotropic symmetries.
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Appendix A. The coefficients of the reference stress tensor

The coefficients introduced in relation (40) are given by

β1(XΣ, f ) = 1 + X4
Σ

1 + 2β3( f )X2
Σ + X4

Σ

,

with β3( f ) = 10

(
1 −

(
arctan(104 f 3/exp(− f ))

π/2

)4)
, (85)

and

β2( f ,n) = 2

e

38

n2 + 10

(
1 −

(
arctan(104 f 2/exp(−500 f ))

π/2

)6)
. (86)

It should be emphasized that the coefficient β2 becomes approx-
imately zero for porosities larger than 1% and for very high non-
linearities (i.e., n > 10) and hence the terms containing β2 in the
definition of the reference stress tensor in relation (40) could be
neglected in these cases. In particular, β2 = 0 in the ideally-plastic
limit n → ∞.

Appendix B. Evaluation of the hydrostatic point

In this section, we discuss briefly the determination of the
mean normalized stress Σ̄

H
m , which is necessary for the evaluation

of the factor αeq in the context of relation (44).
Combining relations (7) and (33), we can easily express the

gauge factor Γn as a function of the macroscopic mean stress σ̄m

via

Γn(σ̄ ) = 3

2

(
σo

σ̃w

) n
n+1

|σ̄m| ⇒ ∣∣Σ̄m
∣∣ = 2

3

(
σ̃w

σo

) n
n+1

≡ Σ̄ H
m . (87)

Here, use of the definition of the normalized stress Σ̄ in (9) was
made. Subsequently, it follows from (87) that

Σ̄ H
m

∣∣
som = 2

3

(
σ̃w

σo

) n
n+1

and Σ̄ H
m

∣∣
var = 2

3

(
σ̃ var

w

σo

) n
n+1

(88)

with σ̃w and σ̃ var
w given by (37) and (38), respectively. Note that in

the special case of ideal-plasticity (n → ∞), (87) reduces to∣∣Σ̄m
∣∣ = 2

3

σ̃w

σo
≡ Σ̄ H

m . (89)

Appendix C. Reference stress tensor for an ideally-plastic matrix
phase

In this section, we discuss briefly the computation of the refer-
ence stress σ̌eq in the ideally-plastic limit (n → ∞).

In connection with the procedure detailed in Subsection 3.3, for
the computation of σ̌ , we need to compute the two coefficients
αm and αeq, defined in the context of relations (39) and (40). The
evaluation of these two scalars has been provided schematically in
(41) and (42). In order to compute αm , first, we need to provide
the expressions for the determination of the effective flow stresses
σ̃w=1 and σ̃ var
w=1 associated with the spherical shell problem and

the corresponding VAR estimate for spherical voids, respectively, in
the ideally-plastic limit. Consideration of the limit n → ∞ in (34)
and (35) leads to the well known results

σ̃w=1

σo
= ln

(
1

f

)
and

σ̃ var
w=1

σo
= 1 − f√

f
. (90)

According to relation (36), the effective flow stress for any combi-
nation of aspect ratios w1 and w2 is approximated by

σ̃w = σ̃w=1

σ̃ var
w=1

σ̃ var
w , σ̃ var

w =
[

4δ · M̂δ

3(1 − f )σ 2
o

]− 1
2

. (91)

Here, σ̃ var
w is derived by taking the limit n → ∞ in (38) and corre-

sponds to the effective hydrostatic flow stress delivered by the VAR
procedure in the context of ideally-plastic porous media, whereas
M̂ is given by (38)2. This result in combination with relations (39)
and (41) allows the computation of the coefficient αm from the
relation

Φ̃(σ̄m; σ̌ , f , w1, w2) = σ̂eq
(
σ̄m; σ̌ ,kH , f , w1, w2

) − σo = 0, (92)

with σ̄m = 2σ̃w/3. Note that the anisotropy ratio kH is determined
by the nonlinear equation (67), in the hydrostatic limit, while the
effective yield function Φ̃ has been defined in (66).

The coefficient αeq can be computed by taking the limit n → ∞
in relation (44), so that

αeq = α−1
m

[
1 + 2kH (d̄‖ − d̄var) − σ̌eq

(1 − f )σ̂‖

]
. (93)

All the quantities involved in (93) are evaluated in the hydrostatic
limit XΣ → ±∞. In particular, d̄‖ = sgn(XΣ)σ̃w S̄ · M̃(kH ,μ = 1)δ,
and d̄var = sgn(XΣ)σ̃ var

w S̄ · M̂δ.
In the context of these results for the special case of porous

materials with an ideally-plastic matrix phase, expressions (42)
(or (93)) are assumed to hold for all stress states, which implies
that the resulting effective yield surface remains smooth for the
entire range of the stress triaxialities. Further support for this last
assumption arises from the fact that—to the best knowledge of the
authors—there is no definitive numerical or experimental evidence
implying the existence of a vertex in the hydrostatic limit for gen-
eral isotropic or ellipsoidal microstructures, in contrast with trans-
versely isotropic microstructures, where the existence of a corner
may be observed in yield surfaces obtained by limit analysis pro-
cedures (Pastor and Ponte Castañeda, 2002).

Appendix D. Numerical implementation

In this section, we describe the numerical integration of the
constitutive equations developed in the context of porous media
with viscoplastic or ideally-plastic matrix phase. First, it is essential
to define the boundary conditions in the problem. For convenience,
we will consider here that velocity boundary conditions are given
(see (3)) such that

v = L̄x, on ∂Ω, (94)

where L̄ is the macroscopic velocity gradient. The symmetric and
skew-symmetric part of L̄ denote the macroscopic strain-rate D̄
and spin Ω̄ , respectively. We define, then, the total displacement
u in terms of the velocity v via

u = vt, 0 < t < t f , (95)

where v is constant in time t and t f is the total time.
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In the following, the problem is solved incrementally using: (i)
an implicit formulation for the estimation of the instantaneous
response of the porous medium for a given microstructural con-
figuration and (ii) an explicit scheme for the evolution of the mi-
crostructural variables sα . First, we present the system of equations
for the estimation of the instantaneous response of the porous
medium making use of the methodology described in Section 3.
Then, we update the values for the microstructural variables sα as
described in Section 4.

D.1. Estimation of the instantaneous response

Consider that the macroscopic (remote) average strain-rate D̄
and the values for the microstructural variables sα are known in
the beginning of the increment t = t j , i.e.,

D̄, sα | j, (96)

where the subscript j is used to denote quantities at time t j .

• Viscoplasticity. At the end of the increment t = t j+1, the fol-
lowing quantities need to be computed:

σ̄ j+1, k j+1, αm| j+1, kH
j+1, (97)

where σ̄ is the macroscopic stress tensor, k is the anisotropy
ratio of the matrix phase in the LCC, αm is the factor involved
in the computation of the reference stress tensor σ̌ given by
relation (41), and kH is the anisotropy ratio of the matrix
phase in the LCC in the purely hydrostatic limit (|XΣ | → ∞).
For viscoplastic porous media, the above-mentioned unknowns
are computed by the following from the following system of
coupled, nonlinear, algebraic equations:

D̄ = ∂ Ũsom

∂σ̄

(
σ̄ j+1;k j+1,αm| j+1,kH

j+1, sα | j
)
,

k j+1

(
σ̂‖| j+1

σ̌eq| j+1

)1−n

= (k j+1 − 1)
σ̂‖| j+1

σ̌eq| j+1
+ 1,

Ũ H
som

(
σ̄ ′ → 0, σ̄m = 1;αm| j+1,kH

j+1, sα | j
)

= ε̇oσ̃w

1 + n

(
3

2

|σ̄m|
σ̃w

)1+n∣∣∣∣
σ̄m=1

,

kH
j+1

(
σ̂‖|H

j+1

σ̌eq|H
j+1

)1−n

= (
kH

j+1 − 1
) σ̂‖|H

j+1

σ̌eq|H
j+1

+ 1. (98)

In these expressions, Ũsom is given by (29), σ̂eq and σ̂‖ are
defined by (25) and (28), respectively, σ̌eq denotes the von
Mises equivalent part of σ̌ in (40) and σ̃w is evaluated by
(34). As a consequence of the homogeneity of Ũsom in σ̄ , σ̄m

can be set equal to unity for simplicity. The superscript H has
been used to emphasize that the quantities should be evalu-
ated in the hydrostatic limit |XΣ | → ∞. It should be further
emphasized that the way we consider the hydrostatic limit
|XΣ | → ∞ or equivalently σ̄ ′ → 0 matters. This implies that
the value of αm will depend on the form of the normalized
tensor S̄ = σ̄ ′/σ̄eq defined in (16). Note that the factor αeq,
needed for the evaluation of σ̌ in (40), is computed by the
analytical expression (44).

• Ideal plasticity. At the end of the increment t = t j+1, the fol-
lowing quantities need to be computed:

σ̄ j+1, Λ̇ j+1, k j+1, αm| j+1, kH
j+1, (99)

where σ̄ is the macroscopic stress tensor, Λ̇ denotes the plas-
tic multiplier, k is the anisotropy ratio of the matrix phase in
the LCC, αm is the factor involved in the computation of the
reference stress tensor σ̌ given by relation (41), and kH is the
anisotropy ratio of the matrix phase in the LCC in the purely
hydrostatic limit (|XΣ | → ∞).
For porous media with an ideally-plastic matrix phase, the
above-mentioned unknowns are computed from the following
system of coupled, nonlinear, algebraic equations:

D̄ = Λ̇
∂Φ̃

∂σ̄

∣∣∣∣
j+1

,

Φ̃
(
σ̄ j+1;k j+1,αm| j+1,kH

j+1, sα | j
) = 0,

(k j+1 − 1)
σ̂‖| j+1

σ̌eq| j+1
+ 1 = 0,

Φ̃
(
σ̄ ′ → 0, σ̄m = 2σ̃w/3;αm| j+1,kH

j+1, sα | j
) = 0,

(
kH

j+1 − 1
) σ̂‖|H

j+1

σ̌eq|H
j+1

+ 1 = 0, (100)

where Φ̃ is given by (66), σ̂‖ is defined by (28), σ̌eq denotes
the von Mises equivalent part of σ̌ in (40) and σ̃w is given
by (91). Similar to the viscoplastic case, the superscript H has
been used to denote the relevant quantities evaluated at the
hydrostatic limit |XΣ | → ∞, while the factor αeq (used in
(40)) is computed by the analytical expression (93).

It is worth mentioning that in many cases of interest, the ap-
plied boundary conditions are such that the stress triaxiality XΣ

is constant during the deformation process. The above mentioned
systems of equations can be easily modified to account for an im-
posed constraint on the stress triaxiality.

D.2. Update of the microstructural variables

Once, the macroscopic stress σ̄ (and the plastic multiplier Λ̇

in ideal plasticity) is known, we can update the microstructural
variables sα | j+1 by using an explicit scheme with a time increment
�t = t j+1 − t j , such that

f j+1 = f j + (1 − f j)D̄ii�t, (101)

w1| j+1 = w1| j + (
n(3)

j · D̄
(2)

n(3)
j − n(1)

j · D̄
(2)

n(1)
j

)
�t, (102)

w2| j+1 = w2| j + (
n(3)

j · D̄
(2)

n(3)
j − n(2)

j · D̄
(2)

n(2)
j

)
�t, (103)

n(i)
j+1 = n(i)

j + ωn(i)
j �t, i = 1,2,3. (104)

In these expressions, D̄ is prescribed or alternatively it could be
evaluated by relation (31) for the viscoplastic case and (72) for

the ideally-plastic case. The phase average tensors D̄
(2)

and ω are
computed by (52) and (57) for the viscoplastic case and by (76)
and (81) for the ideally-plastic case.

Note further that in the last relation describing the evolution
law for the orientation vectors n(i) , the usual explicit scheme leads
to non-unit vectors due to the incremental approximation intro-
duced in the problem. This can be resolved by integrating exactly
the orientation vectors n(i) (Aravas and Ponte Castañeda, 2004),
which leads to

n(i)
j+1 = exp(ω)n(i)

j , i = 1,2,3. (105)

The exponential of the skew-symmetric tensor ω is an orthog-
onal tensor that can be determined from the following formula,
attributed to Gibbs (Cheng and Gupta, 1989)

exp(ω) = I + sin x

x
ω + 1 − cos x

x2
ω2, with x =

√
1

2
ω · ω. (106)

The procedure discussed in this section is repeated until we
reach the final prescribed time t f defined by the user.
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