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This work presents a rate-dependent constitutive model for porous single crystals with arbitrary number
of slip systems and orientations. The single crystal comprises cylindrical voids with elliptical
cross-section at arbitrary orientations and is subjected to general plane-strain loadings. The proposed
model, called modified variational model (MVAR), is based on the nonlinear variational homogenization
method, which makes use of a linear comparison porous single crystal material to estimate the response
of the nonlinear porous single crystal. The MVAR model is validated by periodic finite element
simulations for a large number of parameters including general in-plane crystal anisotropy, general
in-plane void shapes and orientations, various creep exponents (i.e., nonlinearity) and general plane
strain loading conditions. The MVAR model, which at the present state involves no calibration
parameters, is found to be in good agreement with the finite element results for all cases considered
in this work. The model is then used in a predictive manner to investigate the complex response of porous
single crystals in several cases with strong coupling between the anisotropy of the crystal and the
(morphological) anisotropy induced by the shape and orientation of the voids.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Voids originating in the manufacturing process have an impor-
tant effect on the lifetime as well as deformability of materials and
play an important role on the constitutive response of metallic
alloys. Indeed, as recently indicated by experimental observations
(Srivastava et al., 2012) at high enough temperatures on tensile
specimens, the growth of initially present processing induced voids
in a nickel based single crystal superalloy as well as in standard
polycrystals played a significant role in limiting creep life. The
presence of voids (or cracks) in metals is known to be one of the
major causes of ductile failure, as addressed in pioneering works
by Mc Clintock (1968), Rice and Tracey (1969) and Gurson
(1977). Most of the studies so far have been carried out in the
context of two-phase material systems comprising an isotropic
rate-(in) dependent matrix phase (metal usually described by
von Mises yield criterion or creep potential) and a voided phase
(pores of spherical, spheroidal or arbitrary ellipsoidal shapes).
The models proposed previously for ductile damage growth use
either limit analysis (see for instance Tvergaard and Needleman,
1984; Gologanu and Leblond, 1993; Leblond et al., 1994;
Monchiet et al., 2007; Madou and Leblond, 2012a,b) based on
Gurson (1977) work, or a variational homogenization theory using
the concept of a linear comparison composite (see for instance
Ponte Castañeda, 1991a; deBotton and Ponte Castañeda, 1995;
Danas and Ponte Castañeda, 2009a).

Far fewer results have been obtained for rate-(in) dependent
anisotropic matrix systems, generally based on a phenomenologi-
cal Hill-type matrix (see Benzerga and Besson, 2001; Benzerga
et al., 2004; Monchiet et al., 2008; Keralavarma et al., 2011). The
case of porous single crystals have only been studied through dis-
crete dislocations dynamic by Huang et al. (2007, 2012), Hussein
et al. (2008), Segurado and Llorca (2010) and molecular dynamics
at smaller scales (Traiviratana et al., 2008; Zhao et al., 2009; Tang
et al., 2010a,b), or using finite element simulations (Yerra et al.,
2010; Ha and Kim, 2010). Such anisotropic matrix systems have
known slip directions and contain usually a small volume fraction
of impurities. When these material systems are subjected to exter-
nal loads impurities fail or decohere leading to the creation of
pores, which in turn evolve in size, shape and orientation
(Srivastava and Needleman, 2012). This complex evolution of
microstructure together with the evolution of the rate-dependent
matrix anisotropy is critical in the prediction of the eventual
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fracture of the specimen under monotonic and cyclic loading
conditions.

Nevertheless, there have been only a handful of models for
porous single crystals which deal with special void geometries,
loading conditions and slip system orientations. Such studies
involve the study of cylindrical voids with circular cross-section
in a rigid-ideally plastic face-centered cubic (FCC) single crystals
using slip line theory (Kysar et al., 2005; Gan et al., 2006; Gan
and Kysar, 2007), the study two dimensional ‘‘out of plane’’
cylindrical voids with circular cross-section subjected to anti-plane
loadings (Idiart and Ponte Castañeda, 2007) and that of spherical
voids (Han et al., 2013; Paux et al., 2015). While each one of these
studies has its own significant contribution to the understanding of
the effective response of porous single crystals none of them is
general enough in the sense of arbitrary void shapes and
orientations and general loading conditions.

In this regard, the scope of the present work is to develop a two-
dimensional model in plane-strain loading conditions that is able
to deal with general in-plane crystal anisotropy, arbitrary elliptical
void shapes and orientations and general plane strain loading con-
ditions. While this model is not three-dimensional it represents a
necessary step towards this direction. It allows for a fully analytical
treatment of the problem and thus provides a good insight of the
effective response in such highly nonlinear and highly anisotropic
systems. A three-dimensional model is then feasible using the
same theory that is developed in the present work and.

More specifically, in Section 2, we use the variational linear
comparison composite theory of Ponte Castañeda (1991a) to pro-
vide a fully analytical model, called the modified variational
(MVAR) model (see Danas and Aravas, 2012), in two-dimensions.
Subsequently, in Section 4, we present in detail the finite element
(FE) periodic unit-cells which will be used to assess the MVAR
model as well as to visualize the underlying deformation fields in
the context of porous single crystals. In Sections 5 and 6, we pre-
sent comparison between the MVAR predictions and the FE results
for a wide range of crystal anisotropy, arbitrary elliptical void
shapes and orientations, porosities, creep exponents and general
plane-strain loading conditions. Finally, we conclude with
Section 7.

2. Theory

Consider the RVE (representative volume element) X to be a
two-phase porous single crystal with each phase occupying a

sub-domain XðrÞ ðr ¼ 1;2Þ. The vacuous phase is identified with
phase 2 and the non-vacuous phase (i.e., single crystal matrix) is
denoted as phase 1. At this point it is important to note that we
make use of the hypothesis of separation of length scales which
implies that the size of the voids (microstructure) is much smaller
than the size of the single crystal and the variation of the loading
conditions at the level of the single crystal. In the following, the

brackets h�i and h�iðrÞ define volume averages over the RVE (X)

and the phase r (XðrÞ), respectively.

2.1. Microstructure

The present study focuses on two-dimensional (2D) porous sin-
gle crystals containing polydisperse cylindrical voids aligned with
the x3-axis. The voids are randomly and uniformly distributed in
the transverse plane x1–x2. This material is subjected to plane-
strain loading in the x3-direction. In this regard, we first define
the relevant microstructural variables, which serve to describe
the volume fraction of the vacuous phase as well as the shape, ori-
entation and the distribution of the voids embedded uniformly in
the matrix phase. For simplicity, we will also consider that the
shape and orientation of the distribution function is identical to
the shape and orientation of the voids themselves (see Danas
and Ponte Castañeda, 2009a). However, this analysis can be readily
extended to distribution of a different shape and orientation than
the voids (Ponte Castañeda, 1995; Kailasam and Ponte Castañeda,
1998). Thus, as shown in Fig. 1, the internal variables characteriz-
ing the state of the microstructure are:

� The porosity or volume fraction of the voids f ¼ V2=V , where
V ¼ V1 þ V2 is the total volume, with V1 and V2 being the vol-
ume occupied by the matrix and the vacuous phase,
respectively.
� The aspect ratio w ¼ a2=a1, with 2ai i ¼ 1; 2ð Þ denoting the

lengths of the principal axes of the representative elliptical void,
in the plane 1� 2. The cases w ¼ 1 and w – 1 correspond to
voids with circular and elliptical cross-sections, respectively.
� The in-plane orientation unit vectors nðiÞ i ¼ 1; 2ð Þ, defining an

orthonormal basis set, which coincides with the principal axes
of the representative elliptical void. As a consequence of the
2D representation of the microstructure the two orientation
vectors nðiÞ can be easily parameterized in terms of a single
Euler angle, w,
nð1Þ ¼ cos we1 þ sin we2; nð2Þ ¼ � sin we1 þ cos we2:

ð2:1Þ

The above set of the microstructural variables can then be
denoted by the set sa ¼ f ; w; wf g.

2.2. Effective behavior: general considerations

The local constitutive behavior of the matrix phase is character-
ized by an anisotropic, convex stress potential U1 � U while the
stress potential of the porous phase U2 � 0. As a consequence of
the Hill–Mandel lemma (Hill, 1963; Mandel, 1964), the effective

stress potential eU for a porous medium is reduced toeUðr; saÞ ¼ ð1� f Þmin
r2SðrÞ

hUðrÞið1Þ; ð2:2Þ

where

SðrÞ ¼ r;div rð Þ ¼ 0 in X; rn ¼ 0 on @Xð2Þ; hri ¼ r
n o

ð2:3Þ

is the set of statically admissible stresses that are compatible with
the average stress r and a traction free void surface.

Subsequently, the effective strain-rate tensor can be expresses
as

D ¼ @
eU
@r

rð Þ: ð2:4Þ

The above described problem is non-trivial since it involves, in
general, nonlinear constitutive relations for the constituents as
well as random spatial distributions of the voids and thus the goal
of the present work is to propose approximate, albeit robust and
rigorous, homogenized models. In the next sections, we define
the local constitutive response of the single crystal matrix and
we provide both analytical and numerical estimates of the effective
response of such porous single crystals.

2.3. Constitutive behavior of the constituents

Let us consider a reference single crystal which undergoes vis-
coplastic deformation on a set of K preferred crystallographic slip
systems. At this stage, for simplicity in the homogenization proce-
dure elasticity effects are neglected. Then, these systems are



Fig. 1. Representative elliptical cross-section voids embedded in a crystal matrix.
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characterized by the second-order Schmid tensors
lðsÞ ð8s ¼ 1; . . . ;KÞ given by

lðsÞ ¼ 1
2

mðsÞ � sðsÞ þ sðsÞ �mðsÞ� �
; ð2:5Þ

where mðsÞ and sðsÞ are the unit vectors normal to the slip plane
and along the slip direction in the sth system, respectively.
Moreover, it is assumed that the normal mðsÞ and the slip direction
sðsÞ of each slip system of the crystalline matrix are coplanar to the
axes a1 and a2 of the voids, and hence can take the following
forms

mðsÞ ¼coshðsÞe1þsinhðsÞe2; sðsÞ ¼�sinhðsÞe1þcoshðsÞe2; 8s¼1;...;K;

ð2:6Þ

where hðsÞ are in-plane Euler angles as shown in Fig. 1. When the
crystal is subjected to a stress r, the resolved shear stress acting
on the sth slip system is given by sðsÞ ¼ r � lðsÞ, while the strain-rate
D in the crystal is assumed to be given by the superposition of the
slip-rates of each slip system, i.e. D ¼

PK
s¼1cðsÞlðsÞ. The slip-rate cðsÞ is

assumed to depend on the resolved shear stress sðsÞ, via a slip poten-

tial WðsÞ in such a way that

cðsÞ ¼ @W
ðsÞ

@sðsÞ
sðsÞ
� �

: ð2:7Þ

The slip potentials WðsÞ are assumed to be convex, incompressible
and expressed via the power-law form

WðsÞðsÞ ¼ ð
_c0ÞðsÞðs0ÞðsÞ

nþ 1
sj j

ðs0ÞðsÞ

 !nþ1

: ð2:8Þ

Here, n P 1; ð _c0ÞðsÞ and ðs0ÞðsÞ denote the creep exponent, the
reference slip-rate and the reference flow stress (also denoted
critical resolved shear stress CRSS) of the sth slip system, respec-
tively. In addition, let us notice that the limiting values of the
exponent, n ¼ 1 and n!1 correspond to linear viscoelasticicty
and rate-independent perfect plasticity, respectively. In this con-
nection, it is recalled that, even though the slip potentials WðsÞ

are not differentiable in the perfect crystal plasticity case, it is still
possible to relate cðsÞ and sðsÞ via the subdifferential of convex
analysis.

Adding up the potentials of all the slip systems we obtain the
constitutive behavior of the matrix phase, characterized by the vis-
coplastic stress potential U such that

UðrÞ ¼
XK

s¼1

WðsÞðsðsÞÞ ¼
XK

s¼1

ð _c0ÞðsÞðs0ÞðsÞ

nþ 1
sðsÞ
�� ��
ðs0ÞðsÞ

 !nþ1

: ð2:9Þ

Note that, in this last expression, U is a homogeneous function of
degree nþ 1 in the stress r.

The corresponding Cauchy stress r and the Eulerian strain-rate
D in the matrix are related through the constitutive relation

D ¼ @U
@r

rð Þ: ð2:10Þ
2.4. The limit of infinite equiangular slip systems

In the following, we consider K equiangular slip systems by ori-
entation angles hðsÞ equally partitioned in the interval ð�p=2;p=2Þ,
with K being the number of slip systems and s ¼ 1;K (see for
instance Table 1).

Next, we consider the special, albeit very common, case of iden-
tical CRSS and reference slip-rate such that

ðs0ÞðsÞ ¼ s0; ð _c0ÞðsÞ ¼ _c0; 8s ¼ 1;K: ð2:11Þ

This analysis will be shown to be of critical importance in the fol-
lowing sections.

As a consequence of the plane-strain conditions, the resolved
shear of each slip system is then written as

sðsÞ ¼ r � lðsÞ ¼ r11 � r22

2

� �
sin 2hðsÞ þ r12 cos 2hðsÞ

¼ reqffiffiffi
3
p sin 2hðsÞ þ d

� �
; 8s ¼ 1;K ð2:12Þ

with d ¼ arctan 2r12=ðr11 � r22Þð Þ. By introducing this relation in
Eq. (2.9), the viscoplastic stress potential U becomes

UðrÞ ¼
_c0s0

nþ 1
req

s0

ffiffiffi
3
p

� 	nþ1XK

s¼1

sin 2hðsÞ þ d
� ���� ���nþ1

: ð2:13Þ

In the limit K�!1, the matrix becomes isotropic and this leads to
the following isotropic potential (see detailed proof in Appendix A)

UðrÞ ffi
_c0s0

nþ 1
req

s0

ffiffiffi
3
p

� 	nþ1

bnK; bn ¼
2

ðnþ 1Þ
ffiffiffiffi
p
p C nþ2

2

� �
C nþ1

2

� � ; ð2:14Þ

where C is the C-function.
Finally, one can recover the constitutive behavior of an isotropic

matrix phase, characterized by its viscoplastic stress potential

UðrÞ ¼
_�0r0

nþ 1
req

r0

� 	nþ1

ð2:15Þ

with _�0 denoting the reference strain-rate, and r0 the isotropic flow
stress by setting

_c0s�n
0

1ffiffiffi
3
p
� 	nþ1

bnK ¼ _�0r�n
0 : ð2:16Þ
2.5. Gauge surface

For later use, it is convenient to define here the notion of the
gauge surface. Gauge surfaces are equipotential surfaces which
have a physical importance in the present analysis as they
characterize the domain of statically admissible stresses and are
analogous to the yield surfaces in rate-independent plasticity.

Using the homogeneity of the stress potential (2.9) for single
crystal matrix together with the general definition of the effective
stress behavior (2.2), one can show that the effective stress poten-

tial eU is also homogeneous of degree nþ 1 in r.



Table 1
Set of angles hðsÞ in several cases of equiangular slip systems.

K ¼ 3 K ¼ 4 K ¼ 5

hðsÞ ¼ 0;	p=3f g hðsÞ ¼ 0;	p=4;p=2f g hðsÞ ¼ 0;	p=5;	2p=5f g

1 FðsÞ � FðsÞ ¼ FðsÞ; EðsÞ � EðsÞ ¼ EðsÞ; EðsÞ � FðsÞ ¼ FðsÞ � EðsÞ ¼ 0; 8s ¼ 1;K .
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Therefore, it is convenient to introduce the so-called gauge sur-
face Pn (the subscript being used to denote the dependence on the
creep exponent n) as in Leblond et al. (1994). More precisely, it is
sufficient to study only one of the equi-potential surfaces

r; eUðrÞ ¼ const
n o

i.e., the so-called gauge surface Pn of the

porous material. For instance, in the case of slip systems with
identical CRSS s0 and reference slip-rate _c0, one can define the
equi-potential surfaces

Pn � R; eUðR; saÞ ¼
_c0s�n

0

nþ 1


 �
: ð2:17Þ

Then, the gauge function eUn provides the equation for the gauge
surface via the expression

R 2 Pn () eUnðR; saÞ ¼ ðnþ 1ÞeUðR; saÞ � _c0s�n
0 ¼ 0: ð2:18Þ

The subscript n has been used to indicate that the gauge function
depends explicitly on the creep exponent of the single crystal
matrix. The above definitions of the gauge surface and gauge func-
tion are analogous to the well known yield function and yield sur-
face in the context of rate-independent plasticity (n!1).

3. Analytical homogenization model for the porous single
crystal

3.1. The variational method

In the present work, we will make use of the general, nonlinear
homogenization methods developed by Ponte Castañeda (1991a)
and Ponte Castañeda (2002), which are based on the construction
of a linear comparison composite (LCC) with the same microstruc-
ture as the nonlinear composite. More precisely, the different
phases of the LCC are determined through well defined lineariza-
tions of the given nonlinear phases by making use of a suitably
designed variational principle. The corresponding phases of the
LCC are characterized in general by quadratic stress potentials of
the form

UðrÞL ðr; S
ðrÞÞ ¼ 1

2
rðxÞ � SðrÞ � rðxÞ; r ¼ 1;2; 8x 2 XðrÞ; ð3:1Þ

where SðrÞ serves to denote the fourth-order symmetric compliance
tensor. In addition, as proposed by Ponte Castañeda (1991a, 2002),
‘‘corrector’’ functions v ðrÞ can be defined as the optimal difference
between the quadratic stress potentials and the actual nonlinear
ones UðrÞ defined in (2.9), via

v ðrÞðSðrÞÞ ¼ supbrðrÞ UðrÞL ðbr; SðrÞÞ � UðrÞðbrÞ� �
: ð3:2Þ

Here, brðrÞ are assumed to be constant second-order tensors. For sim-
plicity in notation, we precise that brðrÞ is the field that attains the
‘‘sup’’ operator in (3.2).

In the following, using (3.1) and (3.2), one can show that the
effective energy function (2.2) can be approximated (Ponte
Castañeda, 1991a, 2002) via the expression

eUvarðrÞ ¼ sup
SðrÞ xð Þ

eULðr; SðrÞÞ �
X2

r¼1

cðrÞv ðrÞ SðrÞ
� � !

; ð3:3Þ
where cðrÞ is the volume fraction of the phase r. It is interesting to

note that Eq. (3.3) is a lower bound of the effective energy eUðrÞ.
Nonetheless, the goal of the present work is to provide an estimate

of eUðrÞ and not a bound, thus, the optimization conditions on SðrÞ

will be further relaxed next.

3.2. Definition of a linear comparison composite

In this section, we choose the compliance tensors SðrÞ in such a

way that will allow us to get explicit estimates for eUðrÞ. The diffi-

culty in the choice SðrÞ is twofold. First, SðrÞ do not need to be con-
stant per phase (see Herve and Zaoui, 1993). While such a choice
would lead to more accurate estimates, in general, one would have
to resolve the fully numerical optimization of the problem. This
makes it implicit and untractable in real applications. The second
point is that one can choose piecewise constant but the most gen-

eral form of SðrÞ (see deBotton and Ponte Castañeda, 1995; Idiart
and Ponte Castañeda, 2007). This choice again leads to a convex

but sub-differentiable optimization problem for eUðrÞ as a function
of SðrÞ and thus one has to resolve again the fully numerical
optimization problem (except in special cases as in Idiart and
Ponte Castañeda, 2007). For this reason, in the present work, we

choose not only piecewise constant SðrÞ, but also of a special form
which is motivated by the viscoplastic stress potential U in the lin-
ear case n ¼ 1. Motivated by (2.9) for n ¼ 1, we propose a linear
viscoelastic potential of the form

UL rð Þ ¼ 1
2
r � S0 � r; ð3:4Þ

where S0 is a symmetric fourth-order compliance tensor for the LCC
which reads

S0 ¼
XK

s¼1

1
2kðsÞ

EðsÞ þ
XK

s¼1

1
2qðsÞ

FðsÞ þ 1
3j

J;

EðsÞ ¼ 2lðsÞ � lðsÞ; FðsÞ ¼ K� EðsÞ; 8s ¼ 1;K: ð3:5Þ

Here K and J denote the fourth-order shear and hydrostatic projec-
tion tensors, respectively. Thus, for each s ¼ 1;K , the triplet

EðsÞ; FðsÞ; J
� �

forms a fourth-order tensor basis.1

In addition, lðsÞ is the Schmid tensor (2.5) associated to the sth

slip system. If one lets qðsÞ !1 and j!1ðincompressible matrixÞ,
then we recover the original linear viscoelastic potential, UL rð Þ in
Eq. (2.9), i.e.

UL rð Þ ¼
XK

s¼1

ðc0Þ
ðsÞ

2ðs0ÞðsÞ
sðsÞ
� �2

; sðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r � EðsÞ � r

2

s
: ð3:6Þ

The reason for using the more general form (3.5) instead of

S0 ¼
PK

s¼1
1

2kðsÞ
EðsÞ is for later non-singular evaluation of the Hill-

Eshelby tensor as discussed in the following.
Using the generalized (Hashin and Shtrikman, 1963) estimates

of Willis (1977), which are known to be quite accurate for low-
to-moderate random distributions of voids, one gets

eUL rð Þ ¼ 1
2 1� fð Þr �

XK

s¼1

1
2kðsÞ

EðsÞ þ f S�0

 !
� r; ð3:7Þ

where

S�0 kðsÞ
� �

¼ lim
qðsÞ ;j!1

Q�1 kðsÞ
� �

�
XK

s¼1

1
2kðsÞ

EðsÞ; Q ¼ L0 � L0PL0:

ð3:8Þ
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In this relation, Q is a fourth-order microstructural tensor given in
terms of the elasticity tensor L0 ¼ S�1

0 , and the (Eshelby, 1957) ten-
sor P.

For cylindrical voids with elliptical cross-section (i.e., aspect
ratio w – 1) embedded in a matrix with elasticity L0, the Eshelby
tensor P reads

Pijkl ¼
w
2p

Z 2p

0

ðLiakbnanbÞ�1njnljðijÞðklÞ

n � ðZT ZÞ�1 � n
d/ ð3:9Þ

where the brackets ðijÞðklÞ denote symmetrization with respect to
the corresponding indices, n ¼ cos /; sin /f g is the position vector
and Z the shape tensor expressed as

Z ¼ nð1Þ � nð1Þ þ 1
w

nð2Þ � nð2Þ: ð3:10Þ

It is recalled here that w and nðiÞ have been defined in the context of
Fig. 1.

At this point it is important to note that after the limit of
qðsÞ ! 1 and j!1 are considered in (3.8) the Q tensor is com-
pressible due to the presence of the voids in the matrix. These lim-
its need to be taken during the evaluation of Q in (3.82). If instead
the limit is taken before the evaluation of Q the term Liakbnanb in
(3.9) becomes singular.

The computation of Q in the above expressions is critical for the
optimization problem (3.3). Due to the extremely complicated
dependence of Q on kðsÞ, the optimization problem for the estima-
tion of the effective response in Eq. (3.3) has to be carried out
numerically, except in the special case where we let kðsÞ ! k for
all s ¼ 1;K . This simplifies tremendously the evaluation of the Q
tensor and allows for approximations as is discussed in the follow-
ing section.

More specifically, one can write

lim
kðsÞ!k

S�0 kðsÞ
� �

¼ 1
k
bS�0; ð3:11Þ

where bS�0 is given by (c.f. (3.8))

bS�0 ¼ bQ �1 �
XK

s¼1

1
2

EðsÞ; bQ �1 ¼ k lim
kðsÞ!k

Q�1 kðsÞ
� �

: ð3:12Þ

It is very important to stress at this point that the tensors bQ and

consequently bS�0 in the above expression are independent of k (see
relevant discussion in Danas (2008) and Danas and Ponte
Castañeda (2009a)). This property will allow to carry out analyti-
cally the optimization problem (3.3) to be discussed in detail in
the next section.

But before proceeding to that, we first provide analytical

expressions for the microstructural tensor bS�0, which reads

bS�0 ¼ 1
2w

ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j–l

1� cos 4 hðjÞ � hðlÞ
� �� �s

G; ð3:13Þ

where the components of tensor G are given by

G1111¼w2 cos2 wþsin2 w; G1122¼0; G1112¼
1
4

w2�1
� �

sin2w;

G2222¼ cos2 wþw2 sin2 w; G2212¼G1112; G1212¼
1
4

1þw2� �
: ð3:14Þ

It should be mentioned here that G possesses both major and minor
symmetry, and has a similar form to that obtained for an isotropic
matrix comprising elliptical voids (see Danas, 2008).
3.3. Variational estimate for porous single crystal

Using the above definition (3.4), (3.5) and the estimate (3.7),

one can rewrite the nonlinear effective potential eU , defined in
(3.3) as

eUvar rð Þ ¼maxkðsÞP0
eUL rð Þ � 1� fð Þ

XK

s¼1

v ðsÞ kðsÞ
� � !

: ð3:15Þ

For n > 1, the corrector function for a single slip system can be
expressed analytically (deBotton and Ponte Castañeda, 1995) as

v ðsÞ kðsÞ
� �

¼ maxbsðsÞP0

1
2kðsÞ

bsðsÞ� �2 �WðsÞ bsðsÞ� �� 	

¼ n� 1
nþ 1

ð _c0ÞðsÞðs0ÞðsÞ

2
ðs0ÞðsÞ

kðsÞð _c0ÞðsÞ

 !ðnþ1Þ
ðn�1Þ

: ð3:16Þ

The global optimization problem in (3.15) is a non-trivial one,
mainly because of the extremely complicated dependence of the Q
tensor (see (3.8)) on kðsÞ, and in general, it must be carried out
numerically. However, we introduce at this point the approximation

S�0 kðsÞ
� �

ffi 1
K

XK

s¼1

1
kðsÞ
bS�0; ð3:17Þ

where bS�0 is given by (3.12). This last expression (3.17) is identically
true for kðsÞ ¼ k; 8s ¼ 1;K while being a relatively good approxi-
mation in the neighborhood of kðiÞ ’ kðjÞ; 8i; j ¼ 1;K . The choice
(3.17) allows for a fully analytical resolution of the optimization
procedure (3.15) and thus to a fully analytical model.

Consequently, the relation (3.17) together with Eqs. (3.7), (3.15)
and (3.16) lead to

eUvar rð Þ ¼ maxkðsÞP0

"XK

s¼1

1
1� f

1
2kðsÞ

sðsÞ
� �2 þ f

K
r � bS�0 � r� 	
 �

� 1� fð Þ
XK

s¼1

n� 1
nþ 1

ð _c0ÞðsÞðs0ÞðsÞ

2
ðs0ÞðsÞ

kðsÞð _c0ÞðsÞ

 !ðnþ1Þ
ðn�1Þ
35: ð3:18Þ

Following Han et al. (2013), we interchange the maximization with
the summation in (3.18) to get

1
2kðsÞ

¼ ð
_c0ÞðsÞ

2ðs0ÞðsÞ
sðsÞ
� �2 þ f

K r � bS�0 � r
ðs0ÞðsÞ
� �2

1� fð Þ2

8><>:
9>=>;
ðn�1Þ=2

ð3:19Þ

This interchange will preserve the discrete character of the slip-sys-
tem response in the rate-independent limit and for f ¼ 0.

Finally, substitution of (3.19) to (3.15) gives the variational esti-
mate of the effective stress potential of the crystalline porous
material

eUvar rð Þ ¼ ð1� f Þ�n
XK

s¼1

ð _c0ÞðsÞðs0ÞðsÞ

nþ 1

esðsÞ�� ��
ðs0ÞðsÞ

 !nþ1

;

esðsÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sðsÞð Þ2 þ f

K
r � bS�0 � r

r
; ð3:20Þ

which can also be written as

eUvar rð Þ¼ ð1� f Þ�n
XK

s¼1

ð _c0ÞðsÞ ðs0ÞðsÞ
� ��n

nþ1
r � bSvar;ðsÞ �r
� �ðnþ1Þ=2

ð3:21Þ

with

bSvar;ðsÞ ¼ 1
2

EðsÞ þ f
K
bS�0; 8s ¼ 1;K: ð3:22Þ

It is recalled that bS�0 is given by Eq. (3.13)
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3.4. Correction of the hydrostatic point

In this subsection, we introduce a correction to the eUvar

estimate (3.21) in the limit of purely hydrostatic loadings. It
is well known from Ponte Castañeda (1991b) and Michel and
Suquet (1992) that in the case of isotropic matrix and hydro-
static loadings the variational estimates are overly stiff. This is
also the case in the present work, i.e. the estimate (3.21) foreUvar is also very stiff when compared to numerical unit-cell
calculations.

The way to remedy this overly stiff response is to use the fact
that in the isotropic case, the hydrostatic limit of the effective
behavior of composite cylinder assemblages (CCA) is known
exactly and in closed form (Hashin, 1962; Gurson, 1977; Leblond
et al., 1994) and can be expressed as

rm

r0
¼ n f�1=n � 1

� �
� 1

3
nþ1
2n

� 2Dm

_�0

 !1=n

: ð3:23Þ

In the present case of anisotropic crystal plasticity no simple ana-
lytic solution is available similar to the one in (3.23).
Nevertheless, one can insist that the estimate (3.21) should recover
the result (3.23) in the limit of infinite equiangular slip systems, cir-
cular voids and hydrostatic loadings, where the response becomes
fully isotropic.

To achieve this goal and motivated by similar work on iso-
tropic matrix systems (Danas and Aravas, 2012 but see also
Danas et al., 2008), we propose the following modification in
(3.21)

eUmvar rð Þ ¼ ð1� f Þ�n
XK

s¼1

ð _c0ÞðsÞ ðs0ÞðsÞ
� ��n

nþ 1
r � bSmvar;ðsÞ � r
� �ðnþ1Þ=2

;

bSmvar;ðsÞ ¼ bSvar;ðsÞ þ q2
J � 1

� �
J � bSvar;ðsÞ � J: ð3:24Þ

The label ‘‘mvar’’ refers to ‘‘modified variational’’ (MVAR), whereas
the factor ‘‘qJ ’’ remains to be defined so that we obtain the CCA
result (3.23) in the limit K�!1.

In this connection, we consider a purely hydrostatic loading
rij ¼ rmdij and circular voids (i.e., w ¼ 1) embedded in a single
crystal comprising slip systems with identical CRSS and reference

slip rate, i.e. ðs0ÞðsÞ ¼ s0; ð _c0ÞðsÞ ¼ _c0; 8s ¼ 1;K. In the case of infi-
nite and/or equiangular slip systems, we can write (see relations
(3.32) and (B.3) where w ¼ 1)

bSðsÞ ¼ 1
2

EðsÞ þ f
4

I; 8s ¼ 1;K ) eUmvar rð Þ

¼ ð1� f Þ�nK
_c0s�n

0

nþ 1
�rnþ1

m
f
2

q2
J

� 	nþ1
2

: ð3:25Þ

Thus, by using relations (2.4), (2.16), (3.24) and (3.25), one
obtains the correction for qJ to be

qJ ¼

ffiffiffi
2
f

s
1� fð Þ bnð Þ

1
n

nðf�1=n � 1Þ

( ) n
nþ1

; ð3:26Þ

where bn is given by expression (2.14).

3.5. Summary of the modified variational model (MVAR)

Thus the main result of the present paper can be summarized as
follows

eUmvar rð Þ¼ ð1� f Þ�n
XK

s¼1

ð _c0ÞðsÞ ðs0ÞðsÞ
� ��n

nþ1
r � bSðsÞ �r� �ðnþ1Þ=2

; ð3:27Þ
where

bSðsÞ � bSmvar;ðsÞ ¼ bSvar;ðsÞ þ q2
J � 1

� �
J � bSvar;ðsÞ � J ð3:28Þ

and

bSvar;ðsÞ ¼ 1
2

EðsÞ þ f

2K w
ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j–l

1� cos 4 hðjÞ � hðlÞ
� �� �s

G; 8s ¼ 1;K:

ð3:29Þ

The components of tensor G are given by Eq. (3.14) and are repeated
here for completeness

G1111¼w2 cos2 wþsin2 w; G1122¼0; G1112¼
1
4

w2�1
� �

sin2w;

G2222¼ cos2 wþw2 sin2 w; G2212¼G1112; G1212¼
1
4

1þw2
� �

: ð3:30Þ

In addition, q and bn are

qJ ¼

ffiffiffi
2
f

s
1� fð Þ bnð Þ

1
n

nðf�1=n � 1Þ

( ) n
nþ1

; bn ¼
2

ðnþ 1Þ
ffiffiffiffi
p
p C nþ2

2

� �
C nþ1

2

� � ð3:31Þ

with C being the C-function.
Two special cases of interest can be further spelled out here.

First, the special case of circular voids leads to G ¼ I ¼ Kþ J
through the relation (3.14). This implies that the purely hydrostatic

part of bSvar;ðsÞ in Eq. (3.29) depends strongly on both the number of
slip systems K as well as on their orientation angles hðsÞ. This effect
is discussed in detail later in the results sections.

Second, if we consider a single crystal with ‘‘equiangular slip
systems’’, as shown in Table 1, one getsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

j–l

1� cos 4 hðjÞ � hðlÞ
� �� �s

¼ Kffiffiffi
2
p ; ) bSvar;ðsÞ ¼ 1

2
EðsÞ þ f

4w
G:

ð3:32Þ

In the following, we present a numerical homogenization
analysis which will serve to assess the accuracy of the proposed
homogenization model.

4. Numerical homogenization

Numerical techniques (e.g. finite element method) are able, in
principle, to solve for the local field in a porous material, provided
that the exact location and distribution of the pores is known.
Nevertheless, in most cases of interest, the only available informa-
tion is the void volume fraction (or porosity) and, possibly, the
two-point probability distribution function of the voids (i.e., isotro-
pic, orthotropic, etc). Moreover, for sufficient accuracy the element
size that should be used in a finite element program must be much
smaller than the size of the voids, which in turn is smaller than the
size of the periodic unit-cell, especially when multiple pores are
considered. This makes the computation very intensive in time.
Due to all these reasons, it is very difficult to use the numerical
results in a multi-scale analysis, especially when the unit-cell is
rather complex.

Nonetheless, one could use the numerical periodic homogeniza-
tion technique as rigorous test-bed to assess the simpler analytical
models as the one proposed in the previous section. More pre-
cisely, we can analyze the problem of a periodic porous material
considering a unit-cell that contains a given distribution of voids.
On the other hand, it is well known that a random porous material
(e.g., the one in the analytical model presented in the previous sec-
tion) and the periodic material exhibit similar effective behavior
either in the case where the distribution of voids is complex
enough (adequate for large porosity) or in the limiting case where



(a) (b) (c)

Fig. 2. Undeformed unit-cell ‘‘square’’ geometry in the case of (a) a single circular void (b) a distribution of several circular voids (c) a single elliptical void.

106 A. Mbiakop et al. / International Journal of Solids and Structures 64–65 (2015) 100–119
the porosity is small enough. Furthermore, in these cases, the per-
iodic unit-cell estimates, and consequently the effective properties
of the periodic composite, are independent of the prescribed peri-
odic boundary conditions (Gilormini and Michel, 1998). In this
regard then, the comparison between the proposed model and
the FE periodic unit-cell calculations are meaningful provided that
complex periodic geometries are considered or porosity is small.

The following FE calculations have been carried out with the
commercial code Abaqus (2009) by use of a user-material subrou-
tine for specific 2D crystal plasticity, based on the notes of Huang
(1991) and Kysar (1997).

4.1. Unit-cell geometries and periodic boundary conditions

As already seen before, FE periodic unit-cell calculations need to
be carried out in order to validate the model. Thus, different unit-
cell geometries used in our computations, subjected to periodic
boundary conditions, would be presented in this subsection. The
present FE calculations are carried out using a small strain for-
mulation since the scope of the study is the estimation of the effec-
tive response of the porous crystal with a given microstructural
realization but not the evolution of microstructure which is left
for a subsequent work. Moreover, it is important to notice that
the entire unit-cell is considered here because there exist no planes
of symmetry due to the coupling between the crystal anisotropy
and the microstructure anisotropy except in few special cases such
as circular voids and particular slip orientations.

4.1.1. Unit-cell geometries
In the case of small porosities (f ¼ 1% in the present study),

geometries with one void in the middle of the unit-cell can be used
to estimate the effective behavior of the porous material. In order
to achieve this goal, a unit-cell made up of a long cylindrical void
with an initially circular (or even elliptical) cross-section in the
plane 1–2 (see Fig. 2(a) and (b)) is considered. Moreover, plane-
strain elements are used to simulate the x3 direction.

On the other hand, for large porosities (f ¼ 5% in the present
study), one needs more complex distribution of voids, i.e. multi-
pore geometries to achieve isotropic distributions. In this regard,
we make use of monodisperse distributions (e.g. Fig. 2(c)) that
are constructed by means of a random sequential adsorption algo-
rithm (see Rintoul and Torquato, 1997; Torquato, 2002) which gen-
erates the coordinates of the pore centers. For monodisperse
distributions, the radius of each void is

Rm ¼ L
f

pN

� 	1=2

ð4:1Þ

with N being the number of pores in the unit-cell and f the porosity.
In addition, the sequential addition of voids is constrained so

that the distance between a given void and the rest of the voids
as well as the boundaries of the unit-cell takes a minimum value
that guaranties adequate spatial discretization. In order to achieve
this we write down the following rules (Segurado and Llorca, 2002;
Fritzen et al., 2012; López Jiménez and Pellegrino, 2012; Lopez-
Pamies et al., 2013; López Jiménez, 2014).

� The center-to-center distance between a new pore i in the
sequential algorithm and any previously generated pore
j ¼ 1; . . . ; i� 1 has to exceed the minimum value fixed here as
s1 ¼ 2:04Rm. If the surface of particle i cuts any of the unit-cell
surfaces, this condition has to be checked with the pores near
the opposite surface because the microstructure of the compos-
ite is periodic. Mathematically, these conditions can be
expressed as
kXi � X j � hkP s1; ð4:2Þ

where Xi X j
� �

denotes the location of the center of particle i jð Þ
and h is a vector with entries 0; L; or � L where L is the dimen-
sion of the unit-cell.
� The void surface must be far enough from the unit-cell faces to

prevent the occurrence of distorted finite element during mesh-
ing. This is expressed by the conditions
Xi
k � Rm

��� ���P s2 and Xi
k þ Rm � L

��� ��� P s2 ðk ¼ 1;2Þ; ð4:3Þ

where L is the length of the unit-cell s2 has been fixed as
s2 ¼ 0:05Rm.

Furthermore, periodic boundary conditions have to be applied
to these geometries since the validation of the model requires per-
iodic FE unit-cell calculations.

4.1.2. Periodic boundary conditions
The periodic boundary conditions are expressed in this case as

(Michel et al., 1999; Miehe et al., 1999)

vðxÞ ¼ D � xþ v�ðxÞ; v� periodic; ð4:4Þ

where the second-order tensor D denotes the symmetric part of the
average velocity gradient, x denotes the spatial coordinates and v�

is a periodic field.
Next, one needs to fix one node to cancel the rigid body motion

in the FE calculations. For convenience, we choose this node to be
at the origin such that v ið0;0Þ ¼ 0 (i ¼ 1;2).

Subsequently, one can subtract the nodal velocities of opposite
boundary sides (where v� is equal) so that we get the following
nodal constraints for the corner nodes, i.e.,

v iðL1;0Þ � v ið0;0Þ ¼ Di1L1 ¼ v iðL1;0Þ;
v ið0; L2Þ � v ið0;0Þ ¼ Di2L2 ¼ v ið0; L2Þ; 8i ¼ 1;2:

ð4:5Þ

The above simple relations show that the velocity components of
the nodes ðL1;0Þ and ð0; L2Þ are one-to-one connected to the sym-
metric part of the average velocity gradient D. Then, one can write
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the constraint equations for the rest of the nodes making use of the
result (4.5), i.e.,

v iðL1; L2Þ � v ið0; L2Þ ¼ Di1L1 ¼ v iðL1;0Þ;
v iðL1; x2Þ � v ið0; x2Þ ¼ Di1L1 ¼ v iðL1;0Þ;
v iðx1; L2Þ � v iðx1;0Þ ¼ Di2L2 ¼ v ið0; L2Þ; 8i ¼ 1;2:

ð4:6Þ

The above algebraic analysis reveals that all periodic linear con-
straints between all nodes can be written in terms of the velocities
of two corner nodes, i.e., v iðL1; 0Þ and v ið0; L2Þ, which, in turn, are
given in terms of D by Eq. (4.5). This, further, implies that the only
nodes that boundary conditions need to be applied are ðL1;0Þ and
ð0; L2Þ (together with the axes origin ð0;0Þ which is fixed).

In order, to validate the model proposed in this study, it is con-
venient to apply D in such a way that the average stress triaxiality
in the unit-cell remains constant.

4.2. Loading through stress triaxiality control

In this subsection, we will discuss the methodology for the
application of a constant average stress triaxiality in the unit-cell.
This methodology has been originally proposed by Barsoum and
Faleskog (2007) and further discussed in Mbiakop et al. (2015).

Specifically, the applied load is such that the principal axes of
the void do not rotate around the 3rd axis, and consequently the
only non-zero components of the macroscopic stress tensor are

r ¼ r11 e1 � e1 þ r22 e2 � e2; ð4:7Þ

As a consequence of above-defined load and the periodic
boundary conditions, the average deformation in the unit-cell is
entirely described by the displacements of the two corner nodes,
e.g., u1ðL1;0Þ ¼ U1ðtÞ and u2ð0; L2Þ ¼ U2ðtÞ, denoted compactly as

U ¼ U1ðtÞ;U2ðtÞf g; _Uv ¼ _U1ðtÞ; _U2ðtÞ
n o

� v1ðtÞ;v2ðtÞf g: ð4:8Þ

Recalling that the average strain-rate and stress tensors involve
only two non-zero components due to the applied triaxial loading,
they can be expressed in vectorial form (i.e., using the Voigt nota-
tion) as

D ¼
_U1

L1 þ U1
;

_U2

L2 þ U2

( )
; r ¼ r11;r22f g: ð4:9Þ

To proceed further, we rewrite the strain-rate tensor as

D ¼ Q�1 � _U; Q ¼ diag L1 þ U1; L2 þ U2ð Þ: ð4:10Þ

We, next, define an external fictitious node,2 whose generalized
force, PG, and generalized displacement, pG, vectors, respectively,

take the form PG ¼ PG
1ðtÞ;0

n o
; pG ¼ pG

1ðtÞ; pG
2ðtÞ

� 
.

The stress state in the unit-cell is then controlled via a time-
dependent kinematic constraint (Michel et al., 1999) obtained by
equilibrating the rate of work in the unit-cell with the rate of work
done by the fictitious node on the unit-cell at time t, such that

_W ¼ Sr � D ¼ PG � _pG: ð4:11Þ

Next, in order to control the loading path in the stress space, we
couple the average stress r in the unit-cell with the generalized
force vector associated with the fictitious node PG via the constraint
equation

Sr ¼ C � PG; C ¼ c1

jc1j
;

c2

jc2j

� 	T

; C�1 ¼ CT ; ð4:12Þ
2 The fictitious node introduced in the present study has no specific physica
interpretation, but serves only as a mathematical tool to apply the required boundary
conditions at the unit-cell.
l

where C is a non-dimensional proper orthogonal matrix since ci

(i = 1,2) are two dimensional vectors that form an orthogonal basis
set. The vectors ci (i = 1,2) depend on the three components of the
average stress r, such that

c1 ¼ r11;r22f g; c2 ¼ �r22;r11f g: ð4:13Þ

On the other hand, the principal components of the stress field can
be expressed as a function of XR, via

1
req
fr11;r22g ¼

1ffiffiffi
3
p f�1;1g þ XRf1;1g; ð4:14Þ

where req denotes the equivalent Von Mises part of r, and we set
r22 � r11 > 0 since the gauge surface is symmetric with respect to
the origin.

The above expressions for the vectors ci (i = 1,2) together with
the relation (4.14) further imply that the matrix C in Eq. (4.12) is
only a function of the stress triaxiality XR but not of the equivalent
stress req. By substitution of Eqs. (4.10) and (4.12) in (4.11), one
gets

_U ¼ Q � C � _pG: ð4:15Þ

The above expression provides the kinematic constraints between
the degrees of freedom corresponding to the sides of the unit-cell
(i.e., U) and the degrees of freedom of the fictitious node (i.e., pG).
These nonlinear constraints are applied in the finite element soft-
ware ABAQUS by use of the multi-point constraint user subroutine
(MPC).

5. Results: Assessment of MVAR model via FE simulations

This section presents results for the effective behavior of
rate-dependent porous single crystals as predicted by the modified
variational model (MVAR) proposed in this work. The predictions
of the MVAR are compared with corresponding results obtained
by the FE simulations described in Section 4. Before proceeding
with the discussion of the results, it is useful to introduce first
the various material and loading parameters used in the following
figures. The present study investigates a range of creep exponents
n ¼ 1;2;5;10ð Þ, porosities f ¼ 1%;5%ð Þ, void shapes and ori-
entations (e.g., circular and elliptical) as well as a number of slip
systems K ¼ 1;2;3;4;5;10ð Þ with various orientations.

Moreover, motivated by common practice in crystal plasticity
studies, we consider the case where all the slip systems of the
matrix have the same critical resolved shear stress (CRSS) and
reference slip-rate, as defined in Eq. (2.11).

5.1. Computation of the gauge surface in the numerical
homogenization

The evaluation of the gauge surfaces resulting from the numeri-
cal computations can be expressed using the definition (2.17) but
its evaluation is non trivial and is described in the following. The
general idea follows from the earlier study of Flandi and Leblond,
2005 but is rather different since it has to be appropriately modi-
fied to apply for the general commercial code Abaqus used in the
present study.

By making use of the homogeneity of degree nþ 1 in R of the

function eU (see (2.2)), one can write

eUðRÞ ¼ Req
� �nþ1 eUNðN;XRÞ ¼

_c0s�n
0

nþ 1
; ð5:1Þ

while N ¼ Rd=Req describes the loading direction in the deviatoric
space, with Rd and Req denoting the deviatoric and equivalent Von
Mises part of the average stress R, respectively, corresponding to
the equi-potential surface (2.17).
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Next, given any average stress, r, one can write

eUðrÞ ¼ ð1� f Þmin
r2SðrÞ

hUðrÞið1Þ ¼ req
� �nþ1 eUNðN;XRÞ: ð5:2Þ

Due to the homogeneity of eU , it is noted that eUNðN;XRÞ is the same
function in (5.1) and (5.2), and hence combination of these two
equations gives

Req ¼ ðnþ 1Þ _c�1
0 sn

0
eUðrÞh i �1

nþ1 req: ð5:3Þ

In the FE code, D11 and the average XR in the unit-cell are applied
and remain constant throughout the process, as discussed in
Section 4.2, whereby D22 and req are calculated. In addition, post-

processing of the numerical results provides eUðrÞ (via definition
(2.2)). Finally, Req is readily obtained from Eq. (5.3), while
Rm ¼ XR Req given the known stress triaxiality XR.

At this point it is perhaps necessary to clarify that the present
work focuses on two-dimensions (i.e., plane-strain loadings) and
the porous crystal exhibits two types of anisotropy. The first is that
of the crystal matrix and the corresponding slip systems and the
second is that of the void shape which is elliptical in general.
Therefore, the effective response of the porous crystal is a function
of all the three in-plane stress components r11; r22 and r12 (or
equivalently R11; R22 and R12). Following traditional notation in
the context of porous materials, the following results are broken
down into two major groups. The first group shows the effective
response of the porous crystals in the space Rm � Req, which is
equivalent to setting R12 ¼ 0 and working in the space r11 � r22.
This stress space is very important since it involves directly the
hydrostatic component Rm. The second group shows results in
the deviatoric plane as this is defined by the in-plane shear stresses
ðR11 � R22Þ=2� R12, and for given constant hydrostatic stress Rm.
Fig. 3. Comparison between the average hydrostatic stress obtained by the model (MVA
cases of K ¼ 3;4;5;10ð Þ ‘‘equiangular slip systems’’ for (a) n ¼ 1, (b) n ¼ 2, (c) n ¼ 5, (d)
This way, our results are complete in the sense that they cover
the entire stress space but using traditional and well-understood
stress measures, as discussed above.
5.2. Purely hydrostatic loadings for circular voids

In this section, we present results for the effective behavior of
porous single crystals submitted to purely hydrostatic loadings
for a range of creep exponents n ¼ 1;2;5;10ð Þ and porosities
f ¼ 1%;5%ð Þ.

First, we consider the case of K ‘‘equiangular’’ slip systems (i.e.,
systems forming equal angles with each other in the interval
½�p=2;p=2
). Fig. 3 shows MVAR and FE comparisons for the aver-
age hydrostatic stress Rm as a function of the number of slip sys-
tems K. The MVAR is found to be in very good agreement with
the FE results for the entire range of creep exponents (i.e., nonlin-
earities) n and porosities f considered here. Rather interestingly, for
large values of n ¼ 5;10 a slightly non-monotonic response is
observed in the FE calculations for K ¼ 4 slip systems, as observed
in Fig. 3(c) and (d), and in this specific case the MVAR model tends
to underestimate slightly the value of the hydrostatic point for
K ¼ 4. Moreover, as K increases we attain the isotropic limit where
the Composite Cylinder Assemblage (CCA) result in Eq. (3.23) has
been used to correct the original VAR model.

Interestingly, it is found that for highly anisotropic equiangular
crystals, K ¼ 1 and K ¼ 2 (with 90o angle between the systems) the
obtained hydrostatic point is infinite, i.e., the porous single crystal
is incompressible, and thus it is not shown in Fig. 3. In order to fur-
ther analyze this very critical effect, we consider next crystals with
K ¼ 2 slip systems that form arbitrary angles hð1;2Þ. The porosity is
set equal to f ¼ 1% (the conclusions drawn in this case are
independent of the porosity considered) and the creep exponents
are n ¼ 1;2;5;10ð Þ. A parametric study of the relative angle
R) and the one resulting from FE results for a range of porosity f ¼ 1%;5%ð Þ, in the
n ¼ 10.
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Dh ¼ hð1Þ � hð2Þ ¼ 20�;30�;40�;45�;50�;60�;70�ð Þ between the two
slip systems is carried out next. It is mentioned however, that in
the case of highly anisotropic crystals (i.e.,
0� < Dh < 20� and 70� < Dh < 90�) the numerical simulations
exhibit convergence issues and thus no FE results are shown in this
range (see also Willot et al., 2008). In this regard, Fig. 4 presents
MVAR and FE normalized average hydrostatic stresses,
RmðDh ¼ 45�Þ=Rm as function of the difference between slip ori-
entations Dh, for several creep exponents. The major observation
in the context of this figure is that for Dh ¼ 0� (i.e., K ¼ 1 slip sys-
tem) and Dh ¼ 90� (i.e., equiangular slip systems) the normalized
stresses RmðDh ¼ 45�Þ=Rm ¼ 0 or equivalently Rm !1. This
implies that even if pores are present in this case the effective por-
ous crystal response is entirely incompressible for all creep expo-
nents considered here. This result suggests that for such low
Fig. 4. Comparison between the average normalized hydrostatic stress obtained by the m
slip systems, a porosity f ¼ 1% and a range of slip orientations Dh ¼ 20� ;30�;40�;45� ;5ð

Fig. 5. Gauge surfaces in the Rm � Req plane for a porous single crystal with circula
n ¼ 1;2;5;10ð Þ. Comparison between the model (MVAR) and the FE results in the cas
hðsÞ ¼ �54:7�;0�;54:7�ð Þ (FCC).
symmetry crystals certain directions appear as ‘‘rigid’’ to plastic
deformation thus constraining slip under highly symmetric loads
such as purely hydrostatic tension or compression.

In turn, the maximum value of RmðDh ¼ 45�Þ=Rm (i.e., the mini-
mum value for Rm) is found for Dh ¼ 45�. More specifically, as
observed in Fig. 4(a) (n ¼ 1) and Fig. 4(b) (n ¼ 2), there is very good
agreement between the MVAR and the FE for all slip orientations
considered, as expected for small nonlinearities. The agreement
becomes less good for higher creep exponents n ¼ 5;10 but still
remains relatively good.

5.3. Gauge surfaces for circular voids

Fig. 5 shows cross-sections of the effective gauge surfaces in the
Rm � Req plane in the case of a single crystal comprising K ¼ 3 slip
odel (MVAR) and the one resulting from FE results for a single porous crystal K ¼ 2
0�;60�;70�Þ in the cases (a) n ¼ 1, (b) n ¼ 2, (c) n ¼ 5, (d) n ¼ 10.

r voids of K ¼ 3 slip systems, a porosity f ¼ 1% and a range of creep exponent
es of (a) slip orientations hðsÞ ¼ �60�;0�;60�ð Þ (equiangular), (b) slip orientations
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systems with slip orientations (a) hðsÞ ¼ �60�;0�;60�ð Þ (equiangular
slip systems) and (b) hðsÞ ¼ �54:7�; 0�;54:7�ð Þ which correspond to
a face cubic-centered (FCC) single crystal in the 2-dimensional con-
text (Rice, 1987). Various creep exponents n ¼ 1;2;5;10ð Þ are con-
sidered while the porosity is set to f ¼ 1%. In the context of this
figure, we observe a very good agreement between the MVAR pre-
dictions and the FE results for the entire range of creep exponents
n. A rather interesting observation is that as the nonlinearity n
increases the porous crystal becomes more compliant at large val-
ues of Rm (i.e., high triaxialities) but more stiff at small Rm (i.e. low
stress triaxialities). As a consequence this leads to the inter-cross-
ing of the curves corresponding to different n as observed in Fig. 5.
Finally, it is perhaps useful to note that the important effect of the
creep exponent n for zero triaxiality is merely an effect deriving
from purely crystal plasticity even without the presence of voids.

In Fig. 6, we present cross-sections of the effective gauge sur-
faces in the Rm � Req plane in the case of K ¼ 2 slip systems crystal
for a porosity f ¼ 1% and the same range of creep exponents.
Specifically we consider slip orientations (a) hðsÞ ¼ �22:5�;22:5�ð Þ
and (b) hðsÞ ¼ �15�;15�ð Þ. The main observation in the context of
this figure is that for several slip orientations as well as for several
number of slip systems (see previous cases with K ¼ 3), there is a
very good agreement between the MVAR predictions and the FE
results for f ¼ 1%, at the full range of creep exponents and the
entire range of the stress triaxialities considered here.

In order to assess the accuracy of the MVAR model at higher
porosities f ¼ 5% we carry out FE simulations using the more
complex periodic unit-cell presented in Fig. 1(c). As detailed fur-
ther in the next section, at f ¼ 5% the void interactions become
Fig. 6. Gauge surfaces in the Rm � Req plane for a porous single crystal with circula
n ¼ 1;2;5;10ð Þ. Comparison between the model (MVAR) and the FE results in the cases

Fig. 7. Gauge surfaces in the Rm � Req plane for a porous single crystal with circular voi
between the model (MVAR) and the FE results in the cases of (a) K ¼ 3 slip systems a
orientations hðsÞ ¼ �15�;15�ð Þ.
much more critical and thus a square unit-cell with one single
void in the middle can lead to inconsistent comparisons when
compared with the corresponding MVAR estimates for isotropic
pore distributions (i.e., aspect ratio w ¼ 1). In this regard, Fig. 7
shows cross-sections of the effective gauge surfaces in the
Rm � Req plane in the case of a higher porosity f ¼ 5% and single
crystals comprising (a) K ¼ 3 slip systems with slip orientations
hðsÞ ¼ �54:7�;0�;54:7�ð Þ (FCC) and (b) K ¼ 2 slip systems with slip
orientations hðsÞ ¼ �15�;15�ð Þ, respectively. Again, the agreement
between the MVAR predictions and the FE results is very good
for small nonlinearities n ¼ 1;2, whereas it tends to overestimate
the effective response at higher ones (i.e., n ¼ 5;10). In any case,
the maximum error is found to be in the order of �6%. It is also
noted that the MVAR model deals extremely well with increasing
anisotropy, i.e., as we go from K ¼ 3 to K ¼ 2 slip systems.

As we will see next, these differences between the MVAR and FE
results with increasing nonlinearity (i.e., creep exponent) can be
attributed to the increasing void interaction at high n.
5.4. Full field contours for periodic unit-cells

Following the last remark of the previous section, we show,
next, contours of the total slip, defined as the sum of the absolute
value of the slip on each individual slip system ctot normalized by
the reference slip-rate _c0 (see Niordson and Kysar, 2014 for more
details) for several periodic unit cells, porosities and creep
exponents.

First, we consider the simplest periodic geometry which con-
sists of a single pore in the middle of a square unit-cell such that
r voids of K ¼ 2 slip systems, a porosity f ¼ 1% and a range of creep exponent
of (a) slip orientations hðsÞ ¼ �22:5�;22:5�ð Þ, (b) slip orientations hðsÞ ¼ �15� ;15�ð Þ.

ds of a porosity f ¼ 5% and a range of creep exponent n ¼ 1;2;5;10ð Þ. Comparison
nd slip orientations hðsÞ ¼ �54:7�;0�;54:7�ð Þ (FCC), (b) K ¼ 2 slip systems and slip
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the porosity f ¼ 1%. Fig. 8 shows countours of ctot= _c0 for
n ¼ 10;K ¼ 3 equiangular slip systems and three applied stress
triaxialities (a) XR ¼ 0, (b) XR ¼ 3 and (c) XR !1 (i.e., pure hydro-
static tension). A dramatic change of the deformation mechanism
is observed as one goes from low XR (see Fig. 8(a)) to high ones
(see Fig. 8(c)). While for XR ¼ 0 the deformation map exhibits a
90� symmetry, as we increase hydrostatic tension the fields
become highly localized around the pore geometry exhibiting 12-
fold symmetry as already observed by Niordson and Kysar (2014)
in this last case. At a value of XR ¼ 3 in Fig. 8(b), the slip fields show
a combination of both of the above observed symmetries.

In the following, we analyze the results obtained for a unit-cell
comprising a large number of isotropically distributed voids, as
described in Section 4. More specifically, in Fig. 9, we consider
Fig. 9. Contour of the total slip for a FCC single crystal with two ‘‘multipore’’ geometries
(XR ¼ 1). Case of (a) f ¼ 1%; n ¼ 1 (b) f ¼ 1%; n ¼ 5 (c) f ¼ 1%; n ¼ 10 (d) f ¼ 5%; n ¼

Fig. 8. Contour of the total slip for a K ¼ 3 equiangular slip systems with a ‘‘one pore’’
purely hydrostatic loads (i.e., XR !1) with three different creep
exponents n ¼ 1;5;10 and two porosities f ¼ 1;5%. First, we com-
pare the effect of the porosity and subsequently the effect of the
nonlinearity n upon the obtained fields. Comparison of Fig. 9(a)–(c)
with the corresponding Fig. 9(d) and (e) shows that when
f ¼ 1% the total slip ctot= _c0 is rather concentrated around each
individual pore even for larger exponents n. In contrast when
f ¼ 5%, the pore interactions become more significant as expected.
Moreover, in the case of f ¼ 5%, we observe a gradual deformation
localization with increasing nonlinearity n as one goes from
Fig. 9(d) and (e). The pore interaction and deformation localization
becomes so pronounced that material around a significant number
of pores is not at all loaded. This effect is much less pronounced
when f ¼ 1% and n ¼ 10 in Fig. 9(c). These last observations imply
of 60 pores (f ¼ 1%) and 40 pores (f ¼ 5%), in macroscopic hydrostatic loading state
1 (e) f ¼ 5%; n ¼ 5 (f) f ¼ 5%; n ¼ 10.

geometry and a porosity of f ¼ 1%. Case of (a) XR ¼ 0 (b) XR ¼ 3 and (c) XR ¼ 1.



Fig. 11. Gauge surfaces in the Rm � Req plane for a single porous crystal with
elliptical voids (w ¼ 1=3; w ¼ 0�) of K ¼ 3 slip systems, f ¼ 1%, slip orientations
hðsÞ ¼ �60�;0�;60�ð Þ (equiangular) and a range of creep exponent n ¼ 1;10ð Þ.
Comparison between the MVAR model and the FE results.
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that for low porosities f ¼ 1% the use of the simpler unit-cell
shown in Fig. 8 is accurate enough, while for larger porosities (even
for 5%) the pore interactions become non-negligible and unit-cells
with large number of pores should be used. Finally, this strong
deformation localization observed in Fig. 8(e) explains why the
MVAR model is in less good agreement with the FE with increasing
creep exponent n and increasing porosity f.

5.5. Macroscopic strain-rates for circular voids

In this section, for the sake of conciseness, we present only
representative results for the macroscopic strain-rates. Those con-
stitute a direct measure of the normal (i.e., slope) to the previously
shown gauge surfaces and hence have important implications on
the developed plastic anisotropy as well as void growth (see
Danas et al., 2008). More specifically, Fig. 10 shows the average
strain-rates in the Dm � Deq plane in the case of a single crystal
comprising (a) K ¼ 3 slip systems with slip orientations
hðsÞ ¼ �54:7�; 0�;54:7�ð Þ (FCC) and (b) K ¼ 2 slip systems with slip
orientations hðsÞ ¼ �22:5�;22:5�ð Þ. Results are obtained for several
creep exponents n ¼ 1;2;5;10ð Þ and a porosity f ¼ 1%. As
observed in the context of this figure, the MVAR predictions are
in good agreement with the FE results for the entire range of
parameters used. Conversely with the corresponding gauge sur-
faces, the hydrostatic strain-rate Dm increases with increasing n
at high triaxialities and vice verse for low triaxialities. This has
direct implications on the corresponding void growth at large
triaxialities and as already expected (Danas and Ponte Castañeda,
2009b) the voids will grow much faster at higher creep exponents
n and higher triaxialities.

5.6. Gauge surfaces for elliptical voids

In this subsection, we show results for porous single crystals
comprising elliptical voids, i.e., with aspect ratio w – 1 and angles
w – 0. The first microstructure considered is defined by porosity
f ¼ 1%, void aspect ratio w ¼ 1=3 and void orientation w ¼ 0.
Fig. 11 presents various cross-sections of the effective gauge sur-
faces in the Rm � Req plane in the case of K ¼ 3 slip systems with

slip orientations hðsÞ ¼ �60�;0�;60�ð Þ (equiangular slip systems)
and creep exponents n ¼ 1;10ð Þ. In the context of this figure, the
MVAR predictions are in relatively good agreement with the FE
results for both n ¼ ð1;10Þ. In particular, for n ¼ 1, the MVAR is
in excellent agreement with the FE results except at purely hydro-
static loadings where an error in the order of 7% is observed.
Nonetheless, in that case numerical convergence issues appeared
Fig. 10. Macroscopic strain-rates in the Dm � Deq plane for a porous single crystal with
Comparison between the model (MVAR) and the FE results in the cases of (a) K ¼ 3 slip sy
and slip orientations hðsÞ ¼ �22:5�;22:5�ð Þ.
and the FE results should be interpreted with caution. In turn,
when n ¼ 10, the MVAR exhibits very good qualitative agreement
with the FE results where the corresponding gauge surface exhibits
a rather significant ‘‘asymmetry’’ with respect to the Req axis but
tends to underestimate this effect especially at small stress
triaxialities (i.e., for Rm � 0). This asymmetry, which is present in
the case of elliptical voids, is a direct consequence of the coupling
between Rm and Req resulting from the complex form of the tensor
G defined in Eq. (3.14). Such effects observed in shearing of ellip-
soidal voids have also been addressed either in numerical
micromechanical calculations (see for instance Tvergaard and
Nielsen, 2010), or in multiaxial experiments (see Combaz et al.,
2011).

To summarize, the MVAR model has been assessed in great
detail and it was found to be in good agreement with the
corresponding FE results. Therefore, for simplicity and conciseness,
only MVAR estimates will be shown in the following section.

6. Results: MVAR predictions

Hereafter, we attempt to reveal the complex coupling between
the crystal anisotropy as characterized by the number of slip sys-
tems and their orientation, and the (morphological) void aniso-
tropy resulting from the elliptical void shape and orientation.

6.1. Effect of the void shape and orientation

More specifically, Fig. 12 shows MVAR gauge surfaces in the
Rm � Req plane for a porous single crystal comprising K ¼ 3 slip
circular voids of a porosity f ¼ 1% and a range of creep exponent n ¼ 1;2;5;10ð Þ.
stems and slip orientations hðsÞ ¼ �54:7�;0�;54:7�ð Þ (FCC) and (b) K ¼ 2 slip systems



Fig. 12. Gauge surfaces in the Rm � Req plane for a single porous crystal with elliptical voids, K ¼ 3 slip systems with slip orientations hðsÞ ¼ �60�;0�;60�ð Þ and a creep
exponent n ¼ 5. The effect of porosity is investigated by choosing f ¼ 1%;5%;10%ð Þ for different void shapes (a) w ¼ 1; w ¼ 0� and (b) w ¼ 0:2; w ¼ 0� .

Fig. 13. Gauge surfaces in the Rm � Req plane for a single porous crystal with elliptical voids, K ¼ 3 slip systems, slip orientations hðsÞ ¼ �60� ;0� ;60�ð Þ and a creep exponent
n ¼ 5. The porosity of set to f ¼ 1%. The effect of (a) the void aspect ratio is investigated by choosing w ¼ 0:2;0:5;1ð Þ for an angle w ¼ 0 and (b) of the void orientation by
choosing w ¼ 0�;45�;90�ð Þ for a given aspect ratio w ¼ 0:2.
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systems with slip orientations hðsÞ ¼ �60�;0�;60�ð Þ (i.e., equiangu-
lar slip systems) and a creep exponent n ¼ 5. The effect of porosity
is investigated by choosing f ¼ 1%;5%;10%ð Þ for different void
shapes (a) w ¼ 1; w ¼ 0� and (b) w ¼ 0:2; w ¼ 0�. In Fig. 12, the
gauge surfaces exhibit a gradual decrease with increasing porosity
for both circular (w ¼ 1) and elliptic (w ¼ 0:2) voids, as already
expected. Nonetheless, while for the case of a circular void
(w ¼ 1), in Fig. 12(a), the curves are symmetric with respect to
the Req axis, the curves for the elliptical void (w ¼ 0:2), in
Fig. 12(b), become asymmetric as already discussed in the context
of Fig. 11. As a consequence of this asymmetry, the MVAR esti-
mates are found to be stiffer in the negative pressure regime
(Rm < 0). The observed asymmetry becomes more pronounced
with increasing porosity.

Fig. 13 shows gauge surfaces in the Rm � Req plane for a single
porous crystal comprising K ¼ 3 slip systems with slip orientations
hðsÞ ¼ �60�;0�;60�ð Þ and a creep exponent n ¼ 5. The porosity of set
to f ¼ 1%. The effect of (a) the void aspect ratio is investigated by
choosing w ¼ 0:2;0:5;1ð Þ for an angle w ¼ 0 and (b) of the void ori-
entation by choosing w ¼ 0�;45�;90�ð Þ for a given aspect ratio
w ¼ 0:2. In Fig. 13(a), we observe that with decreasing w, the gauge
surface becomes gradually asymmetric while diminishing in size.
This last effect implies that for the same porosity f ¼ 1%, an ellip-
tical void w < 1 leads to softer response than a circular one.

In Fig. 13(b), we study the effect of the void orientation angle
w ¼ 0�;45�;90�ð Þ. Note that the case w ¼ 90� is equivalent to set-
ting w! 1=w and w ¼ 0�. In particular, the w ¼ 90� curve is simply
a reflection of that for w ¼ 0� about the Req axis, as naturally
expected from purely geometrical arguments. In turn, the
w ¼ 45� curve exhibits full symmetry with respect to the Req axis
contrary to the other two cases w ¼ 0�;90�. Finally, as already
expected from earlier studies (Danas and Ponte Castañeda,
2009b), the hydrostatic point for all these cases is independent of
the angle w. This is intuitively expected since the hydrostatic load-
ing has no preferential direction and can be easily attributed to the
form of the G tensor defined in Eq. (3.14), since the sum of its
diagonal components G1111 þ 2G1122 þ G2222 ¼ w2 þ 1, is indepen-
dent of the angle w.
6.2. Effect of the crystal anisotropy

In this subsection, we discuss in more detail the effect of matrix
crystal anisotropy upon the effective response of the porous com-
posite. As already discussed in the context of Fig. 4, where circular
voids are embedded in a two slip systems single crystal, the aver-
age hydrostatic response is strongly influenced by the slip ori-
entations. Specifically, both the MVAR model and the FE results
predict that the effective behavior of a porous single crystal with
K ¼ 1 slip system (i.e., highly anisotropic case) or K ¼ 2 slip sys-
tems with 90� relative angle lead to a completely incompressible
response.

In order to analyze this further, Fig. 14 shows gauge surfaces in
the Rm � Req plane of porous single crystals with circular voids
(w ¼ 1), porosity f ¼ 5% and a creep exponent n ¼ 10. In order to
reveal the effect of the number of slip systems as well as of their
orientations upon the effective response of the porous crystal, we
consider the case of K ¼ 1;2;3;4;5ð Þ with (a) equiangular slip sys-
tem orientations and (b) with arbitrary non-equiangular slip



Fig. 14. Gauge surfaces in the Rm � Req plane for a single porous crystal with circular voids, porosity f ¼ 5%, creep exponent n ¼ 10, for several number of slip systems
K ¼ 1;2;3;4;5ð Þ. Part (a) corresponds to equiangular and (b) to non-equiangular slip system orientations. Their precise definition is detailed in Table 2.
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system orientations. The specific choices of the different ori-
entations can be found in Table 2 for both cases considered here.
6.2.1. Equiangular slip systems
More specifically, in Fig. 14(a), we observe a strong dependence

of the effective response upon K. While for K ¼ 1 and K ¼ 2 the
porous crystal exhibits a fully incompressible response (in agree-
ment with the observations made in Fig. 4), the porous crystal
becomes gradually softer with increasing K. On the other hand,
one could observe that the response for K ¼ 3;4;5 is very similar
quantitatively, especially near the hydrostatic point (i.e., Req ¼ 0).
6.2.2. Non equiangular slip systems
By contrast, in Fig. 14(b), we observe an even stronger depen-

dence of the effective response upon the crystal anisotropy. In this
case, the porous crystal is still incompressible for K ¼ 1 but not for
the rest of the cases K P 2. In addition, in Fig. 14(b), the depen-
dence of the effective response for K P 2 at moderate and high
triaxialities is completely reversed (for instance, the material with
K ¼ 2 is softer than those for K ¼ 3 or K ¼ 4) when compared to
that in Fig. 14(a).

At this point, it is perhaps relevant to make contact with the
corresponding three-dimensional models proposed by Han et al.
(2013) and Paux et al. (2015). In these models—which have been
assessed for an FCC crystal (near equiangular case in our nota-
tion)—even though the deviatoric response includes the effect of
the crystal anisotropy (i.e., number of slip systems and ori-
entations), the corresponding response under purely hydrostatic
stressing is, at least in its present form, independent of the ori-
entation of the slip systems. The present study, albeit in two-di-
mensions, shows that in the context of highly anisotropic porous
single crystals, the purely hydrostatic response is extremely sensi-
tive to the number of the slip systems K as well as on the slip ori-
entations, as clearly shown in Fig. 14. Of course, the present model
needs to be extended in the three-dimensional case in order to
have a more complete picture of the coupling between crystal ani-
sotropy and (morphological) void anisotropy. Such work is under-
way and therein comparisons will be given with available models
in the literature.
Table 2
Set of angles hðsÞ for equiangular and non equiangular slip systems.

Type K ¼ 1 K ¼ 2 K ¼ 3

Equiangular hðsÞ ¼ p=8 hðsÞ ¼ 	p=4f g hðsÞ ¼ 0;	p=3f g
Non equiangular hðsÞ ¼ p=8 hðsÞ ¼ 	p=8f g hðsÞ ¼ p=8;p=10;p=12f g
6.3. Fully anisotropic effective response on the deviatoric plane

In this section, we investigate the effective response of the por-
ous single crystal in the deviatoric plane R12 — R11 � R22

� �
=2 for

given hydrostatic stress Rm. This allows to probe the complete
response of the porous crystal and reveal in a more clear way the
combined coupling between the anisotropy of crystal and that
induced by the void shape and orientation. For the sake of concise-
ness, in the following, we consider only crystals comprising K ¼ 3
slip systems with slip orientations hðsÞ ¼ �54:7�;0�;54:7�ð Þ (FCC)
and K ¼ 2 slip systems with slip orientations
hðsÞ ¼ �22:5�;22:5�ð Þ, respectively, porosity f ¼ 5% and creep expo-
nent n ¼ 10.

First, for illustration purposes and in order to give the reader a
more complete viewpoint of the porous crystal effective response,
we show in Fig. 15 two representative three-dimensional gauge
surfaces defined by the axes R12 — R11 � R22

� �
=2� Rm for (a)

K ¼ 3 and (b) K ¼ 2. The void aspect ratio and orientation are set
to w ¼ 0:2 and w ¼ 0, respectively. Further discussion of these
(and even more) surfaces is done in the following by considering
projections in the deviatoric planes.

In this connection, Fig. 16 shows MVAR gauge surfaces in the
deviatoric plane R12 — R11 � R22

� �
=2 for a single porous crystal

with K ¼ 3 slip systems, slip orientations hðsÞ ¼ �54:7�;0�;54:7�ð Þ,
void shapes w ¼ 0:2;1ð Þ and void orientations
w ¼ 0�;22:5�;67:5�ð Þ. The various cross-sections correspond to dif-
ferent hydrostatic stresses Rm ¼ 0; Rm ¼ 	0:5RH

m; Rm ¼ 	0:9RH
m,

where RH
m denotes the hydrostatic point delivered by the model

MVAR for hydrostatic loading for each of the given cases in
Fig. 16(a)–(d), respectively.

More specifically, in Fig. 16(a), which corresponds to a circular
void, we observe a gradual shrinking of the curves with increasing
Rm as expected. At small values of Rm ¼ 0, the curve exhibits an
almost discrete character which tends to become more rounded
(convexify) with increasing Rm. Note at this point that since the
porous crystal is considered to be rate-dependent (i.e., finite value
of the creep exponent n), the corresponding effective response is
strictly convex and the curves exhibit large but finite curvature
areas (i.e., smooth-corners) leading to an almost hexagonal
K ¼ 4 K ¼ 5

hðsÞ ¼ 0;	p=4;p=2f g hðsÞ ¼ 0;	p=5;	2p=5f g
hðsÞ ¼ p=8;p=9;p=10;p=11f g hðsÞ ¼ p=8;2p=15;4p=31;4p=33;2p=17f g



Fig. 15. Three-dimensional gauge surfaces defined by the axes R12 � R11 � R22
� �

=2� Rm for (a) K ¼ 3 (hðsÞ ¼ �54:7�;0�;54:7�ð Þ) and (b) K ¼ 2 (hðsÞ ¼ �22:5�;22:5�ð Þ). The void
aspect ratio and orientation are set to w ¼ 0:2 and w ¼ 0, porosity is f ¼ 5% and creep exponent n ¼ 10.

Fig. 16. Gauge surfaces in the deviatoric plane R12 � R11 � R22
� �

=2 for a single porous crystal with elliptical voids, K ¼ 3 slip systems, slip orientations
hðsÞ ¼ �54:7�;0�;54:7�ð Þ (FCC), a porosity f ¼ 5%, a creep exponent n ¼ 10, at different level of pressure. The dashed line curves correspond to the negative pressure
regime while the continuous one correspond to the positive pressure regime. Case of (a) w ¼ 0�; w ¼ 1, (b) w ¼ 0� ; w ¼ 0:2, (c) w ¼ 22:5� ; w ¼ 0:2, (d) w ¼ 67:5�; w ¼ 0:2.
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symmetry of the curves. When the void is circular (w ¼ 1), the por-
ous crystal preserves the original symmetries of the crystal matrix
for all values of Rm considered. In particular, in this case the curve
is fully symmetric with respect to the two axes R12 and
ðR11 � R22Þ=2.

By contrast, as shown in Fig. 16(b) (see Fig. 15(a) for the three-
dimensional surface), if one considers an elliptical void with aspect
ratio w ¼ 0:2 (but still w ¼ 0�), the corresponding MVAR curves
exhibit an asymmetry with respect to the R12-axis, but still preserve
the symmetry with respect to the ðR11 � R22Þ=2 axis for Rm > 0.
Rather interestingly, the almost hexagonal symmetry still prevails
for Rm ¼ 0. This response is a direct consequence of the geometric
coupling of the crystal slip orientations and the void shape at finite
hydrostatic stresses. Note further that point symmetry of the curves



Fig. 17. Gauge surfaces in the deviatoric plane R12 � R11 � R22
� �

=2 for a single porous crystal with elliptical voids, K ¼ 2 slip systems, slip orientations hðsÞ ¼ �22:5�;22:5�ð Þ, a
porosity f ¼ 5%, a creep exponent n ¼ 10, at different level of pressure. The dashed line curves correspond to the negative pressure regime while the continuous one
correspond to the positive pressure regime. Case of (a) w ¼ 0�; w ¼ 1, (b) w ¼ 0�; w ¼ 0:2, (c) w ¼ 22:5�; w ¼ 0:2, (d) w ¼ 67:5� ; w ¼ 0:2.
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with respect to the global origin R12;	ðR11 � R22Þ=2
� �

¼ ð0;0Þ and

Rm ¼ 0 is still preserved. This is easily observed by noting the point
symmetries between the continuous lines corresponding to Rm > 0
and the dashed ones for Rm < 0.

Subsequently, in Fig. 16(c) and (d), an elliptical void (w ¼ 0:2)
with angles w ¼ 22:5�;67:5� are shown, respectively. In these two
cases, the gauge surfaces exhibit full asymmetry with respect to
both axes for finite hydrostatic stresses Rm – 0, but preserve the
hexagonal symmetry for Rm ¼ 0. The observed asymmetry is much
more pronounced at higher values of Rm. Note that the curves for
w ¼ 67:5 in Fig. 16(d) can be reproduced from the w ¼ 22:5� ones
in Fig. 16(c) by counter-clockwise rotation of 90� about the devia-
toric origin R12;	ðR11 � R22Þ=2

� �
¼ ð0;0Þ. Again, it is stressed that

point symmetry of the curves with respect to the global origin
R12;	ðR11 � R22Þ=2
� �

¼ ð0;0Þ and Rm ¼ 0 is still preserved if one

compares the continuous (Rm > 0) with the dashed lines (Rm < 0).
Fig. 17 shows MVAR gauge surfaces in the deviatoric plane R12

— R11 � R22
� �

=2 for a porous crystal with K ¼ 2 slip systems, slip

orientations hðsÞ ¼ �22:5o;22:5o� �
, void shapes w ¼ 0:2;1ð Þ and

void orientations w ¼ 0�;22:5�;67:5�ð Þ. The various cross-sections
correspond to different hydrostatic stresses Rm ¼ 0;Rm ¼ 	0:5RH

m

and Rm ¼ 	0:9RH
m, where RH

m denotes the hydrostatic point
delivered by the model MVAR for hydrostatic loading for each of
the given cases in Fig. 17(a)–(d), respectively.

As observed in Fig. 17(a), which deals with circular voids, a
gradual shrinking of the curves appears while increasing Rm, as
expected. Moreover, as also seen in the previous case, the curve
exhibits an almost discrete character at small values of Rm ¼ 0
with tetragonal symmetry. These symmetries are preserved with
the addition of hydrostatic stress even though some additional
rounding is observed at high Rm ¼ 	0:9RH

m.
However, as shown in Fig. 17(b) (see Fig. 15(b) for the three-

dimensional surface), for an elliptical void with aspect ratio
w ¼ 0:2 (but still w ¼ 0�), the corresponding MVAR curves exhibit

an asymmetry with respect to the R12 axis, but still preserve the

symmetry with respect to the ðR11 � R22Þ=2 axis for Rm > 0. In
addition, the almost tetragonal symmetry still prevails for

Rm ¼ 0. As already discussed, this response is a direct consequence
of the geometric coupling of the crystal slip orientations and the
void shape at finite hydrostatic stresses. Note further that point
symmetry of the curves with respect to the global origin

R12;	ðR11 � R22Þ=2
� �

¼ ð0;0Þ and Rm ¼ 0 is still preserved.
Finally, in Fig. 17(c) and (d), an elliptical void (w ¼ 0:2) with angles
w ¼ 22:5�;67:5� are shown, respectively. In these two cases, the
gauge surfaces exhibit full asymmetry with respect to both axes
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for finite hydrostatic stresses Rm – 0, but preserve the tetragonal
symmetry for Rm ¼ 0. As in the case of K ¼ 3 slip systems, the
curves for w ¼ 67:5 in Fig. 17(d) can be reproduced from the
w ¼ 22:5� ones in Fig. 17(c) by counter-clockwise rotation of 90�
about the deviatoric origin R12;	ðR11 � R22Þ=2

� �
¼ ð0;0Þ. Again, it

is stressed that point symmetry of the curves with respect to the
global origin R12;	ðR11 � R22Þ=2

� �
¼ ð0;0Þ and Rm ¼ 0 is still pre-

served if one compares the continuous (Rm > 0) with the dashed
lines (Rm < 0).
7. Conclusion

In this work, a fully analytical constitutive model has been
developed for porous rate-dependent single crystals comprising
cylindrical voids with elliptical cross-section, subjected to plane-
strain loading conditions, accounting for full crystal anisotropy.
In order to achieve this goal, the variational nonlinear homogeniza-
tion method of Ponte Castañeda (1991a) has been used and modi-
fied (Danas and Aravas, 2012) to derive estimates but not bounds.
The modified variational (MVAR) model presented in this study has
been validated by comparison with full field FE calculations of sin-
gle- and multi-void periodic unit-cells. The MVAR model has been
found to be in good agreement with the FE results for a very wide
range of parameters describing the number and orientation of the
slip systems (i.e., crystal anisotropy), the creep exponent (i.e., non-
linearity) of the matrix crystal, the porosity and the void shapes
and orientations. The MVAR model has shown strong predictive
capabilities while exhibiting critical qualitative features.

Specifically, the MVAR model has been able to predict the
strong dependence of the effective response, and especially of the
average hydrostatic stress upon the number and orientation of
the slip systems as well as the shape and orientation of the voids.
The major finding of this work, is that for highly anisotropic crys-
tals (e.g., one or even two active slip systems) the porous crystal
can exhibit fully incompressible response, even in the presence
of voids. This of course affects the entire effective response of the
porous crystal for the entire range of stress states. That is the first
time such a result is presented in the literature and reveals the sig-
nificance of plastic anisotropy of the underlying phases upon the
macroscopic response of the material. Furthermore, it has been
shown that the void shape and orientation affect strongly the
response of the porous crystal. In particular, the effective response
becomes much softer as one goes from a circular void to an ellip-
tical one (which is suggestive of a crack-type geometry). In the
general case of elliptical voids oriented at an arbitrary angle (with
respect to the laboratory axes) and arbitrary number of slip sys-
tems, we have shown that the effective response exhibits no sym-
metries when plotted in the purely deviatoric plane (and at finite
hydrostatic stresses) thus indicating the non-trivial coupling
between the anisotropy of the underlying crystal and the (morpho-
logical) anisotropy induced by the shape and orientation of the
voids.

To the best knowledge of the authors, this is the first model—al-
beit in two-dimensions—in the literature that is able to deal with
general crystal anisotropy, general void shapes and orientations
and general in-plane loading conditions. In addition, the present
model, which includes at present no calibration parameters, has
been assessed to a large extent with robust periodic unit-cell
calculations and for a wide range of parameters (different number
and orientation of slip systems, void shapes and orientations, creep
exponents and porosity values). This gives confidence that a
corresponding three-dimensional model in the same lines as the
one proposed here is feasible since the backbone of the present
analysis was carried out in a general three-dimensional setting.
Finally, it should be pointed out that several important features
present mainly at finite strains, such as lattice rotations, evolution
of porosity (e.g., void growth), void shape and orientation are not
included in the present analysis (c.f. Danas and Ponte Castañeda,
2009b). These additional features would inevitably lead to well
known phenomena in porous materials such as material softening,
void shape effects, deformation localization (c.f. Danas and Ponte
Castañeda, 2012) and ultimately void coalescence (see for instance
Benzerga, 2002; Pardoen and Hutchinson, 2000; Morin et al.,
2015). Such a work is underway and will be presented elsewhere.
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Appendix A. Relation between the single crystal and the
isotropic matrix behaviors

As seen in subSection 2.3, in the special case of slip systems

with identical CRSS and reference slip rate (ðs0ÞðsÞ ¼ s0; ð _c0ÞðsÞ ¼
_c0; 8s ¼ 1;K), the viscoplastic stress potential of the single crystal
is written as

UðrÞ ¼
_c0s0

nþ 1
req

s0

ffiffiffi
3
p

� 	nþ1XK

s¼1

sin 2hðsÞ þ d
� ���� ���nþ1

: ðA:1Þ

Moreover, when we tend to the limiting case of isotropic matrix, i.e.
K�!1, or when we consider ‘‘equiangular slip systems’’ for K P 3,

XK

s¼1

sin 2hðsÞ þd
� ���� ���nþ1

¼K:
1
K

sin 2hðsÞ þd
� ���� ���nþ1

ffiK:
2
p

Z p=2

0
sinhð Þnþ1dh:

ðA:2Þ

One then recognize a ‘‘Wallis’’ integral (see Wallis, 1656),Z p=2

0
sin hð Þnþ1dh ¼

ffiffiffiffi
p
p

ðnþ 1Þ
C nþ2

2

� �
C nþ1

2

� � ; ðA:3Þ

where C is the C-function. Consequently, expression (2.15) can be
readily obtained.

Appendix B. Microstructural tensor in the limiting case of
K ! ‘ (isotropic matrix)

In the case of slip systems with identical CRSS s0 and reference
slip-rate _c0, the compliance tensor S0 of the linear comparison
composite is given by Eq. (3.4) by setting kðsÞ ¼ k and qðsÞ ¼ q.

Then using the fact that FðsÞ ¼ K� EðsÞ for all s ¼ 1;K leads to

S0

K
¼ 1

2k
1
K

XK

s¼1

EðsÞ
 !

þ 1
2q

K� 1
K

XK

s¼1

EðsÞ
 !

þ 1
3jK

J: ðB:1Þ

It is recalled that we need to
Next, in the limit K !1, we have the following identity

lim
K!1

1
K

XK

s¼1

EðsÞ ¼ 1
2p

Z 2p

0
EðhÞdh ¼ 1

2
K; ðB:2Þ

where h denotes any arbitrary slip orientation (see Fig. 1). Using the
identity (B.2) into (B.1), one can readily show that in the limit
q!1;j!1 and K !1, the microstructural tensor S�0 defined
in Eq. (3.8) becomes

lim
K!1

lim
q!1

lim
j!1

S�0
K
¼ 1

2
1

2w
G

� 	
ðB:3Þ

for general 2D elliptical voids (see Danas, 2008).
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