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proposed model, denoted as modified variational model (MVAR), is based on the non-
linear variational homogenization method, which makes use of a linear comparison
porous material to estimate the response of the nonlinear porous single crystal. Periodic
multi-void finite element simulations are used in order to validate the MVAR for a large
Keywords: number of parameters including cubic (FCC, BCC) and hexagonal (HCP) crystal anisotropy,
Crystal plasticity various creep exponents (i.e., nonlinearity), several stress triaxiality ratios, general void
Porous m?ter.lals shapes and orientations and various porosity levels. The MVAR model, which involves a
Homogenization .. . . . . . .

priori no calibration parameters, is found to be in good agreement with the finite element
results for all cases considered in the rate-dependent context. The model is then used in a
predictive manner to investigate the complex response of porous single crystals in several
cases with strong coupling between the anisotropy of the crystal and the (morphological)
anisotropy induced by the shape and orientation of the voids. Finally, a simple way of
calibrating the MVAR with just two adjustable parameters is depicted in the rate-in-
dependent context so that an excellent agreement with the FE simulation results is ob-
tained. In this last case, this proposed model can be thought as a generalization of the
Gurson model in the context of porous single crystals and general ellipsoidal void shapes
and orientations.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The constitutive response of metallic alloys is strongly affected by voids originating in the manufacturing process, that
have an important effect on the lifetime as well as deformability of materials. Indeed, the growth of initially present pro-
cessing induced voids in a nickel based single crystal superalloy as well as in standard polycrystals played a significant role
in limiting creep life, as recently shown by experimental observations (Srivastava et al., 2012; Kondori and Benzerga, 2014a,
b) at high enough temperatures on tensile specimens. The presence of voids (or cracks) in metals is known to be one of the
major causes of ductile failure, as addressed in earlier works by Mc Clintock (1968), Rice and Tracey (1969) and Gurson
(1977). So far, a large majority of the studies have been carried out in the context of two-phase material systems comprising
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Nomenclature v(S) corrector function
K number of slip systems
f porosity ue second-order Schmid tensor associated to the
wy, wy ellipsoidal void aspect ratios slip system (s)
n®, n®, n® unit orientation vectors defining the or- m®, s® unit vectors normal to the slip plane and along
ientation of the ellipsoidal voids the slip direction in the slip system (s),
Sq set of microstructural variables respectively
c stress tensor 7 resolved shear stress associated to the slip
D strain-rate tensor system (s)
G average stress tensor 7 critical resolved shear stress associated to the
G normalized average stress tensor, homo- slip system (s)
geneous of degree zero in & i reference slip rate associated to the slip sys-
D effective strain-rate tensor tem (s)
Geq average equivalent Von Mises stress 00 isotropic flow stress
om average hydrostatic stress o reference strain-rate associated to an isotropic
g normalized average equivalent Von Mises material
stress n creep exponent
Zm normalized average hydrostatic stress 0 Lode angle
U (o) viscoplastic stress potential z second-order shape tensor
U®@; s,) effective viscoplastic stress potential I, fourth-order hydrostatic tensor
/}\((SS)) p®, k linear comparison composite moduli P, P fourth-order Eshelby tensors
2, A9, & normalized linear comparison composite Q Q  fourth-order microstructural tensors
moduli S, S fourth-order tensors used to defined the
ﬁL @, S; s,) effective stress potential of the linear modified variational effective stress potential
comparison composite

an isotropic rate-(in)dependent matrix phase (metal usually described by von Mises yields criterion or creep potential) and
a voided phase (pores of spherical, spheroidal or arbitrary ellipsoidal shapes). The bibliography on this subject is vast and
the reader is referred to a recent review of Benzerga and Leblond (2010) for more details on the subject.

For rate-(in)dependent anisotropic matrix systems, fewer results have been obtained, generally based on a phenom-
enological Hill-type matrix (see Benzerga et al., 2004; Monchiet et al., 2008; Keralavarma et al., 2011). Porous single crystals
have for instance been studied through discrete dislocations dynamics (Huang et al., 2007, 2012; Hussein et al., 2008;
Segurado and Llorca, 2010), molecular dynamics at smaller scales (Traiviratana et al., 2008; Zhao et al., 2009; Tang et al.,
2010a,b), finite element simulations (Yerra et al., 2010; Ha and Kim, 2010), as well as other techniques such as quasi-
continuum methods (Sorkin et al., 2014; Amelang et al., 2015) and coarse-grained atomistic models (Shenoy et al., 2000;
Marshall and Dayal, 2014). Such anisotropic matrix systems have known slip directions and contain usually a small volume
fraction of impurities. When these material systems are subjected to external loads impurities fracture or decohere leading
to the creation of voids of various shapes, which in turn evolve in size, shape and orientation during the deformation process
(Srivastava and Needleman, 2012). This complex evolution of microstructure together with the evolution of the rate-de-
pendent matrix anisotropy is critical in the prediction of the eventual failure of the specimen under monotonic and cyclic
loading conditions.

Nonetheless, there have been only a handful of models for porous single crystals which deal with special void geome-
tries, loading conditions and slip system orientations. Such studies involve the study of cylindrical voids with circular cross-
section in a rigid-ideally plastic face-centered cubic (FCC) single crystals using slip line theory (Kysar et al., 2005; Gan et al.,
2006; Gan and Kysar, 2007), the study of two-dimensional “out of plane” cylindrical voids with circular cross-section
subjected to anti-plane loadings (Idiart and Ponte Castafieda, 2007) and that of spherical voids and general loading con-
ditions (Han et al., 2013; Paux et al., 2015). While each one of these studies has its own significant contribution to the
understanding of the effective response of porous single crystals none of them is general enough in the sense of arbitrary
void shapes and orientations and general loading conditions.

The scope of the present work is therefore to develop a three-dimensional model that is able to deal with arbitrary
crystal anisotropy, arbitrary ellipsoidal void shapes at any given orientation and general loading conditions. The proposed
model is based on appropriate extension of a former work of the authors (Mbiakop et al., 2015b) in two-dimensional porous
single crystals. More specifically, in Sections 2 and 3, we use the variational linear comparison composite theory of Ponte
Castafeda (1991a) to provide a fully analytical model, called the modified variational (MVAR) model (see Danas and Aravas,
2012; Mbiakop et al., 2015b), in three-dimensions. Subsequently, in Section 4, we present in detail the finite element (FE)
periodic unit-cell framework which will be used to assess the MVAR model as well as to visualize the underlying de-
formation fields in the context of porous single crystals. In Sections 5 and 6, we present comparisons between the MVAR
predictions and the FE results for a wide range of crystal anisotropy (FCC, BCC, HCP), arbitrary ellipsoidal void shapes and
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Fig. 1. Representative ellipsoidal voids embedded in a crystal matrix.

orientations, porosities, creep exponents and general loading conditions. In the sequel, in Section 7, a simple way of cali-
brating the MVAR model in the rate-independent context with two adjustable parameters is discussed so that an excellent
agreement with respect to the numerical results is obtained. Finally, we conclude with Section 8.

2. Problem setting

Consider a representative volume element (RVE) £2 of a two-phase porous single crystal with each phase occupying a
sub-domain Q® (r = 1, 2). The vacuous phase is identified with phase 2 and the non-vacuous phase (i.e., single crystal
matrix) is denoted as phase 1. At this point it is important to note that we make use of the hypothesis of separation of length
scales which implies that the size of the voids (microstructure) is much smaller than the size of the single crystal and the
variation of the loading conditions at the level of the single crystal.

2.1. Microstructure

In the present study, following previous work of Willis (1977), we consider a “particulate” microstructure which is a
generalization of the Eshelby (1957) dilute microstructure in the nondilute regime. More specifically, we consider a “par-
ticulate” porous material (see Fig. 1) consisting of ellipsoidal voids aligned at a certain direction, whereas the distribution
function, which is also taken to be ellipsoidal in shape, provides information about the distribution of the centers of the
pores. For simplicity and in order to keep the number of microstructural variables low, we choose the shape and orientation
of the distribution function to be identical to the shape and orientation of the voids themselves (see Danas and Ponte
Castafieda, 2009a). Nevertheless, this analysis can be readily extended to distribution of a different shape and orientation
than the voids (Ponte Castafieda and Willis, 1995; Kailasam and Ponte Castafieda, 1998; Agoras and Ponte Castafieda, 2013).
Thus, as shown in Fig. 1, the internal variables characterizing the state of the microstructure are:

® The porosity or volume fraction of the voids f= 14/V, where V = V4 + V4 is the total volume, with V; and V- being the
volume occupied by the matrix and the vacuous phase, respectively.

® The two aspect ratios wy = as/a;, wa = as/az (ws = 1) with 2a; (i = 1, 2, 3) denoting the lengths of the principal axes of the
representative elliptical void.

® The orientation unit vectors n® (i = 1, 2, 3), defining an orthonormal basis set, which coincides with the principal axes of
the representative ellipsoidal void.

The above set of the microstructural variables can then be denoted by the set
Sa = {f, wi, w2, U, n@, n®}. M

Moreover, it is useful to explore other types of particulate microstructures, which can be derived easily by appropriate
specialization of the aforementioned variables s, (Budiansky et al., 1982). In this regard, the following cases can be
considered:

® ;- co OI dy — oo OF a3 — oo: In this case, if the porosity f remains finite, the cylindrical microstructure is recovered,
whereas if f — 0, a porous material with infinitely thin needles is generated.

® g, —» 0 or a; — 0 or as — 0: Here, if the porosity f remains finite, a porous laminated microstructure is recovered (or
alternatively a “porous sandwich”), whereas if f — 0, a porous material with penny-shaped cracks is formed and thus the
notion of density of cracks needs to be introduced.
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To conclude, in the general case, where the aspect ratios and the orientation of the ellipsoidal voids are such that
wi # Wy # 1 and n® # e®, the void shape (morphological) induced anisotropy is superposed upon the existing anisotropic
single crystal leading to an overall non-trivial anisotropic response of the composite whose modeling is a significant
challenge.

2.2. Effective behavior: general considerations

The local constitutive behavior of the matrix phase is characterized by an anisotropic, convex stress potential Uy = U
while the stress potential of the porous phase U, = 0. As a consequence of the Hill-Mandel lemma (Hill, 1963; Mandel, 1964),
the effective stress potential U for a porous medium is reduced to

U@ s.)=01-f) inf L[Qm U(s) dV,

5e5@ V(D) )

where

S@) = {a, div(e) = 0 in 2D, en = 0 on 0P, 1 / cdV= E},
V) Ja 3)
is the set of statically admissible stresses that are compatible with the average stress & and a traction free void surface.
Subsequently, the effective strain-rate tensor can be expresses as

~ U
D= po (5). @)

In general, one has to deal with nonlinear constitutive relations for the constituents as well as random spatial dis-
tributions of the voids and consequently, the above described problem is non-trivial. In this view, the goal of the present
work is to propose approximate, albeit robust and rigorous, homogenized models for such porous single crystals. In the next
sections, we define the local constitutive response of the single crystal matrix and we provide both analytical and numerical
estimates of the effective response of such porous single crystals.

2.3. Constitutive behavior of the constituents

Let us consider a reference single crystal which undergoes viscoplastic deformation on a set of K preferred crystal-
lographic slip systems. At this stage, for simplicity in the homogenization procedure elasticity effects are neglected. These
systems are characterized by the second-order Schmid tensors p® (Vs =1, ..., K) given by

1
) = —m® ® O + §® m®),
H 2( ® ® ) (5)
with m® and s® denoting the unit vectors normal to the slip plane and along the slip direction in the sth system,
respectively.
When the crystal is subjected to a stress &, the resolved shear stress acting on the sth slip system is given by the Schmid
law

78 = 6u®, (6)

while the strain-rate D in the crystal is assumed to be given by the superposition of the slip-rates of each slip system, i.e.
D= Zle 7©u®. The slip-rate y© is assumed to depend on the resolved shear stress 7, via a slip potential ¥© in such a way
that

oPe

5 =
ARPWE)

@®).

@)
The slip potentials ¥® are assumed to be convex, incompressible and expressed via the power-law form

. (5)...(S) n+1

70 T 7]
T(S)(T) _ /0 0 7| ,

n+1\z®

®

where n > 1, ¥ and 7§ denote the creep exponent, the reference slip-rate and the reference flow stress (also denoted as
critical resolved shear stress CRSS) of the sth slip system, respectively. In addition, let us notice that the limiting values of the
exponent, n=1 and n - o correspond to linear viscoelasticity and rate-independent perfect plasticity, respectively. In this
connection, it is recalled that even though the slip potentials ¥ are not differentiable in the perfect crystal plasticity case, it
is still possible to relate y© and ¢©® via the subdifferential of convex analysis.

An alternative and equivalent way to write down z® in Eq. (6) is by use of the fourth-order “Schmid” projection tensors
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E® (see DeBotton and Ponte Castafeda, 1995), such that

ES.¢
ko= [T2 2 B9 =240 @u®  Vs=1,K.
T 2 p Qp ©)

Adding up the potentials of all the slip systems we obtain the constitutive behavior of the matrix phase, characterized by
the viscoplastic stress potential U such that

K K ;6. 1 K6 () (n+1)/2
T Y RICTI R YR il [ ol Il
n+1 n+ 1|2y

s=1 s=1

7§” 10)

s=1

Obviously, in this last expression, U is a homogeneous function of degree n+1 in the stress o.
The corresponding Cauchy stress ¢ and the Eulerian strain-rate D in the matrix are related through the constitutive
relation

ou
D=""). an

2.4. The limit of infinite equiangular slip systems

The purpose of this section is to establish a connection between stress potentials corresponding to the case of infinite slip
systems (i.e., K - o) and purely isotropic stress potentials. The results of this section will be used in Section 3.3 to obtain
accurate estimates of the porous single crystal in the case of purely hydrostatic loading conditions.

In view of this scope, we choose to study the special, albeit very useful case of K equiangular slip systems (system equally
partitioned in 3D space) with identical CRSS and reference slip-rate such that

®=wn =1 Vs=1K (12)

This analysis will be shown to be of critical importance in the following sections.
If one considers a triaxial loading state such that the three stresses are aligned with the fixed laboratory axes, the stress
tensor can be written as

2
c=op{l,1,1} + ;eq{cos 0, — cos(0+ %) - cos(@ - %)}

13)

where oeq = /3 S Sii/2, om = okk/3 and cos(9) = 27 det(sU)/Zafq denote the equivalent Von Mises stress, the hydrostatic stress

and the Lode angle, respectively, while s is the stress deviator. By introducing this relation in Eq. (10) in the limit K—s oo, the
viscoplastic stress potential U becomes isotropic and its numerical computation leads to the following isotropic potential
(see details in Appendix A):

. Iz s
11<1£120 U) = ni_:](ﬂeq ga)"HKlifg(J’oTO "K). (14)
Here, gy is a periodic function of € with period z/3 (i.e., g, = g,/3) while [n is @ monotonically decreasing function of the

exponent n. These functions were obtained numerically (see details in Appendix A) and fitted with simple analytical
expressions, such that

x (cos(a - f))nﬂ By = A g2
8o = 3)) » M=

Next, by introducing ¢ and ¢ as the reference strain-rate and isotropic flow stress of an isotropic material, respectively,
one can set

15)

B I(lilpw(70¢5"1<) = €pog ™. (16)

This implies that the infinite-slip-system stress potential limk_ . U(s) in Eq. (14) leads to a Lode-dependent isotropic stress
potential of the form

— éoo_()_n n+1
Uy (o) = 1 (Geq )™ 17)
As already noted in the beginning of this section, this last result will be very useful in obtaining accurate results for the
purely hydrostatic response of porous single crystals (see Section 3.3) by appropriate use of exact results that exist in the
context of porous materials with purely isotropic matrix phase (such as the one in Eq. (17)) and hydrostatic stress loading
states.
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2.5. Gauge surface

In this section, we recall the notion of the gauge surface. Gauge surfaces are equipotential surfaces which have a physical
importance in the present analysis as they characterize the domain of statically admissible stresses and are analogous to the
yield surfaces in rate-independent plasticity.

Using the homogeneity of the stress potential (10) for single crystal matrix together with the general definition of the
effective stress behavior (2), one can show that the effective stress potential U is also homogeneous of degree n+1 in &.

Therefore, it is convenient to introduce the so-called gauge surface P, (the subscript being used to denote the depen-
dence on the creep exponent n) as in Leblond et al. (1994). More precisely, it is sufficient to study only one of the equi-
potential surfaces {z, U@) = const} i.e., the so-called gauge surface P, of the porous material. For instance, in the case of slip
systems with identical CRSS 7, and reference slip-rate j,, one can define the equi-potential surfaces

. _-n
P = {f, UE; s0) = :;OTO }

+1 (18)

Here ¥ is a normalized stress tensor which is homogeneous of degree zero in . Its computation in the context of
numerical homogenization is further detailed in Section 5.1. Then, the gauge function &, provides the equation for the gauge
surface via the expression

T eRe=HE, s =0+ 1DUE; s, - 75" = 0. (19)

The subscript n has been used to indicate that the gauge function depends explicitly on the creep exponent of the single
crystal matrix. The above definitions of the gauge surface and gauge function are analogous to the well known yield function
and yield surface in the context of rate-independent plasticity (n — oo).

3. The homogenization model

The homogenized model that is derived in this section derives from the nonlinear variational (VAR) homogenization
method developed by Ponte Castafieda (1991a, 2002a) (see also its interpretation as a secant method by Suquet, 1995),
which is based on the construction of a linear comparison composite (LCC) with the same microstructure as the nonlinear
composite. The different phases of the LCC are determined through well defined linearizations of the given nonlinear phases
by making use of a suitably designed variational principle.

The basic idea behind the VAR method and consequently the choice of the LCC is to replace the optimization problem
with respect to the stress field ¢ in Eq. (2) by an optimization problem with respect to the phases of the LCC. The advantage
of this operation is that instead of trying to propose stress fields (as is done usually in standard limit analysis methods) that
need to satisfy the boundary conditions and are subject to differential constraints (see Eq. (3) for statically admissible fields),
one can use piecewise constant moduli of the linearized phases to approximate the effective response of the nonlinear
composite.

In order to clarify further the above described idea and the subsequent analysis, it is useful to recall first the VAR method
and some of the basic steps needed to reach to the final principles in the context of two-phase porous composites. Note that
the porous composite comprises two phases. A vacuous phase with stress potential equal to zero (i.e., U® = 0) and a matrix
phase with UV = U.

Then, following the derivations presented in Ponte Castafleda (1991a, 2002a), we start by noting that
U(e) = Ui(o) + [U (o) — UL(e)] with U, being the stress potential of a linear material serving to describe the matrix in the LCC
which is defined in the following. Then, using the fundamental inequality, infyca{f %) + (0} > infyea{f )} + infyea{g®)}

as well as the identity infyen{-g((x)} = — sup,c4{g(x)}, one gets
~ 1 . 1
U0 = - inf ) Lm U(e) dV
201,50+ (A~ inf —— [ 1U0)~ Ui, 91 dV,
ses@ V(QM) Jab 20)

where S is the fourth-order compliance tensor (having both minor and major symmetries) of the matrix phase in the LCC
and serves as a “trial tensor” with respect to which we will optimize later. In turn, U, denotes the effective stress potential of
the linear comparison composite given formally by

U0.@,S; s=(1 - f) inf

. 1
+€S@) V(.Q(l)) _[(.2(1) UL(O'. S) dv.

21

For the evaluation of J; in the above expression any linear homogenization estimate that is available in the literature can be
used. If, for instance, one considers the Hashin-Shtrikman bounds then the procedure described in (20) will deliver
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nonlinear bounds. If, instead, one uses the self-consistent estimates for UL, then one will get estimates for the nonlinear
composite J.

Next, we observe that the final term in (20) is as difficult to optimize as the original problem and it contains the dif-
ference between the nonlinear and the linear stress potential, i.e., U — U;. Note however that as a result of the power-law
form of U (see Eq. (10)), the last term in (20) is negative and therefore by relaxing the constraint in ¢ € S(7) with constant
stress fields, denoted for clarity as &, we obtain the following inequality (Ponte Castafieda, 2002a)

inf

1 . ~ ~
0 o S 1U@) = Ui(e,S)] dV > inflU @) - Us(@, S))

=— sL}p[UL(ﬁ. S) - U@®)]

=-v(S). (22)

where the functions v(S) have been introduced for convenience.
Finally, we observe that the inequality (20) is valid for any choice of the compliance tensor S. Thus by combining results
(21) and (22) and optimizing further the effective potential U with respect to S, one gets (Ponte Castafieda, 1991a)

U@ 50 2 sup{ 0@, Si 50 - A = v .
s (23)
At this point it should be pointed out that the goal of the present work is to derive a simple analytical model and thus no
attempt to provide bounds is made from this point on. This allows for the relaxation of the above “sup” processes and their
replacement by stationary operations, which lead to estimates and not bounds. The reason for this relaxation is discussed
further in Appendix B and is related to the analytical tractability of the problem (see relevant discussion in the context of
Egs. (81) and (82)). Thus, by replacing the “sup” operations in (23) and (22) with corresponding “stat” ones, one gets VAR
estimates of the form (Ponte Castafieda, 2002a)
U@; s.) = stsat{LNIL(E, S50 - - stat[U,6,9-U@] }. 24)
The above operations, albeit non-trivial algebraically, are fully defined and one can proceed with the estimation of . We
only need to define the compliance tensor, S, of the linearized matrix phase, i.e., choose the constitutive response of the
matrix in the linear comparison composite (LCC) and then carry out the above prescribed optimization operations.

3.1. Choice of the linear comparison composite (LCC)

In this section, we choose the compliance tensor S of the matrix phase in the linear comparison composite (LCC) in such a
way that will allow us to get explicit estimates for U(@) in (24). The difficulty in the choice of § is twofold. First, S does not
need to be constant per phase (see Herve and Zaoui, 1993). While such a choice would lead to more accurate estimates, in
general, one would have to resolve to fully numerical optimization of the problem. This makes it implicit and intractable for
numerical implementations and modeling of real geometries. The second point is that one can choose S to be piecewise
constant but in its most general form, i.e, optimize with respect to all components of the fourth-order tensor S after
symmetries are taken into account (see DeBotton and Ponte Castafieda, 1995; Idiart and Ponte Castafieda, 2007). This choice
again leads to a convex but sub-differentiable optimization problem for /() as a function of S and thus one has to resolve
again to a fully numerical optimization problem (except in special cases as in Idiart and Ponte Castafieda, 2007). For this
reason, in the present work, we proceed by choosing not only a piecewise constant S, but also of a special form. This form is
directly inspired by the viscoplastic stress potential of the matrix U in the special linear case of n=1 in Eq. (10). Then, one
can write (DeBotton and Ponte Castafieda, 1995; Mbiakop et al., 2015b)

1
210

K K
Ui, S) = %o-(x)s-o'(x), s=) E® + % Y FO %], vs=1,K.
s=1 s=1

25)

Here, S has both major and minor symmetries, E® are the Schmid fourth-order projection tensors defined in Eq. (9), K and ]
denote the fourth-order shear and hydrostatic projection tensors,' respectively, while F® = K — E®. Note that for each slip
system s = 1, K, the triplet (E®, F®), J) forms a fourth-order tensor basis.?

In the same Eq. (25), A® are unknown moduli that remain to be optimized according to the optimization procedure in
(24). By contrast, p describes physically the modulus “perpendicular” to the slip directions. This modulus is infinite since no
slip occurs in that direction and hence one can set p — . In turn, x is the bulk modulus which also needs to be set to x - o

! The projection tensors in index notation become, lijki = (8ikdjt + 8it8jk)[2, Jij = ijdki/3 and Kijki = Lijkt — Jijig With i, j, k, 1=1,2, 3.
2 FO.F®) = F®), E).E®) = E®), EO.F®) = FO.E9 =0, Vs=1,K
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due to incompressibility of the matrix phase. It is straightforward to observe that if one sets p - « and x —  in (25), we
recover the linear stress potential of Eq. (10). Nevertheless, these two moduli p and k have been introduced so that we can
evaluate the Eshelby integrals (see Egs. (31) and (33) below), which otherwise would have been singular. Instead by con-
sidering the limits p - o and « — o during the evaluation of the Eshelby integrals but not before, the singularities dis-
appear. A similar notion has already been used in the context of isotropic porous materials with the use of a bulk modulus
which is set to infinity during the evaluation of the Eshelby integrals but not before (see for instance, Willis, 1978; Danas
et al., 2008b).
The above choice for the LCC allows to write that Uy (e, S) = U (6, ). Then, the corrector function v(S) = v(1®), in-
troduced in Eq. (22) reads
©®)) = 6. 1) — UG

Va®) = sté':lt[UL(a. 19~ U@)]. 26
where it is recalled that ¢ is a constant second-order symmetric tensor which is obtained via the “stat” operator in (26). In
the following, using (25) and (26), one can show that in the context of a porous material the effective energy function (24)
takes the form

Uvar @; 50) = 0.6, 19 s,) - (1 - |,

Ovar @ 52) As(st)ito[ULw 1955 = (1 = fvae) ] o
where f is the porosity and U; is the effective energy of the LCC defined formally in Eq. (21) and is explicitly evaluated in
Appendix B. The two optimization procedures involved first in (26) with respect to the constant tensors ¢ and subsequently

in Eq. (27) with respect to the moduli A® can be carried out analytically, but are too cumbersome and are detailed in
Appendix B.

3.2. Variational estimate for porous single crystal

By carrying out the optimizations described in the previous section, we show that the variational (VAR) estimate of the
effective stress potential of the porous single crystal reads

- K Lo |z )+ i
Uvar@; Sa) = (1 = f)" Z M[u] , 0= [(Eﬂ(s))z + £E~S*~E:| s

Sn+ 1| 28)
or equivalently
~ K 5O (g &yn A (n+1)/2
Uyar @ 50) = (1 = fyn Z %(Esvan(s)ﬁ) Y
=1 (29)
with
~var, 1 fa
Svar () L TR
20 Tk 30)

for all s = 1, K. It is interesting to note that Uar is of the same form as the stress potential of the matrix phase in Eq. (10),
augmented with the additional term involving the fourth-order microstructural tensor S*. This tensor is a function of the
void shape and orientation, as well as of the number K and orientation of the slip systems, i.e., §* = §*(wy, ws, n®, u®, K, J)
withi =1, 2,3 and s = 1, K. More specifically, $* is given by

K
§=0"- Y 1o, Q= lim lim[ss' - S5'P S5'l.
2 ~ o
s=1 p—o0 K50 (3‘1)

where 8 is a reduced version of the S tensor defined in Eq. (25), and reads (see Appendix B for more details)

S 1 1 < 1
8227E(S)+7A2F(5)+ij, VS:1,1<,
s=1 2 P s=1 3& (32)
where 5 ~ p and & ~ « have been introduced for convenience and are further detailed in Appendix B in the context of
Egs. (78) and (79). In turn, P is a microstructural tensor related to the Eshelby tensor (Eshelby, 1957) and is given by

willis (1977)

S‘_] - i
1 (Siakvalb)™ & €1 jyckty a5,

P =
=4 det Z Je=1 1Z-1.£3 (33)

The brackets (ij)(kl) denote symmetrization with respect to the corresponding indices, & is a unit three-dimensional vector
and Z is a second-order tensor serving to describe the shape and orientation of the voids, i.e.,
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Z=win® @ n® + w,n® @ n® + n® @ n®. (34

At present, the evaluation of the tensor §*, i.e., both the limits 5 and % in Eq. (31) as well as the integration in (33), are
carried out numerically. Further optimization of this procedure is needed particularly if extreme values of the aspect ratios
(e.g., wi < 0.05 or w; > 20 with i=1, 2) are used since the kernel of the integral (33) becomes highly oscillatory. Nonetheless,
such an operation is beyond the scope of this study and will not be pursued here. It should be mentioned, however, that in
the case of two-dimensional systems (2D crystal plasticity and cylindrical voids), the tensor §* can be evaluated analytically
as discussed in Mbiakop et al. (2015b).

3.3. Correction of the hydrostatic point

It is well known from Ponte Castafieda (1991b) and Michel and Suquet (1992) that in the case of isotropic matrix and
hydrostatic loadings the variational estimates are overly stiff. This is also the case in the present work, i.e. the estimate (29)
for U, is very stiff when compared to numerical unit-cell calculations (performed in the present study and described in the
following section). A way to remedy this overly stiff response is to use exact results that are available in the context of
porous materials with isotropic matrix phases such as those derived in Eq. (17).

In this regard, the goal of this section is to propose a correction to the Uy estimate (29) in the limit of purely hydrostatic
loadings. Unfortunately, in the present case of anisotropic crystal plasticity no simple analytical solution is available in the
purely hydrostatic limit. Nevertheless, one can insist that the estimate (29) must recover the result of an isotropic spherical
porous shell (or equivalently a composite sphere assemblage (CSA) microstructure) in the limit of infinite equiangular slip
systems (K — o), spherical voids and hydrostatic loadings. The reason is that in that theoretical limit, the response becomes
fully isotropic, with a matrix phase described by a stress potential of the form (17).

Specifically, it has recently been shown by Benallal et al. (2014) and Benallal (2015) (but see also in the context of a Tresca
porous material the works of Cazacu et al., 2014; Revil-Baudard and Cazacu, 2014) that the purely hydrostatic response of a
spherical porous shell whose matrix phase is described by a stress potential of the form (17) is identical to that of a porous
spherical shell with a ]J,-type matrix phase and is given by the closed form expression (Leblond et al., 1994; Danas et al.,
2008b)

~ €ooh (3om n+1 &h
Uiso(E) = ey ’ : = n(f—lln - 1)'
0

n+ 1\ 285 (35)

where g and ¢p denote the reference strain-rate and the isotropic flow stress of the isotropic matrix, respectively. This result
is valid for isotropic potentials such as the one in Eq. (17) corresponding to infinite slip systems.

Next, motivated by similar work on isotropic matrix systems (Danas and Aravas, 2012 but see also Danas et al., 2008a,b),
avar,(s) amvar,(s) .

we replace S with S in (29), to get

~ K () ()1 R n+1)2
Unvar @5 So) = (1 = f)™" Z M(E_vaar,(s)_g) s
o on+1 (36)

where
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The label “mvar” refers to “modified variational” (MVAR), whereas the factor “q;” remains to be identified so that the MVAR
estimate recovers the exact result (35) in the limit of infinite slip systems K—co.

In view of this, we consider a purely hydrostatic loading &; = 5, 6; and spherical voids (i.e., w; = w, = 1) embedded in a
single crystal comprising slip systems with identical CRSS and reference slip rate, i.e. (0)® = 7, (%) =7, Vs=1, K.In the
case of infinite equiangular slip systems and purely hydrostatic loadings, Eq. (36) becomes

Ovar @ S0) = (1 _f),n(iqu)mm/z -

lim(yyzo " K).

20 n+ 1« 38)
Next, using Eq. (16), and setting Eq. (35) equal to (38), i.e., Ovar = Uiso, we readily obtain
5 [a-pem|" "
q; = f{n(fl/n_‘l)} ’ 39)

where /3, is given in (15).

While this correction establishes that the Upyqr in (36) recovers the isotropic limit (i.e., infinite slip systems and spherical
voids), there is, to this day, no specific guarantee that this estimate will be sufficiently accurate for any void shape and
orientation. Nonetheless, we will show in the result sections that the robust character of the original variational method
together with the proposed correction in this section gives sufficiently good quantitative agreement when compared with
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full field finite element simulations for a large range of void shapes and orientations.

3.4. Summary of the MVAR model and the rate-independent limit

To facilitate the reader with the main results of the present work, we summarize here the final equations of the proposed
MVAR model. Therefore, the effective stress potential of a porous single crystal is given by (see Eq. (36))

~ K 5 (7 &)y-n ~ n+1)/2
Umvar @ s0) = (1 = f)" z M(E.vaah(s)ﬁ) i

o o+l (40)
where
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where u® is the Schmid tensor defined in (5) and $* is evaluated by Egs. (31)-(34).
In the special case of rate-independent porous single crystals, i.e. n—soo0, the MVAR yield criterion is defined via the
function @pnyer as

_ amvar,(s) _
VG-S -5 ©

‘Emvur(ﬁ; Se) = Max -1 =0,
s=1.K 1-f )
where §™"® is given by (41) with
q = 5 1-f
TUVZ Finags s

At this point, it is relevant to mention that the proposed model exhibits many similarities with the corresponding MVAR
model for porous materials with a J, matrix phase (Aravas and Ponte Castafieda, 2004; Danas and Aravas, 2012) and thus its
numerical implementation is expected to be rather straightforward. For this, evolution equations for the microstructural
variables need to be provided which is work underway.

4. Numerical homogenization

Numerical techniques such as the finite element method are able to solve for the local field in a porous material, provided
that the exact location and distribution of the pores is known. However, in most cases of interest, the only available in-
formation is the void volume fraction (or porosity) and, possibly, the two-point distribution function of the voids (i.e.,
isotropic, orthotropic etc). In addition, for sufficient accuracy the element size that should be used in a finite element
program must be much smaller than the size of the voids, which in turn is smaller than the size of the periodic unit-cell,
especially when multiple pores are considered. Thus, the computation is very intensive in time. Due to all these reasons, it is
very difficult to use the numerical results in a multi-scale analysis, especially when the unit-cell is rather complex.

Nevertheless, one could use the numerical periodic homogenization technique as a rigorous test-bed to assess the
simpler analytical models as the one proposed in the previous section. More precisely, we can analyze the problem of a
periodic porous material considering a unit-cell that contains a given distribution of voids. In this regard, it is well known
that a random porous material (e.g., the one in the analytical model presented in the previous section) and the periodic
material exhibit similar effective behavior either in the case where the distribution of voids is complex enough (adequate for
large porosity) or in the limiting case where the porosity is small enough. Moreover, in these cases, the periodic unit-cell
estimates, and consequently the effective properties of the periodic composite, are independent of the prescribed periodic
boundary conditions (see for instance Gilormini and Michel, 1998). In this regard then, the comparison between the pro-
posed model and the FE periodic unit-cell calculations is meaningful either for complex periodic geometries at finite por-
osities or for simpler periodic geometries and small to dilute porosities.

The following FE calculations have been carried out with the commercial code (Abaqus, 2009) by the use of the crystal
plasticity user-material subroutine of Huang (1991) and Kysar (1997).
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4.1. Unit-cell geometries and periodic boundary conditions

In order to validate the model, as explained before, FE periodic unit-cell calculations need to be carried out. Hence,
several unit-cell geometries used in our computations, subjected to periodic boundary conditions, would be presented in
this subsection. The present FE calculations are carried out using a small strain formulation since the scope of the study is
the estimation of the effective response of the porous crystal with a given microstructural realization but not the evolution
of microstructure which is left for a subsequent work. Furthermore, it is important to notice that the entire unit-cell is
considered here because of the complex geometry used as well as due to the fact that there exist no planes of symmetry in
general, due to the coupling between the crystal anisotropy and the morphological anisotropy.

4.1.1. Unit-cell geometry

Before we present the various geometries of the unit cells considered, it is important to note that Fritzen et al. (2012)
have shown in the context of porous materials with isotropic matrix that at small porosities (f < 1%), a simple unit-cell with
a single void in the middle gives sufficiently accurate results when compared with those obtained with a unit-cell con-
taining multiple voids randomly distributed. This observation has been verified in the present context of porous single
crystals and has been found to hold too. Therefore, no further discussion will be done about this point in the rest of this
work. Nonetheless, since the numerical results considered subsequently include porosities of f=5% — where a more
complex unit cell is necessary — we present briefly below the procedure of creating unit-cells with multiple voids randomly
distributed.

More specifically, for spherical voids, we consider a uniform distribution of voids, i.e. multi-void geometries. In this
regard, we make use of monodisperse distributions (e.g. Fig. 2a and b) that are constructed by means of a random sequential
adsorption algorithm (see Rintoul and Torquato, 1997; Torquato, 2002) which generates the coordinates of the pore centers.
Polydisperse distributions of voids (Lopez-Pamies et al., 2013) are not necessary at such low porosities. For monodisperse
distributions, the radius of each void is

R L(i)w,

4zN (45)

with N being the number of pores in the unit-cell and f the porosity.

In addition, the sequential addition of voids is constrained so that the distance between a given void and the rest of the
voids as well as the boundaries of the unit-cell takes a minimum value that guaranties adequate spatial discretization. In
order to achieve this we have used the rules described in details in Segurado and Llorca (2002), Fritzen et al. (2012), Jimenez
and Pellegrino (2012), Lopez-Pamies et al. (2013), Lopez Jiménez (2014) and for the sake of brevity are not repeated here.

In the case of ellipsoidal voids, we consider only porosities of f=1%, and thus geometries with one single void in the
middle of the unit-cell are sufficient to estimate the effective behavior of the porous material (see Fig. 2c and d).

Moreover, it is useful to note that the meshes are made of quadratic ten-node tetrahedral elements C3D10 (see Fig. 2b

b

Fig. 2. Undeformed unit-cell “square” geometry in the case of (a), (b) a distribution of several spherical voids (c), (d) a single ellipsoidal void.
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and d), generated with the open source meshing code NETGEN. In the single-void unit-cells, a mesh convergence study
considered three different meshes, i.e, d.o.f. equal to 104, 3-104 and 10°. The mesh with ~3-104 d.o.f gave converged results
for the average stresses in the unit-cell. In turn, for the multiple void case we considered meshes with 5-104, 10° and 5-105.
The one with 10° exhibited converged average stresses. Furthermore, in the context of f=5%, a convergence study with
respect to the number of voids per unit cell has also been carried out. By using several unit cells with a number of voids
equal to 10, 30, 50 and 100, we found that convergence of the macroscopic average stress is obtained for 50 voids.

4.1.2. Periodic boundary conditions

In this section, we discuss the application of periodic boundary conditions necessary for the analysis of the above de-
scribed periodic unit cells. The periodic boundary conditions are expressed in this case as (Michel et al., 1999; Miehe et al.,
1999)

v(X) = D-Xx 4+ v+(X), v+ periodic, (46)

where the second-order tensor D denotes the symmetric part of the average velocity gradient, x denotes the spatial co-
ordinates and v+ is a periodic field.

Next, one needs to fix one node to cancel the rigid body motion in the FE calculations. For convenience, we choose this
node to be at the origin such that v;(0, 0, 0) = 0 (i=1,3).

Subsequently, one can subtract the nodal velocities of opposite boundary sides (where v+ is equal, see Aravas, 1992) so
that we get the following nodal constraints for the corner nodes of the cube, i.e.,

vi(Ly, 0, 0) — v;(0, 0, 0) = Di1L1 = v;(Ly, 0, 0)
vi(0, Ly, 0) — v;(0, 0, 0) = DinL = v;(0, Ly, 0)
vi(0, 0, L3) — v;(0, 0, 0) = DjsL3 = v;(0, 0, L3), Vi=1,3 @7

The above simple relations show that the velocity components of the corner nodes (L;, 0, 0), (0, L,, 0) and (0, 0, L3) are one-
to-one connected to the symmetric part of the average velocity gradient D. Then, one can write the constraint equations for
the rest of the nodes lying on opposite faces of the cube making use of the result (47), i.e.,

vi(L1, X2, X3) — v;(0, X2, X3) = DiyLy
Vi(x1, Lo, X3) — Vi(x1, 0, X3) = DinLo
Vi(x1, X2, L3) — vi(x1, X2, 0) = DisLls, Vi=1,3. (48)

The above algebraic analysis reveals that all periodic linear constraints between all nodes can be written in terms of the
velocities of three corner nodes, i.e., v;(Ly, 0, 0), v; (0, Ly, 0) and v;(0, 0, L3), which, in turn, are given in terms of D by Eq. (47).
This, further, implies that the only nodes that boundary conditions need to be applied are lying on opposite faces of the cube
(L4, 0, 0), (0, Ly, 0) and (0, 0, L3) (together with the axes origin (0, 0, 0) which is fixed).

4.2. Loading through stress triaxiality control

In order to validate the model proposed in this study, it is convenient to apply D in such a way that certain stress
components in the unit-cell remains constant.

In particular, we discuss the methodology for the application of a constant average stress triaxiality and constant average
Lode angle in the unit-cell. This methodology has been originally proposed by Barsoum and Faleskog (2007), Dunand and
Mohr (2014) and further discussed in Mbiakop et al. (2015a). While general loading conditions can be applied in the periodic
unit-cells described above we will only restrict attention here to purely triaxial loads and general crystal anisotropies and
void shapes. On the other hand, the principal components of the stress field can be expressed as a function of the average
stress triaxiality Xs = &n/5eq and the average Lode angle 6, via

(71, 32, 33} =4C0S @, — cos(é + ﬁ), - cos(§ - f) + iX;{l, 1, 1}.
25 3 3 2 (49)
where 5, denotes the equivalent Von Mises part of &.

As a consequence of above-defined load and the periodic boundary conditions, the average deformation in the unit-cell is
entirely described by the displacements of the three corner nodes, e.g., uy(Li, 0, 0) = Ui(t), uz(0, Ly, 0) = Ux(t) and

us3(0, 0, Ly) = Us(t), denoted compactly as
U= {Ui(t), o), Us()}, U= {Ui(t), Ua(t), Us(D)} = {va(b), v2(8), v3(D)}. (50)

Recalling that the average strain-rate and stress tensors involve only two non-zero components due to the applied triaxial
loading, they can be expressed in vectorial form (i.e., using the Voigt notation) as
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= Ui U Us e
D= , , , & ={o1,0,03).
Li+U L+ Uy L3+ Us (51
To proceed further, we rewrite the average strain-rate tensor as
D=@'U, @Q=diagli+U,Ls+ Uy L3+ Us), (52)

where Q is the diagonal matrix of dimension three.
We, next, define an external fictitious node,> whose generalized force, P;, and generalized displacement, p¢, vectors,
respectively, take the form

Pc = {Pf(©),0,0}, pc={pf©.pf©.p§®}. 53)

The stress state in the unit-cell is then controlled via a time-dependent kinematic constraint (Michel et al., 1999) obtained
by equilibrating the rate of work in the unit-cell with the rate of work done by the fictitious node on the unit-cell at time ¢,
such that

W = V&-D = Pcpg. (54)

Next, in order to control the loading path in the stress space, we couple the average stress ¢ in the unit-cell with the
generalized force vector associated with the fictitious node P; via the constraint equation

. 6.6,

Ve=CP;, C=( c-1=(,

Icil” Ical” Iesl” (55)
where C is a non-dimensional proper orthogonal matrix since ¢; (i = 1, 2, 3) are three dimensional vectors that form an
orthogonal basis set. The vectors ¢; (i = 1, 2, 3) depend on the three components of the average stress &, such that

a={aamnl, o={anomn-ct+d)}, a={-na0} 56)

with 3, i =1, 2, 3 given in Eq. (49).

The above expressions for the vectors ¢; (i = 1, 2, 3) further imply that the matrix C in Eq. (55) is only a function of the
stress triaxiality X» and the Lode angle € but not of the equivalent stress 4. By substitution of Eqs. (52) and (55) in (54), one
gets

U=QCpg. (57)

The above expression provides the kinematic constraints between the degrees of freedom corresponding to the sides of the
unit-cell (i.e., U) and the degrees of freedom of the fictitious node (i.e., p;). The calculation is done then by prescribing the
Xx, 0 and a loading history of p.. These nonlinear constraints are applied in the finite element software ABAQUS (Abaqus,
2009) by use of the multi-point constraint user subroutine (MPC).

5. Results - I: assessment of the MVAR model via FE simulations

This section presents results for the effective behavior of rate-dependent porous single crystals as predicted by the
modified variational model (MVAR) proposed in this work. The predictions of the MVAR are compared with corresponding
results obtained by the FE simulations described in Section 4. Before proceeding with the discussion of the results, it is
useful to introduce first the various material and loading parameters used in the following figures. The present study
investigates a range of creep exponents n = (1, 2, 5, 10), porosities f = (1%, 5%), void shapes and orientations (e.g., spherical
and ellipsoidal) as well as Face-Centered Cubic (FCC), Body-Centered Cubic (BCC) and Hexagonal Closed Packed (HCP) single
crystals. These choices of single crystals correspond to the large majority of metals. In addition, motivated by common
practice in crystal plasticity studies, we consider the case where all the slip systems of the matrix have the same critical
resolved shear stress (CRSS) and reference slip-rate, as defined in Eq. (12). The crystallographic orientation will be defined
independently in the following sections.

In turn, we will focus on two different types of loading conditions. In the first one, the principal directions of the
macroscopic stress tensor &, or equivalently ¥ are aligned with the fixed Cartesian laboratory frame of reference defined by
the three unit vectors e®, i =1, 2, 3. In this case, one could rewrite the principal stresses in terms of the average equivalent
von Mises stress, Z¢q, the average (macroscopic) Lode angle, 9, and the average stress triaxiality Xs. This reads, in diagonal
matrix notation

3 The fictitious node introduced in the present study has no specific physical interpretation, but serves only as a mathematical tool to apply the
required boundary conditions at the unit-cell.
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i )+ 3 eq{cos cos(@ + 3) cos( 3)} 58)

The second set of loading conditions involves the two average shear components X3 and 53 with superimposed hydrostatic
stressing X, such that (in tensorial notation)

eh) @ e + T3eM @ e + e® @ eM) + Tx3(e?@ @ e® + e® @ e?),

Mw

=5,

1

(39)

Il
—_

Since the response of the porous single crystal is anisotropic these are simply two out of several possible sets of loading
conditions. Nevertheless, as we will show in the following, they are sufficient to reveal the most important features of the
porous single crystal response.

Furthermore, it is important to clarify that the porous crystal exhibits two types of anisotropy. The first is that of the
crystal matrix as a result of the corresponding slip systems and the second is that of the void shape and orientation, which is
ellipsoidal in general. Therefore, the effective response of the porous crystal is a function of all the six stress components. Of
course showing cross-sections with all possible combination of stress components is to cumbersome and of a little value to
the understanding of the porous single crystal response. Thus, following traditional notation in the context of porous
materials, as well as similar studies of Han et al. (2013) and Paux et al. (2015), the following results are broken down into
three major groups following the above mentioned loading conditions. The first group shows the effective response of the
porous crystals in the space X, — Xq. This stress space is very important since it involves directly the dependence upon the
hydrostatic component X;;,. The second group shows results in deviatoric planes such as for instance the one defined by the
out-of-plane shear stresses X3-253, for 15 = 0 and for given constant hydrostatic stress Xp,. This cross-section reveals the
non-trivial coupling of crystal anisotropy and void shape (morphological) anisotropy. The last group displays results in the
I1-plane (or octahedral plane), defined by polar coordinates (r, ¢) = (Z¢q, 0) at different levels of superimposed pressure Z;,.
These choices lead to more complete results in the sense that they cover a significant range of the stress space but at the
same time using traditional and well-understood stress measures.

5.1. Computation of the gauge surface in the numerical homogenization

The evaluation of the gauge surfaces resulting from the numerical computations can be expressed using the definition
(18) but its evaluation is non-trivial and is described in the following. The general idea follows from the earlier study of
Flandi and Leblond (2005) but is rather different since it has to be appropriately modified to apply for the general com-
mercial code Abaqus used in the present study.

By making use of the homogeneity of degree n+1 in T of the function U (see (2)), one can write

fot0 "
n+1' (60)
while N = fd/feq describes the loading direction in the deviatoric space, with £¢ and %eq denoting the deviatoric and

equivalent Von Mises part of the average stress I, respectively, corresponding to the equi-potential surface (18).
Next, given any average stress, &, one can write

UE; 50) = Ceq 1 Un(N, X5 50) =

Ue;so=01-f , U@) dV = @)™ On(N, Xs; 50).

. 1
min ——— f
oeS@) V(M) J 61)
Due to the homogeneity of LN], it is noted that [71\1 (N, Xs; s,) is the same function in (60) and (61), and hence combination of
these two equations gives
_ _ ~ -1/(n+1)
Seq = [(n + Dyy ' UG, s,,)] Teg- 62)
In the FE code, Dy; and the average Xy in the unit-cell are applied and remain constant throughout the process, as
discussed in Section 4.2, whereby D, D33 and &4 are calculated. In addition, postprocessing of the numerical results pro-
vides U(s; S,) (via definition (2)). Finally, Z¢, is readily obtained from Eq. (62), while £, = X5 % given the prescribed
average stress triaxiality Xy in the unit-cell.

5.2. Porous crystals with spherical voids

5.2.1. Face-centered cubic single crystal

In this section face-centered cubic (FCC) single crystals are considered. In the FCC crystalline structure, plastic slip occurs
on a group of 12 slip systems following {111}(110) (see Table 1).

In this loading configuration, Fig. 3 shows cross-sections of the effective gauge surfaces in the X, — X, plane, for a creep
exponent n=10, a porosity f=1% and several Lode angles 8 = 0°, 10°, 30°. As we can observe, the MVAR gauge surfaces are
symmetric with respect to the X, axis for all the Lode angles considered. On the other hand, the FE computations predict
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Table 1
Slip systems in FCC crystalline structure.

Slip system s 1 2 3 4 5 6 7 8 9 10 11 12
Slip plane m a ain ar 11
Slip direction s [101] [011] [110] [i01] [011)] [110] [011] [110] [101)] [110] [101)] [011)]

symmetric gauge surfaces for @ = 0°, 30° (see Fig. 3a and c) whereas a rather small “asymmetry” with respect to the X, axis
is observed for § = 10° (see Fig. 3b). Following the observations of this figure for spherical voids, which indicate only a minor
asymmetry of the gauge surface and only in some cases, we will choose in most of the results presented in the sequel a Lode
angle § = 0°. Therefore, for this case of spherical voids only one quarter of the surface is shown.

Specifically, Fig. 4 shows cross-sections of the effective gauge surfaces in the X, — X, plane. Various creep exponents
n = (1, 2, 5, 10) are considered while the porosity is set to f=1% (Fig. 4a) and f=>5% (Fig. 4b). In the context of this figure, we
observe a very good agreement between the MVAR predictions and the FE results for the entire range of creep exponents n.
More precisely, the agreement between the MVAR predictions and the FE results are very good for small nonlinearities n=1,
2, whereas it slightly tends to underestimate the effective response at higher ones (i.e.,, n=5, 10) and for very large
triaxialities. In any case, the maximum error is found to be in the order of ~5%. For f=1%, in Fig. 4a, and relatively high
triaxialities, the n=1 curve crosses the rest of the curves leading to a stiffer response at large stress triaxialities Xs. This
feature is validated qualitatively by the FE computations, but quantitatively may involve errors from both the FE calculations
as well as inaccuracies of the MVAR model in this regime.

5.2.2. Body-centered cubic single crystal

In the BCC crystalline structure, plastic slip occurs on a group of 48 slip systems following {123}(111), {112}(111) and
{110}(111) (see for instance Table 2).

In Fig. 5, we present cross-sections of the effective gauge surfaces in the X, — Z¢; plane for the same range of creep
exponents and the same porosities, as before. The main observation in the context of this figure is that as in the previous
case (FCC single crystal), there is a very good agreement between the MVAR predictions and the FE results for f=1%, at the
full range of creep exponents and the entire range of the stress triaxialities considered here. Again, the agreement between
the MVAR predictions and the FE results is excellent for small nonlinearities n=1, 2, whereas it tends to underestimate the
effective response at higher ones (i.e., n=5, 10) and for very large triaxialities. As before, the maximum error is found to be
in the order of ~5%. As discussed in Mbiakop et al. (2015b) for two-dimensional microstructures, these differences between
the MVAR and FE results with increasing nonlinearity (i.e., creep exponent) are attributed to the increasing void interaction
at high nonlinearities n.

5.2.3. Hexagonal closed packed single crystal

In the context of HCP porous crystals, we consider three distinct cases as described in Table 3. Those three cases are
chosen such that the crystal goes from an extremely anisotropic response (case C; in Table 3) to those that involve a larger
number of active slip systems, i.e., cases C; and Cs in Table 3.

It is noted here that for the cases C, and Cs, we consider the loading described in Eq. (58), whereby for the case C; we
apply the loading defined in Eq. (59). The reason is that for the C; porous crystal application of the triaxial load (58) leads to
no overall macroscopic plasticity (i.e., the average stress measures do not saturate). While one could claim that such a low
number of slip systems (e.g., three basal) are not sufficient to accommodate a general loading state in a uniform material, it
is not the case in a composite material. In other words, due to the presence of the vacuous phase, the stress state near the
void surface is complex enough (gives rise to nonzero shear stresses) to activate the available slip systems locally for any
choice of the macroscopic loading. Even so, the resulting average stress in the unit-cell does not saturate implying the
homogenized response of the unit cell does not lead to effective plasticity. The proposed homogenization model has this
property as we will see in the sequel.

Let us consider first the case C; in Table 3 where plastic slip occurs only in the so-called basal planes, such as for instance
pure Titanium. The crystalline structure is conseAquently {0001 }(1210). In this case, rather surprisingly, the computation of
the microstructural tensors in Eq. (31) leads to S* = 0, and thus, the MVAR estimate (40) becomes

n+1
K
765)10(5) [ |5'ﬂ(5) ‘ ]

Umvar(ﬁ; Sa)=1 =" Z n+1

(s)
s=1 70

(63)
This implies that the MVAR estimate leads to a fully incompressible response in this case Cj, irrespective of the value of
porosity, void shape or orientation used, as shown in Fig. 6a. The deviatoric part, on the other hand, is affected by the voids
while the resulting stress potential (63) has the exact form of the stress potential of the matrix (10) weakened only by a
factor that depends on f and the creep exponent n. It is important to mention at this point that even though the crystal
matrix has only a few active systems, the porous composite can, in general, accommodate all possible loads since the
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Fig. 3. Gauge surfaces in the Zj; — Zeq plane in the case of a porous FCC single crystal comprising spherical voids, for a creep exponent n=10 and a porosity
f=1%. Comparison between the model (MVAR) and the FE results for Lode angles = 0°, 10°, 30°.

vacuous phase is fully isotropic and compressible. Thus, the fact that an HCP porous crystal with only three active systems
still remains incompressible is a highly non-trivial result. The explanation of such a response can be attributed to virtual
“rigid” directions in the composite thus leading to pressure-independent response. To investigate this further, we consider
the cases of HCP singles crystal with pyramidal /75 (C; in Table 3) and combination of basal, prismatic and pyramidal /7,
active slip systems (Cs in Table 3), as shown in Table 3. In these cases where more slip systems are activated, the MVAR
predictions lead gradually to more compressible responses. In other words, in Fig. 6a, one observes that the HCP crystal Cs,
with 12 slip systems is more compressible than the HCP crystal C5, with 6 slip systems. These predictions are fully confirmed
via corresponding FE calculations, as shown in Fig. 6a.

In turn, in Fig. 6b, we show the effect of the creep exponentn = 1, 2, 5, 10 for an HCP crystal with K=6 slip systems that
is described by case G, in Table 3. The agreement between the MVAR predictions and the FE results is relatively good for all
exponents n shown here. More interestingly, perhaps, there exists a crossing of the gauge curves as one goes from low to
high triaxialities. For instance, the while at low Xx the n=1 curve is more compliant than that of n=10, the inverse occurs at
higher triaxialities. This feature is completely validated qualitatively and quantitatively by the FE computations. Direct
comparison between the case of HCP with K=6 (Fig. 6b) and those for FCC (Fig. 4a) and BCC (Fig. 5a) reveals the nontrivial
coupling between the creep exponent n, the presence of the pores and the slip system orientation.

To summarize, the previous cases of several HCP crystalline structures show that the MVAR model deals extremely well
with the strong sensitivity of the porous single crystals behavior on the crystal anisotropy (i.e., number and orientation of
slip systems), as already discussed in Mbiakop et al. (2015b) in the context of two-dimensional microstructures. This implies
that by default the present model is able to distinguish with high accuracy between different crystals (and effective loading).
Even though this choice of slip systems is somewhat theoretical in nature, the fact that for HCP with 3 slip systems the
response is incompressible as well as that 6 slip systems lead to less pressure-dependence than 12 slip systems has strong
implications on void growth. Moreover, it is important to mention here that in real HCP crystals the different sets of slip
systems (i.e., basal, pyramidal, etc) could exhibit different critical resolved shear stresses, z{*. This case is not studied here
since the goal is to present more general qualitative features of the model. However, such effects could be readily considered
in the present framework, since the MVAR model is general.

5.3. Porous crystals with ellipsoidal voids

In this section, we show results for porous single crystals comprising ellipsoidal voids, i.e., with aspect ratios w; # 1 and
wy # 1. The microstructure considered here is defined by porosity f=1%, void aspect ratios w; = w, = 3 and void orientations
n® = e®, n® = e@ n® = e3. Fig. 7 presents various cross-sections of the effective gauge surfaces in the %, — =, plane in
the case of creep exponents n=1, 10, for FCC and BCC single crystals, respectively. In the context of this figure, the MVAR
predictions are in relatively good agreement with the FE results for both n=1,10. In particular, for n=1, the MVAR is in
excellent agreement with the FE results except at purely hydrostatic loadings where an error in the order of 8% is observed.
Nonetheless, in that case numerical convergence issues appeared and the FE results should be interpreted with caution. In
turn, when n=10, the MVAR exhibits very good qualitative agreement with the FE results where the corresponding gauge
surface exhibits a rather weak “asymmetry” with respect to the X, axis, while it tends to be more compliant with respect to
the numerical estimates at moderate and high triaxialities. This asymmetry, which is present in the case of ellipsoidal voids,
is a direct consequence of the coupling between X, and the shear stresses resulting from the complex form of the tensor $*
defined in Eq. (31). Such effects observed in shearing of ellipsoidal voids have also been addressed either in numerical
micromechanical calculations (see for instance Tvergaard and Nielsen, 2010), or in multiaxial experiments (see Combaz
et al,, 2011).

5.4. Full field contours for periodic unit-cells

In order to have a better understanding on the differences between gauge surfaces for several crystal anisotropies (FCC,
BCC, HCP), we present, next, contours of the maximum principal logarithmic strain, for spherical voids, a creep exponent
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Table 2

Slip system {110}(111) in BCC crystalline structure.

Slip system s 1 2 3 4 5 6 7 8 9 10 11 12
Slip plane m (110) (110) (101) (101) (011) ©17)
Slip direction s [111] [111] [111] [111] [111] 11 [111] (i1 [111] [111] [111) 11
a b
1,8 _ 18
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Fig. 5. Gauge surfaces in the £y — Zeq plane in the case of a porous BCC single crystal comprising spherical voids, for a Lode angle § = 0 and a range of
creep exponent n = (1, 2, 5, 10). Comparison between the model (MVAR) and the FE results for a porosity (a) f=1%, (b) f=5%.

Table 3

Slip systems in some hexagonal crystalline structures.

Cases Macro- Slip plane m Slip direction s Number of slip
loading systems
G Eq. (59) Basal {0001} Type (a) (1210) 3
G Eq. (58) Pyramidal Type 6
I {1122} (c+a)(1123)
C3 Eq. (58) Basal {0001} Type (a) (1210)
& &
Prismatic Type (a) (1210) 3+3+6=12
{1010} & &
Pyramidal Type
I {1122} (c+a)(1123)

n=>5, a porosity f=1% and a triaxiality X» = 3. As displayed in Fig. 8, the strain amplitude is in most of the unit-cell regions
lower in the case C; (see Table 3) with K=3 HCP slip systems than in the FCC single crystal which is itself lower than in the
BCC single crystal. These observations can explain at one hand the incompressible macroscopic response of the HCP porous
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Fig. 6. Gauge surfaces in the Ty — Z¢q plane in the cases of (a) three porous HCP single crystal (with K=3, K=6 and K=12 slip systems) comprising
spherical voids, for the loading (59) in case C; and the loading (58) and Lode angle § = 0 for the cases C, and Cs, a porosity f=1% and a creep exponent
n=10 and (b) for different exponents n = 1, 2, 5, 10 and K=6 slip systems subjected to the loading (58) and Lode angle § = 0.

m

single crystal, but on the other hand the fully compressible response of the BCC and FCC single crystals.

Moreover, we observe that pore interaction and deformation localization can becomes rather significant leading to
several completely unloaded regions around a significant number of pores. This effect of strong field fluctuations is much
less pronounced for higher number of slip systems K=48 (BCC) as shown in Fig. 8a. The observed deformation localization
also explains why the MVAR model tends to underestimate effective response when compared with the FE results at in-
creasing creep exponent n and increasing porosity f. Such effects have already been observed in porous materials with
isotropic matrix and high nonlinearity (see for instance Idiart et al., 2006). In view of this, more advanced models in-
corporating better description of these field fluctuations (see for instance Danas and Ponte Castafieda, 2009a) could possibly
yield a better agreement with a cost of more complexity in the obtained model. In turn, one could calibrate the present
MVAR model similar to the work of Cao et al. (2015) retaining the simplicity. Such an attempt is done in Section 7, where it
is shown that such calibration can increase the accuracy of the MVAR model at very high nonlinearities such as the rate-
independent limit.

6. Results - II: coupling between crystal anisotropy, void shape and orientation

In the previous sections, the MVAR model has been assessed in great detail and it was found to be in good agreement
with the corresponding FE results. In this section, we will focus on MVAR estimates only and explore the effect of a large
number of parameters including different loading states, nonlinearities and void orientations. The goal is to reveal the
complex coupling between the crystal anisotropy (FCC, BCC, HCP), and the (morphological) void anisotropy resulting from
the ellipsoidal void shape and orientation, using the MVAR model without insisting on quantitative aspects.

6.1. Effect of the crystal anisotropy

Fig. 9 shows gauge surfaces in the X, — X plane of FCC and BCC porous single crystals with spherical voids (w; = w; = 1),
a range of porosities f= (1%, 5%, 10%), various creep exponents n=10 and n — « (rate independent case). We observe a
significant dependence of the average deviatoric response on the crystal anisotropy (FCC, BCC) either in the rate-dependent
(n=10) or in the rate-independent (n — o) context. Rather interestingly, the hydrostatic point for BCC and FCC coincides in
the case of rate-independent context (n—so0) but such a feature is not preserved in the rate dependent regime (finite n
values). This important result is of special interest to limit analysis approaches which are derived in the rate-independent
limit and are extended to the rate-dependent limit in a heuristic manner.

The effect of matrix crystal anisotropy upon the effective response of the porous composite is discussed next. As already
observed in the context of Fig. 6, where spherical voids are embedded in several HCP crystal structures, the average hy-
drostatic response is strongly influenced by the number and orientation of the slip systems. Specifically, both the MVAR
model and the FE results predict that the effective behavior of a HCP porous single crystal with K=3 three basal slip systems
(i.e., highly anisotropic case C; in Table 3) leads to a completely incompressible response while it exhibits a compressible
one for HCP porous crystals with K=6 pyramidal /7, slip systems (case C, in Table 3) as well as with a combination of
3 basal, 3 prismatic and 6 pyramidal /7, slip systems (case Cs in Table 3).

On the other hand, let us considers now, as shown in Fig. 10, gauge surfaces in a deviatoric X3 — X33 plane of HCP (with
K=3 slip systems), FCC and BCC porous single crystals with spherical voids (w; = w, = 1), a porosity f=5% and a creep
exponent n=10. The various cross-sections Fig. 10a, b and c correspond to different hydrostatic stresses X, =0,
Sn=+05Z} and =, = + 0.9Z}, respectively, where H denotes the hydrostatic point delivered by the model MVAR for
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Fig. 7. Gauge surfaces in the Xy — Zeq plane for a porous single crystal comprising ellipsoidal voids of f=1%, a Lode angle § = 0, void aspect ratios
w1 = wp = 3, void orientations n1) = (1), n2) = €2), N3, = €3 and a range of creep exponent n = (1, 10). Comparison between the model (MVAR) and the
FE results in the cases of (a) FCC, (b) BCC.

hydrostatic loading. We precise that we have set X, = 0. One of the main observation in this figure is the strong dependence
of the average deviatoric response on the crystal anisotropy, in the context of cubic systems FCC and BCC. However, even
more interestingly, in the porous HCP incompressible (with K=3 slip systems) single crystals, the behavior does not evolve
from Fig. 10a-c. Hence, while at lower hydrostatic stresses (|Z,| < 0.5Z}/) the HCP porous crystal is more compliant than the
FCC and BCC ones, as the pressure increases the FCC and BCC become gradually softer than the HCP.

At this point, it is perhaps helpful to summarize that in the context of highly anisotropic porous single crystals, the purely
hydrostatic response is extremely sensitive to the number of the slip systems K as well as on the slip orientations, as clearly
shown in Figs. 6, 9 and 10 but also confirmed with the FE results in the previous section. These observations have strong
implications on void growth and final failure of such single porous crystals. Similar conclusions have also been made re-
cently by Yerra et al. (2010) and Srivastava and Needleman (2015), where the combined effect of crystal orientation and
loading directions can lead to the activation of a small or large number of slip systems and subsequently to moderate or
significant void growth. Such effects are physically included in the MVAR model as shown in this study. But more detailed
analysis of the void growth and shape effects should be included via evolution equations similar to those presented in Danas
and Ponte Castafieda (2009a) and Danas and Aravas (2012). Such a work is underway and will be presented elsewhere.

6.2. Effect of the void shape and orientation

In this section, we discuss in more detail the effect of microstructure anisotropy upon the effective response of the
porous composite. More precisely, Fig. 11 shows MVAR gauge surfaces in the X, — Z¢; plane for a porous FCC single crystal
and a creep exponent n=10. The effect of porosity is investigated by choosing f = (1%, 5%, 10%) for different microstructures
(a) wy=wp =1 and (b) wy =5, w,=0.2, n® = e®, n® = e@, In Fig. 11, the gauge surfaces exhibit a gradual decrease with
increasing porosity for both ellipsoidal (w; = w, = 1) and ellipsoidal (w; = w5! = 5) voids, as already expected. Nevertheless,
while for the case of spherical voids (w; = w, = 1), in Fig. 11a, the curves are symmetric with respect to the Z, axis, the
curves for the ellipsoidal voids (w; = w5 ! = 5), in Fig. 11b, become asymmetric as already discussed in the context of Fig. 7. As
a consequence of this asymmetry, the MVAR estimates are found to be stiffer in the negative pressure regime (X, < 0). The

Maximum principal strain

0 003 0.07 0.1 0.3 0.17 02 023 027 03 033 037 04

b

BCC FCC HCP, K = 3

Fig. 8. Contour of the maximum principal logarithmic strain for a porous single crystal with a “multipore” geometry, a creep exponent n=>5, a porosity
f=1% a triaxiality Xz = 3 and a Lode angle § = 0. Case of (a) BCC (b) FCC and (c) HCP, K=3.
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observed asymmetry becomes more pronounced with increasing porosity.

Fig. 12 shows gauge surfaces in the X, — Z¢; plane for a FCC porous single crystal and a creep exponent n=10. The
porosity of set to f=5% and the void orientation is Oq; (see Table 4). The effect of the void aspect ratios is investigated by
choosing spherical voids (w; = w; = 1), prolate voids (w; = w, = 5), oblate voids (w; = w, = 0.2) and arbitrary ellipsoidal voids
(w; = w5 ' = 5). The main observation here is that non-spherical void shapes have an important influence on the effective
response of the porous single crystal. Indeed, the slopes of the gauge surfaces depend strongly on the void shape. Speci-
fically, a porous single crystal with ellipsoidal voids (w; = w3 ! = 5) is softer than that with oblate voids (w; = wy = 0.2) in the
full range of stress triaxialities. Moreover, for the same value of porosity, non-spherical void shapes lead to a significantly
more compliant response at high values of the mean stress, especially in the case of oblate and arbitrary ellipsoidal voids.
The purely hydrostatic point X, (for X, = 0) becomes almost double as one goes from the general ellipsoidal voids
(w; =w;y'=5) to the spherical ones (w; =w, = 1). It is also evident from this figure that arbitrary ellipsoidal shapes
(w; = w5 ' = 5) lead to very different responses when compared with spheroidal shapes (w; = wy = 5 or wy = wy = 0.2).

Fig. 13 shows gauge surfaces in the X, — Z¢ plane for a FCC porous single crystal and a creep exponent n=10. The
porosity of set to f=>5%. The effect of the void orientation is addressed by choosing 017, O12, O13 (see Table 4) for given aspect
ratios w; = w; ' = w = 5. Note that, as already expected from earlier studies (Danas and Ponte Castafieda, 2009b), the hy-
drostatic point for all these cases is independent of the void orientation. This is intuitively expected since the hydrostatic
loading has no preferential direction (i.e., is isotropic). However, the entire behavior, and in particular the asymmetry with
respect to the X, axis is strongly influenced by the void orientation.

6.3. Effect of crystal anisotropy and void shape and orientation

In this section, we investigate the effective response of the porous single crystal in the deviatoric plane X3 — X3 for
given hydrostatic stress Xy,. This allows to probe a more detailed response of the porous crystal and reveal with clarity the
combined coupling between the anisotropy of the crystal and that induced by the void shape and orientation. For the sake of
conciseness, in the following, we consider only porous FCC single crystal with porosity f=5%, void shape w; = w;! =5 and
creep exponent n=10. The void orientations considered are summarized in Table 5. In addition, for simplicity, we have set
S12=0.

In this connection, Fig. 14 shows MVAR cross-sections corresponding to different fixed overall hydrostatic stresses
Sn=0, Zn=+05ZH %, =+ 09X/ where £} denotes the hydrostatic point of the MVAR model for each of the given
cases in Fig. 14a and b, respectively.

More specifically, in Fig. 14a, which corresponds to void orientation O,; (voids aligned with the principal loading di-
rections), we observe a gradual shrinking of the curves with increasing ¥, as expected. At small values of X, = 0, the curve
exhibits an almost discrete character which tends to become more rounded (smoothen) with increasing X,. Note at this
point that since the FCC porous crystal is considered to be rate-dependent (i.e., finite value of the creep exponent n), the
corresponding effective response is strictly convex and the curves exhibit large but finite curvature areas (i.e., smooth
vertices) leading to an almost tetragonal symmetry of the curves. When the voids are aligned with the principal loading
directions (orientation O,;), the porous crystal preserves the original deviatoric symmetries of the crystal matrix for all
values of X, considered. In particular, in this case the curve is fully symmetric with respect to the two axes X3 and X53.

By contrast, as shown in Fig. 14b, if one considers a non-aligned ellipsoidal void oriented as in the case O,; in Table 5, the
corresponding MVAR curves exhibit an asymmetry with respect to the Xj3-axis, but still preserve the symmetry with respect
to the 353 axis for ¥, > 0. Rather interestingly, the almost tetragonal symmetry still prevails for X;; = 0. This response is a
direct consequence of the geometric coupling of the crystal slip orientations and the void shape at finite hydrostatic stresses.
Note further that point symmetry of the curves with respect to the global origin (X3, + Z33) = (0, 0) and X, = 0 is still
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preserved. This is easily observed by noting the point symmetries between the continuous lines corresponding to X, > 0
and the dashed ones for &, < 0.

Moreover, Fig. 15 displays gauge surfaces in the //-plane (or octahedral plane) corresponding to different fixed overall
hydrostatic stresses , = 0, Ty = = 0.5, =, = + 093}, where £} denotes the hydrostatic point of the MVAR model for
each of the given cases in Fig. 14a and b, respectively. In these two cases, a gradual shrinking of the curves appears while
increasing X, as expected. At small values of X, = 0, the curve exhibits a quasi discrete character which tends to become
more rounded with increasing X,. In addition, the gauge surfaces exhibit full asymmetry for finite hydrostatic stresses
>, = 0, but preserve the hexagonal symmetry for X, # 0. The observed asymmetry is much more pronounced at higher
values of X, which is consistent with similar studies in isotropic systems (see for instance Danas et al., 2008b). Further-
more, it should be stressed that point symmetry of the curves with respect to the global origin and X, = 0 is still preserved if
one compares the continuous (Z,, > 0) with the dashed lines (Z, < 0).

7. Results - III: calibration and assessment of the rate-independent MVAR model

In this section, we investigate the MVAR predictions in the special, albeit very important case, of the rate-independent
porous single crystals by considering the limit of the rate sensitivity exponent n—sco. Comparison with existing models in
the literature (Han et al., 2013; Paux et al., 2015) and FE calculations in the context of spherical voids is carried out. Sup-
plementary results for ellipsoidal voids are also shown where the MVAR is compared with FEM. As stated earlier the MVAR
gradually underestimates the gauge surface at large nonlinearities. This effect is mainly attributed to the inherent quadratic
character of the MVAR model due to the LCC methodology used here, whereas studies in the context of isotropic porous
materials have shown that a “cosh” (i.e., exponential) (see for instance the recent study of Cao et al., 2015) dependence on
pressure is more appropriate. However, even if the MVAR model is qualitatively and in most of the cases quantitatively quite
accurate (up to ~5%, as seen previously in other cases), the numerical results obtained with FEM in the rate-independent
case exhibit a non-elliptical shape of the yield surface (see for instance Han et al., 2013). In order to get better quantitative
agreement with the numerical results and still in the context of LCC methods, one needs either to use a more sophisticated
approach such as the second-order method (see Ponte Castafieda, 2002a,b; Danas et al., 2008a; Danas and Ponte Castafieda,
2009a), the fully numerical variational method (Idiart and Ponte Castafieda, 2007) and iterated variational methods (Agoras
and Ponte Castafieda, 2013), or to calibrate the present model which is numerically much easier to be implemented. As will
be shown in this section, the best calibration lies somewhere in between the quadratic and “cosh” terms.

7.1. Calibration of the MVAR
The MVAR predicts, as expected due to the LCC used in the optimization procedure, a quadratic response for the yield

surface. In this regard and motivated by the works of Han et al. (2013), Paux et al. (2015) and Cao et al. (2015), we propose
the following simple modification to the original quadratic estimate (43), which becomes
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effect of porosity is investigated by choosing f = (1%, 5%, 10%) for different void shapes (a) wi= w2 = 1 and (b) w1 = 5, w,=0.2, n1) = e, n@ = e®.
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where a» is a function of the porosity f weighting the relative contribution of the resolved shear stress on each slip system,
whereas a; is a parameter introduced to interpolate the shape of the yield surface between an elliptical shape (a1 =1,
quadratic) and an exponential “cosh” shape (a; = 0). Moreover, following the result of Ponte Castafieda (2002b) for dilute
isotropic porous materials, ap ~ f~1/3 so that
)
%0
= 1 ~1.5(f[2)%3,
L (65)

in the dilute limit. The calibration procedure of the above defined coefficients a; and «; leads to the following values:
a1 =065, ay=x 6f_1/3 (66)

It is perhaps interesting to note that the calibration procedure has led to a larger contribution of the original quadratic terms
due to the LCC methodology (65%) than the “cosh” terms (35%). Moreover, the form of the yield criterion (64) is very similar
to the well-known Gurson (1977) model, even though the analysis used here is rather different than the standard limit
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Fig. 12. Gauge surfaces in the Zj; — Zeq plane for a FCC porous single crystal with ellipsoidal voids, a Lode angle § = 0 and a creep exponent n=10. The
porosity of set to f=5% and the void orientation is Oq; of Table 4. The effect of the void aspect ratios is investigated by choosing spherical voids wi = w = 1,
prolate voids w1 = wy = 5, oblate voids wy = wy = 0.2 and ellipsoidal voids wy = w3 ' = 5.
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Table 4

Coordinates of the orientations Oqq, O12, O13 (Section 6.2) in the reference laboratory frame axes e® i =1, 2, 3.
Void orientation nM n®? n® = nM x n®
On [1,0,0] [0, 1, 0] [0,0, 1]
O12 1,0, 1] [0, 1, 0] [1,0, 1]
O13 [0, 1,01 [1,0,0] [0,0,1]

analysis proposed by the later author. Even so this last model can be thought as a generalization of the Gurson model in the
context of porous single crystals and general ellipsoidal void shapes and orientations.

Finally, it should be mentioned that similar modifications as the one in (64) can also be done in the context of the rate-
dependent porous single crystals. In those cases, a; becomes readily a function of the rate sensitivity exponent n since at
n=1 no correction is needed and thus a=1 in that case. Nonetheless, due to the fact that the original quadratic MVAR
model exhibits good accuracy (max error of ~5%) for exponents up to n=10 such an attempt was not carried out for the rate-
independent case in the present work.

7.2. Comparison with other models

In this section, the above-described calibrated MVAR model is compared with the models of Han et al. (2013) and Paux
et al. (2015), developed for spherical voids in the rate-independent context. In order to assess these models, numerical FE
results with complex distribution of voids (see for instance Fig. 2a) are used. It is important to precise that for FCC porous
single crystals our FE results are quite similar to those obtained by Han et al. (2013) for an FCC crystal with a single-void
cubic unit-cell (difference less than 1%) for relatively low porosity f < 5%.

Figs. 16-18 show cross-sections of the effective yield surfaces in the £, — Z¢; plane for all the different models. Various
porosities f= 1%, 5% are considered for both FCC (Figs. 16 and 17) and BCC crystal structure (Fig. 18). In the context of these
figures, we observe a very good agreement between the MVAR predictions and the FE results for the entire range of stress
triaxialities. Similarly, Han et al. (2013) and Paux et al. (2015) models are also in very good agreement. In Fig. 17, the principal
directions of the stress tensor are oriented along (a)[111] and (b) [210] contrary to most of the figures in the present study
that are oriented along the [100] direction. For a more detailed description of this notation the reader is referred to the work
of Han et al. (2013). More specifically, for the loading [100] and [111], the MVAR model is in slightly better agreement than
the models of Han et al. (2013) and Paux et al. (2015), whereas MVAR tends to slightly underestimate the effective response
for the loading [210].

Next, we consider HCP porous single crystals comprising spherical voids with K = 3, 6, 12 slip systems. In the case where
plastic slip occurs only in the so-called basal planes, the slip systems are described by the crystallographic orientations
{0001 } (1210) (K=3 slip systems, see Table 3). Similar to the rate-dependent results in Fig. 6, when only basal slip systems
are considered (i.e., case C; in Table 3), we consider the loading defined in Eq. (59), whereas for the other two cases C, and
C3 we apply the loading described in Eq. (58) (see Table 3).

Then, the computation of the microstructural tensor leads to §* =0, and the MVAR estimate (64) becomes in-
compressible (see relevant discussion in Section 5), i.e.

FuS — 291 = )y =
?J%“g”l 571 = f)) =0. (67)
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Fig. 13. Gauge surfaces in the =iy — Zeq plane for a FCC porous single crystal with ellipsoidal voids, a Lode angle # = 0 and a creep exponent n=10. The

porosity of set to f=5%. The effect of the void orientation by choosing 041, O12, O3 of Table 4 for given aspect ratios wq = wz‘1 =5.
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Table 5
Coordinates of the orientations 03, 04, (Section 6.3) in the reference laboratory frame axes e®, i =1, 2, 3.

Orientation n» n® n® = n x n@
021 [1,0,0] [0, 1, 0] [0,0, 1]
02 [1,0,1] [0, 1,0] [1,0,1]

a b

FCC, f=520n=100%,=1Lw,=5
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Fig. 14. Gauge surfaces in the deviatoric plane 13 — X3 for a FCC porous single crystal with porosity f=5%, a Lode angle § = 0, void shape w1 = 1/w2 =5
and creep exponent n=10, at different level of pressure. The dashed line curves correspond to the negative pressure regime while the continuous one
correspond to the positive pressure regime. Case of void orientation (a) O, (b) 05, of Table 5.

As already seen (see Fig. 6), this prediction is confirmed numerically by FE calculations. In turn, if one considers a crystalline
structure with more slip systems such as the case C, with K=6 or case C3 with K=12 slip systems (see Table 3), the porous
single crystal becomes compressible. In this context, as shown in Fig. 19, an excellent agreement between the MVAR
predictions and the FE results for the entire range of stress triaxialities is obtained for both porosities f = 1, 5% used. This

b
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- \S, T -0 10s5H PN 3 055 H
15 £ Zim 9/5§m 15 £ P/ﬁm
1.0 -§O 1.0 £
05 + -, 05 f _
- z - 2z
0.0 £- 3 0.0 + 3
05 + 05 +
1.0 £ 1.0 £
15 £ X +093H 15+ 093!
: —MVAR ~ &m : Sm
20 ~2.0 e e
2.0-15-1.0-05 0.0 0.5 1.0 1.5 2.0 -2.0-15-1.0-0.5 0.0 0.5 1.0 1.5 2.0

Fig. 15. Gauge surfaces in the 77-plane (or octahedral plane) for a FCC porous single crystal with porosity f=5%, a Lode angle § = 0, void shape
w1 = 1/wz =5 and creep exponent n=10, at different level of pressure. The dashed line curves correspond to the negative pressure regime while the
continuous one correspond to the positive pressure regime. Case of void orientation (a) 0,1, (b) O2; of Table 5.
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Fig. 16. Yield surfaces in the Ty — Zq plane for a porous rate independent FCC single crystal comprising spherical voids. Comparison between MVAR
model, Han et al. (2013) model, Paux et al. (2015) model and the FE results for a Lode angle § = 0 and a porosity (a) f=1%, (b) f=5%.
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Fig. 17. Yield surfaces in the Zi; — Zeq plane for a porous rate independent FCC single crystal comprising spherical voids and porosity f= 1%. Comparison
between MVAR model, Han et al. (2013) model, Paux et al. (2015) model and the FE results for Lode angle § = 0 where the stress principal directions are
oriented along (a) [111] and (b) [210]. The FE results are those in Han et al. (2013).
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Fig. 18. Yield surfaces in the I, — Z¢q plane for a porous rate independent BCC single crystal comprising spherical voids. Comparison between MVAR
model, Han et al. (2013) model, Paux et al. (2015) model and the FE results for a Lode angle & = 0 and a porosity (a) f=1%, (b) f=5%.

result shows clearly that the response at a highly anisotropic porous single crystal is strongly dependent on both the number
and the orientation of the slip systems, especially at large hydrostatic stressing. It further suggests that for such low
symmetry crystals certain directions appear as “rigid” to plastic deformation thus constrain slip under highly symmetric
loads such as purely hydrostatic tension or compression. As a consequence very weak (or even no) void growth is expected
in such a case. At this point it should be mentioned that the models of Han et al. (2013) and Paux et al. (2015) have only been
calibrated for FCC crystals and therefore at their present form exhibit no such qualitative feature.

Finally, in Fig. 20, we show FE results and MVAR predictions for rate-independent porous single crystals comprising
ellipsoidal voids, i.e., with aspect ratios w; # 1 and w, # 1. The microstructures considered are defined by porosity f= 1%,
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Fig. 19. Yield surfaces in the y — Z¢q plane for a porous rate independent HCP single crystal comprising spherical voids with K = 3, 6, 12 slip systems.
Comparison between MVAR model and the FE results for the loading (59) in case C; and the loading (58) and Lode angle § = 0 for the cases C, and Cs. The

porosity considered is (a) f=1%, (b) f=5%.
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function of g (n) for a range of creep exponents.

void orientations n®» = e®, n@ = e@, n® = e® and two void aspect ratios w; = w, = (1, 4) (prolate void). Fig. 20a and b
present various effective yield surfaces in the %, — X4 plane for FCC and BCC single crystals, respectively. In the context of
these figures, the MVAR predictions are in very good agreement with the FE results for several crystal anisotropy types (BCC
and FCC) and microstructure anisotropy. For w; = wy = 4, the yield surfaces exhibit as expected a rather significant
“asymmetry” with respect to the X4 axis. This asymmetry, which is strongly sensitive upon the microstructure, is a direct
consequence of the coupling between X, and X, resulting from the complex form of the tensor §* defined in Eq. (31).
Furthermore, it is interesting to notice that in the positive hydrostatic stress regime (X, > 0) the effective response is softer
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when the void is more prolate, i.e. when w; = w, increases. In this case, the MVAR model is somewhat less accurate in
quantitative terms even if qualitatively it exhibits the correct trends.

8. Conclusion

In this study, an analytical constitutive model (MVAR) has been developed for porous rate-dependent and rate-in-
dependent single crystals comprising ellipsoidal voids at arbitrary orientation subjected to general loading conditions. In
order to achieve this goal, the variational nonlinear homogenization method of Ponte Castafieda (1991a) has been used and
modified (Danas and Aravas, 2012) to derive estimates but not bounds. The modified variational (MVAR) model presented in
this study, which is an extension of the work of Mbiakop et al. (2015b) in two-dimensions, has been validated by comparison
with full field FE calculations of single- and multi-void periodic unit-cells. The MVAR model has been found to be in good
agreement with the FE results for a wide range of parameters describing the number and orientation of the slip systems (i.e.,
crystal anisotropy), the creep exponent (i.e., nonlinearity) of the matrix crystal, the porosity and the void shapes and or-
ientations. The MVAR model has shown strong predictive capabilities while exhibiting critical qualitative features.

More specifically, the MVAR model has been able to predict the strong dependence of the effective response, and
especially of the average hydrostatic stress upon the number and orientation of the slip systems as well as the shape and
orientation of the voids. One of the major finding of this work is that for highly anisotropic crystals (e.g., three basal active
slip systems in certain HCP crystal structure) the porous crystal can exhibit fully incompressible response, even in the
presence of voids. This of course affects the entire effective response of the porous crystal for the entire range of stress
states. That is the first time such a result is presented in the literature and reveals the significance of plastic anisotropy of the
underlying phases upon the macroscopic response of the material.

Furthermore, it has been shown that the void shape and orientation affect strongly the response of the porous crystal. In
particular, the effective response becomes much softer as one goes from a spherical void to an ellipsoidal one (which is
suggestive of a crack-type geometry). In the general case of ellipsoidal voids arbitrarily oriented (with respect to the la-
boratory axes) and arbitrary crystallographic texture, we have shown that the effective response exhibits no symmetries
when plotted in a purely deviatoric plane (and at finite hydrostatic stresses) thus indicating the non-trivial coupling be-
tween the anisotropy of the underlying crystal and the (morphological) anisotropy induced by the shape and orientation of
the voids.

In this regard, it has been found that the creep exponent has a very strong influence on the effective response of the
porous single crystal. Since a large number of technological applications (e.g., single crystals in aerospace industry as well as
polycrystalline alloys in nuclear reactors) involve high-temperature and rate-dependent conditions, the MVAR model ex-
hibits promising features that could be important in dealing with such problems. On the other hand, a simple way of
calibrating the MVAR model with just two adjustable parameters has been proposed in the rate-independent context so that
an excellent agreement with respect to the numerical results is obtained. This calibration procedure can, in the future (if
needed), be extended to the rate-dependent case in a straightforward manner. But such an attempt has not been pursued
here since the difference between the MVAR estimates and the FE results was found to no more than ~5% in the worst case
studied (i.e., creep exponent n=10). On the other hand. it should be mentioned that the results shown in the present study,
albeit very extensive, do not cover the entire space of loadings and slip orientations as this would make the study extremely
long. Hence, the present model should be considered with caution if used in a range of loads or slip system configurations
that are very different from those assessed in the present study.

In view of this, we remark that the MVAR model, at this preliminary stage, involves neither dynamic effects, thermal
loading nor elasticity effects. Even so, to the best knowledge of the authors, this is the first model in the literature that is able
to deal with sufficient accuracy with both rate-dependent and rate-independent porous singe crystals exhibiting general
crystal anisotropy, general ellipsoidal void shapes and orientations that are subjected to general three dimensional loading
conditions.

Finally, it should be pointed out that several important features present mainly at finite strains, such as lattice rotations,
evolution of porosity (e.g., void growth), void shape and orientation are not included in the present analysis (cf. Danas and
Ponte Castafieda, 2009b; Danas and Aravas, 2012). These additional features would inevitably lead to well known phe-
nomena in porous materials such as material softening, void shape effects, deformation localization (c¢f. Danas and Ponte
Castafieda, 2012; Danas and Aravas, 2012) and ultimately void coalescence (see for instance Benzerga, 2002; Pardoen and
Hutchinson, 2000; Yerra et al., 2010; Morin et al., 2015). Such a work is underway and will be presented elsewhere.
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Appendix A. Relation between the single crystal and the isotropic matrix behaviors

As seen in section 2.3, in the special case of slip systems with identical critical resolved shear stress CRSS and reference
slip rate (z§¥ = 70, (7)® = 15, V s = 1, K), the viscoplastic stress potential of the single crystal is written as

070" | it
Ui = 10 3 e
n+1% (68)

If we consider a triaxial loading state, with @ denoting the Lode angle, the stress tensor can be expressed as

20¢q

c=om{l, 1,1} + 3 {cos 0,—c05(9+%),—c05(0—%}}.

(69)

Moreover, one can parameterize the slip normals and directions of all the slip systems using three Euler angles a9, ¥ and
a®, since m® Ls®), such as

m® = (sin a{® cos a®, sin a® sin o, cos as)’

$® = cos af¥(-sin %, cos ¥, 0)T + sin ¥ (cos af® cos ¥, cos a® sin a, — sin a7 (70)

where 0 < of, a9 < 27z, 0 < af® < 7.
Thus, in the limiting case of isotropic matrix, i.e. K— oo, the relations (5), (68), (69) and (70) lead to the following form of
the potential

U) = Ma"“ K lim 1h(a<5> as®, af®, 0, n) = 7010—"6"“ Kp®m,0).
T+l T keeK LRV T A ’
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The numerical computation of 3 (n, 9) for various values of the Lode angle and a large range of creep exponents exhibits a
behavior that can be approximated as periodic function of @ (see for instance Fig. 21a, in the case of n=1). More precisely,
one can write

o~ Yo% n+l e 2 7 ~ ~ 4 )\
U(o-)=n—+]aeq Kpmn 0, pm0) =pg,=~—62]|cos 6—§ .

25 (72)

A representation of S, is shown in Fig. 21b.

Appendix B. Homogenized model for the porous single crystal

In this section, we discuss in more detail the optimization operation in Eq. (26) as well as the evaluation of the effective
energy of the linear comparison composite (LCC) and optimization operation in Eq. (27). We remind the reader that the goal
of the present study is to propose simple analytical models but not bounds. This allows for the relaxation of certain opti-
mization (sup or inf) procedures, as is discussed in the following.

The optimization procedure of the corrector functions v(1®) in (22) is carried out following the work of DeBotton and
Ponte Castafieda (1995). First, we consider the limits p — o and x — oo in the linear stress potential of the matrix phase U;
(cf. Eq. (25)). Then, using relation (9), one finds

K K 1
UL, 29) = Y. ¥ @9, 40) = 3 —— (@),
s=1 s=1 2}“(5) (73)

Next, substituting Eqs. (10) and (73) in (22), the corrector function becomes (Idiart and Ponte Castafieda, 2007)
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In the above equation, following Idiart and Ponte Castafieda (2007), we have interchanged the “sup” operation with the
summation in order to be able to have an analytical evaluation of the corrector function v. Subsequently, we have also
relaxed the “sup” to “stat” since the interest in this work is on estimates and no attempt to obtain bounds is made, as already
stated in the context of Eq. (26).

Next, starting from the definition of the stress potential of the matrix phase in the LCC in Eq. (25), and using the
generalized Hashin-Shtrikman estimates (Hashin and Shtrikman, 1963) of Willis (1977) which are known to be quite ac-
curate for porous random systems, up to moderate concentrations of pores, one gets

- 1 S
0.6, s0) = -[Z E® + fs*].a.

—7
20 -f) & 2@ (75)
where
S
S* = lim lim Q! - E®, Q=S1-S1PS1L
p—00 K—>00 S; 22 (76)

The P is a fourth-order microstructural tensor related to the Eshelby tensor (Eshelby, 1957) and is given by (Willis, 1977)

1 (SiakvEap) €& i
47 det Z Jig=1 |Z—],§|3

Pk = ds.

an

where Z is given in relation (34) and ¢ is a three-dimensional unit-vector. The computation of Q in the above expressions is
critical for the optimization problem (27). Due to the extremely complicated dependence of Q on 1¢®, the optimization
problem for the estimation of the effective response in Eq. (27) has to be carried out numerically, except in the special case
where we let 1® — 4 for all s =1, K. This simplifies tremendously the evaluation of the Q tensor and allows for the
following approximations. More specifically, in the limit of 1® — 1, one can easily show that

lim S=%S(ﬁ,/?), lim P=%f’(ﬁ,:?), lim Q=1Q(@, ?)

85 FONY) 1854 (78)

which implies

lim S*(1©) =
Oy

S@, 0. (79

N

In the above expressions, 5 = p/i and & = x/4, whereas §, Q, S and P are independent of 1 and have been defined in Egs.
(31), (32) and (33), respectively.
Next, following the work of Mbiakop et al. (2015b), we introduce the approximation
1w 1a
S* ) = — Y —§,
K El A® (80)

where §* is given by (31). This last expression (80) is identically true for A® = 4, ¥ s = 1, K while being a relatively good
approximation in the neighborhood of A9 ~ A0, v i, j = 1, K. The choice (80) allows for a fully analytical resolution of the
optimization procedure (27) and thus to a fully analytical model. Nonetheless, this approximation is expected to be less
accurate in cases where the critical resolved shear stresses of the slip systems are very different.
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Consequently, substitution of (74), (75) and (80) in (27) leads to

K K

. (n+1)/(n-1)
~ 1 1 (_ oo n-1708(
U, ; S,) = stat — 2O2 + L5.8" - )
0 = g 1-f 21(5)((6” T 6] = El n+l 2 |26

@1

Again, in order to keep the discrete character of the slip system response at purely deviatoric loads and zero porosity as well
as analytical tractability of the model, the order of the maximisation can be commuted with the summation (see Han et al.,
2013 and Mbiakop et al., 2015b), such that

- n-1/2
1 };55) (5.,4(5) )2 + %ES i

20 270 21 — )2
0 @)1 =) 82)

Note, however, that the commutative operation in (81) could lead, in general, to an artificial vertex-like response,
particularly at very large creep exponents (e.g.,n > 50). In any case, we show in the main text that the above procedure leads
to rather accurate results in a very large range of creep-exponents (n =1, 2, 5, 10, =) for the range of loadings and slip
systems considered. Nevertheless, these results do not cover the entire loading or slip orientation space and hence the
present model should be considered with caution if used in a range of loads or slip system configurations that are very
different from those assessed in the present study.

Finally, substitution of (82) in (81), we get the variational estimate of the effective stress potential of the crystalline
porous material as presented in Eq. (28) or equivalently (29).
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