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Abstract

This work deals with a comprehensive theoretical and numerical framework that allows the modeling of finite strain
agnetorheological elastomers (MREs) comprising mechanically soft nonlinear elastic–viscoelastic polymer phases and
agnetically hard (i.e. dissipative) or soft (i.e. purely energetic) magnetic phases. The framework is presented in a general
anner and is implemented using the finite element method. Two software implementations are developed, one using FEniCS

and the other in Abaqus. A detailed analysis of the numerical schemes used to model the surrounding air is made and their pros
and cons are discussed. The proposed framework is used to simulate two model geometries that are directly relevant to recent
applications of MREs. The first two-dimensional example simulates a mechanically soft beam consisting of a single wavy-chain
of hard or soft magnetic particles. The beam is subjected to transverse magnetic actuation loads that induce important vertical
deflections. Despite the overall small local strains in the beam, a significant viscoelastic effect is observed when high-rate
magnetic fields are applied. A torque model for the particles is also used to analyze the beam geometry and is found to be in
relatively good agreement with the rest of the approaches for small actuation fields. The second example discusses the rotation
of a three-dimensional ellipsoid embedded in a cubic elastomer domain, while the ensemble lies inside a larger cubic air
domain. Non-monotonic uniaxial and rotating magnetic fields are applied leading to complex, non-monotonic rotations of the
ellipsoidal particle. The hard and soft magnetic cases exhibit significant differences, whereas viscoelasticity is found to induce
strong coupling with the magnetization rotation but not with the dissipative magnetization amplitude. Extensive supplementary
material provides all details of our implementations as well as animated visualization of results.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Keywords: Viscoelasticity; Ferromagnetics; Soft materials; h-MREs; Finite elements; Magnetomechanics

1. Introduction

Magnetorheological elastomers (MREs) or magnetoactive polymers (MAEs) are most often designed as compos-
tes comprising a soft elastomer matrix carrying micron-sized magnetic inclusions. While both of their ingredients,
lastomers and magnetic particles, have been available for many decades, it took surprisingly long until MREs were
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originally fabricated and studied. In fact, landmark studies on establishing a rigorous theoretical framework can be
already found in the middle of the twentieth century [1–3]. Further cornerstone contributions accounting also for
electrodynamics and small strain magnetoelasticity are due to Pao and Hutter [4], Maugin [5], Eringen and Maugin
[6], James and Kinderlehrer [7], DeSimone and James [8] among others. These early theoretical contributions
on general coupled magneto(electro)mechanics predate the first well-known experimental works on MREs [9]. In
a related work [10], the same authors provided dipole-interaction-based models for the explanation of some of
their experimental findings. Despite these early achievements, it took more years for MREs to find their place in
the mechanics and materials communities. The works of Dorfmann and Ogden [11], Dorfmann and Brigadnov
[12], Dorfmann and Ogden [13], Kankanala and Triantafyllidis [14] mark the rise of continuum magnetoelasticity,
specially designed at larger scales relevant to MREs, in the context of which one also has to mention Kovetz [15] as
well as Ericksen [16] and Bustamante et al. [17]. These re-initiating contributions sparked a vast amount of works
fostering the understanding of MREs both at the microstructural (scale of the particles but not below at the level of
magnetic domains) and the macrostructural level. The former is obviously important since magnetic particle–particle
interactions and their resulting effect on the overall material response depend on the microstructural distribution of
particles in the composite. One approach to efficiently capture the effect of these interactions on the macroscopic
behavior is homogenization, where we mention the works [18,19] on analytical as well as [20–25] on numerical

omogenization, respectively. Nonetheless, only recently such homogenization efforts [19] have led to practical
macroscopic material models for magneto-elastic composites [26,27]. In the same context we also refer to Kalina
et al. [28] and the more recent works based on dipole interaction by Garcia-Gonzalez and Hossain [29].

In addition to the above-mentioned microscopic effects, purely macrostructural magnetomechanical coupling
plays an equally important role for the overall response [30,31] and in particular underlying instabilities [32,33].
Indeed, these omnipresent structural effects render a major challenge in the experimental determination of material
properties [34–36]. This is one more reason for the importance of multiscale studies to understand the multitude of
interacting effects in MREs.

What has largely been neglected by most research studies up to now is the effect of viscosity of the elastomer
matrix on the overall magnetomechanical response on the one hand and the effect of ferromagnetic hysteresis at
the particle and macroscopic scale on the other hand. As notable exceptions, we mention [37–40]1 for the former
and [41,42] for the latter effect. Keip and Sridhar [43] addressed the point of dissipative ferromagnetism at the
particle level with the framework of micromagnetics [44]. However, while this approach provides great insight into
the fine-scale details of domain wall motion, its computational cost renders it prohibitive for the simulation of
macroscopic MREs.

We also mention the recent contributions considering already magnetized elastic [45–47] and viscoelastic [48]
bodies. However, neither of them accounts for the evolution of magnetization which sets physical bounds on the
actual magnetization of bodies and thus is also of great practical importance. Hence, there are still a number of open
tasks in the modeling of both viscoelasticity and magnetic hysteresis and, in particular, their interplay. Motivated
by this and also by recent application-oriented developments [49,50] on the so-called hard2 MREs (h-MREs),
he present work aims to contribute to the understanding of the effect of filler particles exhibiting ferromagnetic
ysteresis on an otherwise nonlinear elastic–viscoelastic elastomer. For that purpose we present a thermodynamically
onsistent computational framework based on the formalism of generalized standard materials [51,52] accounting
or viscoelasticity and ferromagnetic hysteresis inspired by Miehe et al. [53] and Kumar and Lopez-Pamies [54].

The implementation of the material models is carried out using the newly developed open source material
odeling toolbox Materiaux [55] paired with FEniCS [56,57] as well as a user-element (UEL) code based on
baqus. The two implementations are provided via zenodo.

The numerical examples in the present work discuss individual particles in a mechanically soft, but otherwise
on-magnetic matrix and a slender structure made of stiffer elastomer comprising a chain of spherical magnetic
articles. In either case, once remanently magnetized, an h-MRE sample will behave much differently from a s-MRE
i.e. comprising magnetically soft particles, such as iron, exhibiting negligible dissipation). To our best knowledge,
here does not exist any macroscopic continuum or homogenized material model for nonlinear elastic–viscoelastic

h-MREs. The examples in the present contribution are thus chosen to explicitly account for a simplified particle–
atrix structure of MREs. Nevertheless, the proposed framework and accompanying software provide the tools to

1 The work of Shariff et al. [39] is on viscoelastic electroactive polymers which share certain constitutive feature with viscoelastic MRE.
2 Magnetically hard, i.e. showing a significant magnetic hysteresis.
2
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obtain such models, e.g., when combined with numerical homogenization techniques along the lines of Lefèvre
et al. [26] and Mukherjee et al. [27] on s-MREs and Mukherjee et al. [42] on h-MREs.

This work is structured as follows. The fundamentals of the magnetomechanical theory are presented in Section 2.
he discretization of the magnetomechanical initial boundary value problem as well as numerical and computational
spects are covered in Section 3. In Sections 4 and 5, we provide a set of representative numerical simulations of
agnetic particles carried by an elastomer and subject to complex magnetic loads. These examples demonstrate

he effect of viscosity and ferromagnetic hysteresis compared with purely elastic and magnetically non-hysteretic
esponses. For that purpose, we apply appropriate material models with realistic parameters and also account for
he free space (air) around the bodies under consideration. A special Section 4.1 is devoted to the modeling of the
urrounding air. Section 6 concludes this contribution and provides an outlook to future work.

. Theory

In this section, we introduce the building blocks of the computational framework. We begin with the fundamentals
f magnetomechanics at finite strains before presenting the magnetomechanical initial boundary value problem
IBVP) considered in this work. In the very last subsection we present the material models employed, which are
epresentative for viscoelasticity and ferromagnetism. Thermodynamic consistency of the models is achieved by
igorous application of the framework of generalized standard materials (GSM; [51]).

Given the complexity that will arise simply as a result of the combination of models for various phenomena, we
trive to keep the discussion of each physical contribution rather compact and provide instructive references along
he way.

.1. Fundamentals of magnetomechanics

In this subsection, we briefly introduce the fundamental fields and equations of magnetomechanics based on
he pioneering works of Tiersten [2,3] and Brown [1] whose theory has been specialized for magnetoactive
magnetorheological) elastomers by Dorfmann and Ogden [11] (see also equivalent formulations by Kankanala
nd Triantafyllidis [14] and Ericksen [16]).

We consider the deformation y of a body V embedded in R3. The current position x ∈ Vt of each point with
nitial coordinates X ∈ V is given by x = y(X, t) and the displacement field is given by u(X, t) = y(X, t)−X. We
urthermore assume to have a smooth extension of y from V into R3 such that the notions of “current” and “initial”
configurations, positions) on V extend to all space. For convenience in this work, we take the initial configuration
s reference and accordingly refer to quantities defined on this initial configuration as referential or Lagrangian
o distinguish them from their current or Eulerian counterparts. We follow the widely adopted convention to use
ppercase symbols and operator names to indicate their referential nature. Based on y we have the tangent map

F(X, t) = Grad y(X, t) (1)

nown as deformation gradient, which is the fundamental ingredient for strain measures.
On the side of magnetostatics in the case of vanishing currents, we may employ the auxiliary magnetic scalar

otential ϕ(X) as a primary variable of which the negative gradient is the referential magnetic h-field H, i.e.

H(X, t) = −Grad ϕ(X, t). (2)

his definition readily implies that Curl H = 0, i.e., Ampere’s law for magnetostatics in absence of free currents is
utomatically fulfilled. The choice for ϕ(X, t) as primary magnetic variable in absence of free currents is motivated
y the computational efficiency of the resulting finite element formulation and for this reason is widely used
n the computational magneto-mechanics community. Nonetheless, alternative formulations based on the vector
otential [17], which are particularly efficient in the context of instabilities, have been proposed in the last years
uch as those by Kalina et al. [24] and Danas [25] in two dimensions as well as by Miehe et al. [23] and Dorn
t al. [58] in three dimensions. In this context we also highlight the work of Semenov et al. [59] on the numerics
f vector potential formulations for three-dimensional electromechanics, that are perfectly parallel to those for
agnetomechanics.
The corresponding magnetomechanical balance equations read
Div S+ f0 = 0 and Div B = 0. (3)

3
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The first equation corresponds to the balance of linear momentum in terms of the total first Piola–Kirchhoff stress
S and the mechanical body force density per unit referential f0. The second one is the magnetic Gauß law in terms

f the referential magnetic field B.
In the present framework, the internal Helmholtz free energy density3 W is assumed to depend on F and H but

lso on a set of internal variables denoted for the moment as I. As a result, the local dissipation density D is given
as the difference of the external power P minus the rate of change of the internal energy Ẇ , i.e.,

D = P − Ẇ =
(

S−
∂W
∂F

)
· Ḟ+

(
−B−

∂W
∂H

)
· Ḣ−

∂W
∂I
· İ ≥ 0. (4)

wing to the arbitrariness of Ḟ and Ḣ, one may apply the standard Coleman–Noll–Gurtin argument to arrive at the
ell-established constitutive relations

S =
∂W
∂F

and B = −
∂W
∂H

. (5)

We note that the energy density W (F, H, I) is of energy type with respect to F(u) and I but of co-energy type
with respect to H(ϕ). Thus, solutions of corresponding boundary value problems are of saddle-point nature. While
this is a drawback with respect to purely energetic formulations, the greater numerical efficiency renders the present
approach favorable in most scenarios. For a complete energy type formulation for dissipative magnetomechanical
systems the reader is referred to Kalina et al. [41] and Mukherjee [61].

Remark 1. It is recalled here that the Eulerian fields, σ (Cauchy stress), b and h may be written in terms of their
Lagrangian counterparts by a push-forward operation leading to the well-known equations

σ =
1
J

SFT , b =
1
J

FB, h = F−T H. (6)

In this configuration, one may also define the Eulerian magnetization vector m, which is non-zero only in a
magnetizable body, as

m =
b
µ0
− h. (7)

ere, µ0 is the magnetic permeability in vacuum to be specified below. The current m is used to describe the
agnetic response of solids and will be used extensively in our work too. Nonetheless, we note that in the

resent work, it does not constitute an independent variable but is merely a post-processed field in the deformed
onfiguration and is obtained by Eq. (7).

.2. The abstract magnetomechanical initial boundary value problem

In this section, we explicit the equations introduced in the previous sections in the context of an initial boundary
alue problem (IBVP). The (referential) domain of the problem is denoted as V∞. In the most general case, V∞ = R3

but for finite element computations, one typically resorts to truncated domains V∞ ⊂ R3. The domain V∞ shall
consist of disjoint subdomains V i such that V∞ =

⋃
i V i . As different V i may have different (in nature) material

properties and internal states, we use i as a superscript to distinguish between them. The fields u(X, t) and ϕ(X, t)
re defined for all (X, t) ∈ V∞×T , where T denotes the total time interval. From u(X, t) and ϕ(X, t), one directly
btains F = 1+Grad u and H = −Grad ϕ according to Eqs. (1) and (2), respectively.4 The equations to be satisfied
y u(X, t) and ϕ(X, t) are given by (3). In the present work, for simplicity, we ignore mechanical body forces such
s gravity. Hence, we have

Div S(F(u), H(ϕ), I) = 0 and Div B(F(u), H(ϕ), I) = 0, (8)

3 What we call Helmholtz free energy density is sometimes referred to as amended in the sense that it also contains magnetostatic
contributions from non-magnetic media, e.g., air, or just vacuum [17,60]. It is thus not bound to the presence of matter.

4 Henceforth, we will write F(u) and H(ϕ) when we insist to emphasize from which states {u, ϕ} the derived quantities F and H are
computed or when we rather regard them as operators, e.g., in variational principles.
4
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as governing equations for u and ϕ, where S(F, H, I) and B(F, H, I) are obtained from (5). In addition to (8), we
impose Dirichlet boundary conditions on u and ϕ

π (u(X, t)) = π (u(X, t)) for X ∈ Su (9)

ϕ(X, t) = ϕ(X, t) = −X ·H∞(t) for X ∈ ∂V∞. (10)

ere, π denotes a projection operator such that one can apply conditions only on certain components of u on a
urface Su and H∞ = FT

· h∞ with h∞ = b∞/µ0. We note that, in the present work, for simplicity, we apply
oundary conditions for ϕ only at the outer boundary ∂V∞; nonetheless more general conditions may readily be
onsidered as in [58,62]. In addition, guided from practical problems at hand, we also consider trivial Neumann-type
oundary conditions on S and B (see, e.g. [22,63]). The framework presented thus far is identical to that of quasi-
tatic non-dissipative magnetomechanics, which may be written in terms of a variational principle that corresponds
o (8) and (9) [17,30].

In turn, in the context of dissipative magneto-mechanics additional equations are required. Specifically, given
he fields u and ϕ that comply with the field equations and boundary conditions, the rate of internal states İ is

governed by the typical evolution equation deriving from the generalized standard materials (GSM) formalism.
These equations take the form for smooth and non-smooth dissipation potentials as

−
∂W
∂I
=

∂ D

∂İ
and −

∂W
∂I
∈ ∂İ D, (11)

espectively, where ∂İ is the subdifferential and the dissipation potential D is convex in İ [64]. It is worth
oting at this point that some domains in V∞ have no internal state, e.g. the empty space (or air) surrounding
magnetomechanical solid. Nevertheless, there is still magnetic energy present even in free space and needs to be

aken into account in actual IBVPs.
The previous set of field and constitutive equations and boundary conditions can be combined in a variational

rinciple for the unknowns of the problem {u(X, t), ϕ(X, t)} (short: {ut , ϕt }) alongside with the evolution equations
or the internal variables I i (X, t) (short: I i

t ) as

{ut , ϕt } = arg
{

inf
u
∈

K(t)

sup
ϕ
∈

G(t)

∑
i

∫
V i

W i (F(u), H(ϕ), I i
t )dV

}
(12)

nd

İ i
t = arg inf

İi

{
∂W i (Ft , Ht , I i

t )
∂I i

t
· İ i
+ Di (İ i

;Ft , Ht , I i
t ;X)

}
in V i , (13)

respectively. In the first expression, the admissible sets K(t) and G(t) read

K(t) =
{
u | ui ∈ H1(V∞), π(u(X)) = π (u(X, t)), ∀X ∈ Su

}
(14)

G(t) =
{
ϕ | ϕ ∈ H1(V∞), ϕ(X) = ϕ(X, t), ∀X ∈ ∂V∞ϕ

}
. (15)

The initial values of the internal states I i
t=0 have to be specified explicitly, whereas ut=0 and ϕt=0 result from

12) at t = 0. The evolution of internal states affects the constitutive responses such that not only the I i but also the
elds u and ϕ may undergo changes even under constant boundary conditions. Thus, the evolution of internal states

s indeed coupled with the external primary fields. The individual energy densities W i as well as the dissipation
otentials Di will be specified further in Section 2.3.

emark 2. In subdomains V i that correspond to empty space or air, the deformation map requires special
reatment [22,33,63]. For details we refer to Section 3.3.

emark 3. The Euler–Lagrange equations corresponding to (12) and the evolution equation (13) can also be
btained from a variational principle along the lines of Hackl [65], who describes the corresponding procedure for
nite-strain elastoplasticity.
5
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Fig. 1. Setting of the magnetomechanical (initial) boundary value problem. The body V = Vm
∪ Vp, supported at Su and surrounded by

ir (or empty space) Va
= V∞ \ V . The magnetic load is applied in terms of an external field b∞t . The outer domain boundary ∂V∞ is

sufficiently remote from ∂V such that the magnetic field perturbations caused by the presence of Vp to practically vanish at ∂V∞. Note
urther that the Eulerian field b∞t is applied and not the Lagrangian one, which may be obtained if required by use of (6).

.3. Specialization to a particle–matrix system

In order to proceed further with more concrete examples, we specialize our study to the important case of
echanically rigid, hard-magnetic (i.e. dissipative) particles (occupying the domain Vp) embedded in a soft non-
agnetic, nonlinear elastic–viscoelastic elastomer matrix (occupying the domain Vm). The ensemble (occupying

he domain V = Vm
∪ Vp) is then immersed in an air domain Va

= V∞ \ V , all forming the overall domain
V∞. This problem corresponds to “mesoscopic” magnetorheological elastomeric structures and materials. While a
macroscopic treatment without the resolution of individual particles would be computationally more efficient, we do
not take this path yet, as there exist currently neither enough experimental data nor sufficiently general continuum
or homogenized models for hard magnetic nonlinear elastic–viscoelastic MREs.5 Moreover, the goal of the present
study is to provide a more general numerical framework including the air domain. This framework then may be
easily specialized to conduct homogenization calculations without air and periodic boundary conditions similar to
the studies of Javili et al. [66], Miehe et al. [23] Kalina et al. [67], Mukherjee et al. [27] and Mukherjee et al. [42].

In this regard, the fairly generic setting under consideration that specializes the abstract domain V∞ =
⋃

i V i

from the previous section is shown in Fig. 1.

Standard isotropic invariants. Without loss of generality with respect to the general formulation, we consider that
the materials under study are isotropic both mechanically and magnetically. For this reason and to keep our analysis
tractable but at the same time general, we focus on a minimum set of isotropic invariants which are then used to
propose energy densities for each phase. The magnetomechanical invariants given below ensure material frame
indifference and isotropy of the energy density functions. Specifically, we retain the isotropic mechanical invariants

I1(C) = trC = trB, J (C) =
√

detC =
√

detB = det F (16)

ith

C = FTF, B = FFT (17)

5 The recent works of Garcia-Gonzalez and Hossain [29] and Mukherjee et al. [42] are first steps in this direction but still incomplete
with respect to the more general case.
6
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denoting the right and left Cauchy–Green tensors, respectively. Furthermore, we consider the magnetomechanical
invariants6

I4(H) = ∥H∥2
= h · Bh = I4(B, h), I5(C, H) = H · C−1H = ∥h∥2

= I5(h). (18)

dditional invariants of similar form will be introduced later to deal with the corresponding dissipative contributions
elow.

In what follows, we specify the material models employed for the air, the elastomer matrix and the magnetic
articles.

.3.1. Air domain
The “air” domain Va

= V∞ \V only has a magnetostatic vacuum energy density (per referential volume), which
eads

W a(I5, J ) = Ψ vac(I5, J ), with Ψ vac(I5, J ) = −J
µ0

2
I5. (19)

his energy is a function of I5 and J only, which implies that the solution for h is not affected by the
ocal deformation of any non-magnetic medium. The corresponding Lagrangian magnetic field and total first
iola–Kirchhoff stress as well as their Eulerian counterparts are obtained as

B = −
∂W a

∂H
= Jµ0C−1H, S =

∂W a

∂F
= hB− J

µ0

2
I5F−T (20)

and

b =
1
J

FB = µ0F−TH = µ0h, σ =
1
J

SFT
= hb−

µ0

2
I51, (21)

espectively, where 1 is the second-order identity tensor.
In order to avoid severe mesh distortion in the air, especially in the present context of large transformations of

REs, a proper definition of the deformation map y(X, t) and thus F in Va is required. This constitutes a highly
on-trivial issue that is discussed in detail in Section 3.3.

.3.2. Elastomer matrix
The elastomer matrix occupies the domain Vm (see Fig. 1) and is assumed to follow a (quasi-)incompressible

iscous constitutive law. We employ a simplified version of the generic GSM-based viscoelasticity approach
f Kumar and Lopez-Pamies [54]. In that work, the authors rigorously demonstrated the conditions that are necessary
or material frame indifference and material symmetry and those details are not repeated in this study. In addition,
sing that framework, Ghosh et al. [69] have recently proposed an explicit, analytical homogenization model for
onlinear elastic–viscoelastic particle-reinforced elastomers and as a result the proposed numerical framework in this
tudy can be readily adapted in future implementations to include such homogenization models. Notwithstanding,
ny other viscoelastic model, e.g., [70–74], may be readily used if required by relevant experimental data.

Specifically, we use a viscous elastomer material model of a Zener–Maxwell-type as depicted in Fig. 2. This
escription assumes a multiplicative decomposition of the total deformation gradient F in terms of an energetic,
lastic part Fe and a dissipative, viscous part Fv, such that

F = FeFv or Fe
= FFv-1. (22)

or later use, we define next some important quantities derived directly from the previous multiplicative decompo-
ition. In particular, we introduce the corresponding right and left Cauchy–Green elastic tensors Ce and Be, as well
s the right and left Cauchy–Green viscous tensors respectively, as

Ce
= FeTFe, Be

= FeFeT, Cv
= FvTFv, Bv

= FvFvT. (23)

6 See for instance Brigadnov and Dorfmann [68] and Dorfmann and Ogden [13]. Thanks to the Cayley–Hamilton theorem, their
magnetomechanical invariants are perfectly compatible to the ones employed in the present work. The latter are, however, better suited
for formulations based on H.
7
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Fig. 2. A sketch of the Zener–Maxwell rheological model for the viscoelastic matrix material.

his further implies that invariants of Ce can be expressed as invariants of CCv-1. In direct analogy to (16), this
leads us to the invariants

I e
1 = trCe

= C · Cv-1, J e
=
√

detCe =

√
detC
detCv =

J
J v , J v

=
√

detCv. (24)

t is noted from the second equation above that J = J e J v > 0 is a constraint on the various volumetric total, elastic
nd viscous parts and its implications will be discussed later in this section.

The matrix energy density is then assumed to derive from an additive decomposition of an equilibrium part Ψ eq,
non-equilibrium part Ψ neq and the vacuum or “background” magnetic contribution present in non-magnetic media
vac from (19), such that

W m(I1, J, I e
1 , I5) = ρ0Ψ

eq(I1, J )+ ρ0Ψ
neq(I e

1 , J e)+Ψ vac(I5, J ), (25)

here I1 and J are given by (16), I e
1 and J e by (24).

Subsequently, we choose to work with hyperelastic-type energy functions of a form given by [75]

ρ0Ψ
eq(I1, J ) =

2∑
r=1

31−αr

2αr
Gr
[
(I1 − 2 ln J )αr − 3αr

]
+

G ′

2
(J − 1)2 , (26)

nd

ρ0Ψ
neq(I e

1 , J e) =
2∑

r=1

31−βr

2βr
gr

[(
I e
1 − 2 ln J e)βr

− 3βr
]
+

g′

2

(
J e
− 1

)2
. (27)

n this expression, both Ψ eq and Ψ neq are considered quasi-incompressible with G ′ ≫
∑

r Gr and g′ ≫
∑

r gr . A
ore detailed discussion of this point is carried out below.
Following Le Tallec et al. [76] and [54], we write the dissipation potential as

Dm(dv) =
ηK

2
dv

d · d
v
d +

ηJ

2

(
1
3

tr dv
)2

, dv(Ċv
;Fv) =

(
ḞvFv-1)

symm (28)

here dv is the viscous strain-rate (i.e. the gradient of the velocity field) and dv
d = dv

− 1/3 tr dv 1 denotes its
eviatoric part. The two coefficients ηK and ηJ denote the shear and bulk viscosities, which in the present work
re assumed constant but more complex descriptions may be readily considered as discussed in [54].

emark 4. The dissipation potential (28) may be shown to be quadratic in Ḟv [54] and thus be strictly
onvex for constant ηK > 0 and ηJ > 0. As a result the second law of thermodynamics is trivially satisfied,

m ˙ v ˙ v
.e., (∂ D /∂F ) · F ≥ 0.

8
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It is noted that as a direct consequence of the definition of dv in (28), the symmetric Cv is chosen in the present
work as the internal variable and thus an evolution equation for Ċv needs to be determined from the GSM relation

∂W m

∂Cv +
∂ Dm

∂Ċv
= 0. (29)

bviously, other choices are possible. However, one should always make sure to satisfy the second law of
hermodynamics mentioned previously. After some cumbersome algebra that is provided in Appendix B, we obtain
n the compressible case, the following evolution equation

Ċv
=

1
ηK

∂W m

∂ I e
1

[
C−

1
3

(
1−

ηK

ηJ

)
(C · Cv-1)Cv

]
+

J e

2ηJ

∂W m

∂ J e Cv. (30)

his equation results in a compressible Cv and thus J v
̸= 1. Again, we recall the constraint J = J e J v. Nevertheless,

n problems involving elastomers, one may simplify this last equation further by assuming incompressibility of Cv.
hen more general quasi-incompressible solids are considered, such an assumption has only practical interest since

t implies taking the limit ηJ →∞ and use ηK to fit any experimentally relevant data. In this incompressible limit,
he evolution Eq. (30) becomes

Ċv
=

1
ηK

∂W m

∂ I e
1

[
C−

1
3

(C · Cv-1)Cv
]

. (31)

This last relation leads readily to an incompressible (up to numerical approximations to be discussed in Section 3)
Cv and thus J v

= 1. As a result, J = J e irrespective of the hydrostatic parts considered in the energy W m. This
further implies that if J ̸= 1 then one needs to choose a potential W m such that it allows J e

̸= 1. Otherwise, the
kinematic constraints resulting from the multiplicative decomposition (22) cannot be satisfied. For this reason, in
the present study, we will consider a large but finite g′ in the definition of W m in (27) thus allowing J e

= J ̸= 1
n general (but fairly close to unity). The value of G ′ in (26) and g′ in (27) of course do not need to be the same.

on-dissipative limit. This corresponds to η → 0, i.e. the dissipation potential vanishes, but then Cv
→ C such

hat Be
→ 1, which causes the non-equilibrium contribution to vanish as well.

epresentative response. The response of a representative model obtained from the proposed viscoelastic framework
s shown in Fig. 3. In the graph we observe three different regimes. For low stretch rates λ̇ ≤ 1.0 s−1 (blue and
range curves) the response is practically non-dissipative and governed by the equilibrium energy density alone. For
ntermediate stretch rates 101 s−1

≤ λ̇ ≤ 102 s−1 (green and red), one can observe significantly different responses
uring loading and unloading indicating a considerable viscous dissipation of energy. For even faster stretch loading
˙ ≥ 103 s, the area between the loading and unloading path decreases again because the loading is too fast for any
ignificant viscous relaxation to happen. Hence, the response of the model at hand is governed by the sum of the
quilibrium and the non-equilibrium energy density, whereby the latter acts like just another elastic contribution
ecause of negligible viscous relaxation and thus negligible dissipation. We refer to Section 3.1.1 for details on the
lgorithms used to actually compute the response.

.3.3. Ferromagnetic particles
The ferromagnetic particles (Vp in Fig. 1) considered in this work are assumed to be mechanically rigid (even

hough that is not necessary in the context of the present general framework) by comparison with the elastomer
atrix. Thus, they may undergo rotations but no significant deformation [41]. In view of this, we employ the model

f Mukherjee et al. [42]7 in the limiting case of rigid particles, i.e. c → 1 in their terminology and some main
eatures of this work are briefly recalled here for completeness.

Specifically, the model is based on a magnetic internal vector-valued state variable Hr that is defined at an
ntermediate stretch-free configuration. The corresponding Eulerian and Lagrangian counterparts are then given by

hr
= RHr, Hr

= UHr, (32)

ith R and U being the rotational and the stretch components of F, i.e.

F = RU, det R = 1, R−1
= RT, U = UT. (33)

7 The ferromagnetic modeling framework employed by Mukherjee et al. [42] and also in the present work accounts for the vacuum
(background) magnetic energy. This is not the case in the contribution of Kalina et al. [41].
9
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Fig. 3. The viscoelastic response under isochoric uniaxial (a) tension and (b) compression for viscosity η = 40 kPa s, equilibrium energy
arameters {G1, G2} = {100, 100} kPa and {α1, α2} = {1, 3} and non-equilibrium energy parameters g1 = 600 kPa and a1 = 1. (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

he fields hr and Hr contribute to the “full” fields h and H, respectively, as

h = he
+ hr, H = He

+Hr, (34)

hich implicitly defines the energetic he and He. In the present setting of (quasi-) rigid particles, i.e. U ≈ 1, this
ntermediate configuration coincides with the initial configuration. In order to ensure material frame indifference
nd isotropy, the model detailed below is given in terms of the invariants I1, J and I5 already defined in (16) and
18), respectively, and in terms of the additional invariants

I er
5 = H · C−1/2Hr, I r

5 =Hr
·Hr. (35)

ince U = C−1/2, the former invariant can also be expressed as I er
5 = h · RHr.

The abstract form of the GSM relation for the dissipative ferromagnetic model reads
∂W p

∂Hr (I1, J, I r
5, I5, I er

5 )+ ∂Ḣr Dp(Ḣr
;C, H,Hr) = 0 ⇒ Br

:= ∂Ḣr Dp
= −

∂Ψ

∂Hr (36)

here ∂Ḣr denotes the subdifferential [64,77] with respect to Ḣr
and Br is introduced as the energetic dual to Hr.

The energy density W p is assumed to be of the form

W p(I1, J, I r
5, I5, I er

5 ) = ρ0Ψ
mech(I1, J )+ ρ0Ψ

mag(I r
5, I5, I er

5 )+Ψ vac(J, I5), (37)

here Ψmech is chosen to follow a simple Neo-Hookean law since the particle is fairly rigid, such as

ρ0Ψ
mech(I1, J ) =

Gp

2
(I1 − 3− 2 ln J )+

G ′p
2

(J − 1)2 . (38)

or the particles to be practically rigid in comparison to the elastomer matrix, one simply needs to choose sufficiently
arge values for the moduli Gp ≫

∑
r Gr and G ′p ≫ G ′. Specific values are reported later in the results sections.

he magnetic energy density Ψmag reads

ρ0Ψ
mag(I r

5, I5, I er
5 ) = ρ0Ψ

e,mag(I5)+ ρ0Ψ
r,mag(I r

5, I er
5 )

= −
µ0

2
χ e I5 + µ0(1+ χ e)I er

5 + µ0
(ms)2

χ r f

(√
I r
5

ms

)
, (39)
10
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where χ e is the magnetic susceptibility in absence of dissipative ferromagnetic evolution whereas χ r corresponds
to the susceptibility added8 due to dissipative ferromagnetic evolution. Therefore, we refer to them as the
“energetic” and “remanent” susceptibilities of the particles. The saturation parameter ms coincides with the
saturation magnetization if χ e

= 0. The function f , controlling the magnetic saturation behavior, is chosen of
he form

f (x) = − ln(1− x)− x, x ≥ 0, (40)

o that it is sufficiently smooth and twice differentiable for all x > 0. Notably, f ′(x) leads to an inverse saturation-
type response which tends to∞ as x → 1. This property, in turn, leads to a saturation type ferromagnetic response,
which will be shown later in this section.

We note at this point that we omitted the coupling energy density that leads to intrinsic magnetostriction and is
present in the more general model of Mukherjee et al. [42]. The reason is simply that the magnetostrictive strains
in the present mechanically-stiff particles are negligible. The vacuum energy density Ψ vac is that given by (19).

Next, we define the (non-smooth) dissipation potential Dp,∗ in terms of its Legendre–Fenchel dual

Dp,∗(Br) =

{
0 if Φ(Br) ≤ 0
+∞ otherwise,

(41)

where the magnetic switching surface Φ9 is given as

Φ(Br) = Br
·Br
− (bc)2

= 0, (42)

with bc being the coercivity of the magnetically hard particle. The actual dissipation potential Dp is then obtained
from the dual potential as

Dp(Ḣr
) = sup

Br
inf
Λ̇≥0

{
Br
· Ḣr
− Λ̇Φ(Br)

}
, (43)

where Λ̇ is the Lagrange multiplier10 enforcing Φ(Br) ≤ 0. The optimality conditions of (43) are

Ḣr
= Λ̇

∂Φ(B)
∂Br , Φ(Br) ≤ 0, Λ̇ ≥ 0 and Λ̇Φ(Br) = 0, (44)

f which the latter three are known as the Karush–Kuhn–Tucker (KKT) conditions. Inserting W p from (37) and Dp

from (43) in the generic evolution principle (13) yields the variational principle

{Ḣr
t ,Br

t , Λ̇t } = arg
{

inf
Ḣr

sup
Br

inf
Λ̇≥0

[
∂W p

∂Hr · Ḣ
r
+Br

· Ḣr
− Λ̇Φ(Br)

]}
(45)

ith stationary conditions

Br
= −

∂Ψ r,mag

∂Hr , Ḣr
= Λ̇

∂Φ(Br)
∂Br , Φ(Br) ≤ 0, Λ̇ ≥ 0 and Λ̇Φ(Br) = 0 (46)

overning the evolution of the internal state and the auxiliary variables Br and Λ̇.
For later use, we introduce the objective function of the optimization problem (43) as

Lp(Ḣr
,Br, Λ̇) = Br

· Ḣr
− Λ̇

(
Br
·Br
− (bc)2) (47)

uch that

Dp(Ḣr
) = sup

Br
inf
Λ̇≥0

Lp(Ḣr
,Br, Λ̇). (48)

8 Their relation to the total susceptibility is actually more complicated than simply adding them up. In the limit of very small χ e, the
total susceptibility is at first order equal to χ e

+ χ r. For a more detailed description we refer to Mukherjee et al. [42].
9 It is perhaps helpful to note that the switching surface in magnetism is treated in a similar fashion to the yield surface in elasto-plasticity.

The reader is referred to Mukherjee and Danas [78] for more details.
10 Note that we write Λ̇ following a convention borrowed from plasticity where Λ̇ is referred to as (plastic) consistency parameter and the

“dot” indicates that Λ̇ indeed has the physical unit of a time rate. However, when identified as a Lagrange multiplier, there is no physical
significance of a time integral of Λ̇. In this sense we point out that in many works on GSM and also at some instances in plasticity theory,
e.g. Lubliner [79], Λ̇ is simply written as Λ.
11
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Fig. 4. The uni-axial ferromagnetic response in terms of (a) the internal state Hr and (b) the magnetization m = b/µ0 − h for model
parameters µ0 = 4π × 10−1 µm T A−1, ms

= 0.67 MAm−1, χ e
= 0.105µ0, χ r

= 8.0 and bc
∈ {0.0, 0.25, 0.50, 0.75, 1.062}T. (For

nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

on-dissipative limit. The magnetic response in the non-dissipative limit of the above constitutive behavior
orresponds to the limit bc

→ 0 and may be written as

Ψmag(I5) = −
µ0

2
χ e I5 − µ0

(m̃s)
2

χ̃ r
f̃
(

χ̃ r

m̃s

√
I5

)
(49)

ith

f̃ (x) = − ln(1+ x)+ x = f (−x), χ̃ r
= (1+ χ e)2χ r and m̃s

= (1+ χ e) ms. (50)

pecifically, considering bc
= 0 we obtain the condition Br

= 0. Hence, Ḣr
vanishes (see (46)2) leading to

Dp(Ḣr
) = 0, i.e., no dissipation. Finally, substituting Br

= 0 into (46)1 leads to an algebraic relation between
r and H. After some simplifications in accordance with the assumption of quasi-rigid particles we arrive at (49),

.e. an expression for Ψmag only in terms of I5.

epresentative response. The uniaxial response of a realistic ferromagnetic material is depicted in Fig. 4. For details
n the algorithms that have been employed to compute the response, we refer to Section 3.1.2.

For extensions of the present model that allow to capture more complex magnetic responses in the case of
egligible deformation we refer to Mukherjee and Danas [78]. In this regard we also mention the possibility to
uperpose the responses of a set of instances of the model above in order to fit experimental data [41,80–82].

. Discretization and numerics

In this section, we present the discretization of the magnetomechanical IBVP as well as certain algorithmic
etails. We first specify the updating algorithms for the viscoelastic and magnetic internal states. Then, we briefly
ummarize the global time-discrete problem. Subsequently, we turn to the spatial discretization aspects using the
nite element method.
12
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3.1. Time discretization

In what follows, subscripts “n” and “n + 1” indicate quantities evaluated at the time steps t = tn and t = tn+1
respectively. In addition, superscripts “k” and “k+1” correspond to iterations for the solution of a nonlinear problem
for {u, ϕ} and internal states. For example, uk+1

n+1 refers to the value of the deformation map u at the (k+1)-th iteration
for the computation of solution of the global IBVP. Note that we use u instead of uk+1

n+1 and so on when we refer
to variables rather than concrete solutions.

For simplicity we restrict ourselves to lowest order approximations of rates. In particular, we introduce

Ċv(Cv) :=
Cv
− Cv

n

∆t
and Ḣr

(Hr) :=
Hr
−Hr

n

∆t
with ∆t := tn+1 − tn. (51)

n what follows, any “dotted” quantity is to be understood as time-discrete.

.1.1. Time discretization of the viscoelastic (rate-dependent) evolution in the elastomer domain
For the time discretization of the viscous evolution Eq. (31), we employ a Crank–Nicolson scheme. Using

Gv(F,Cv) =
1

ηK

∂W m

∂ I e
1

[
C−

1
3

(
C · Cv-1)Cv

]
, (52)

i.e. the right-hand-side of (31), the time-discrete evolution equation reads as

Cv
= Cv

n +
∆t
2

[
Gv(F,Cv)+Gv(Fn,Cv

n)
]
. (53)

We note that this is a nonlinear equation for Cv that brings along a certain numerical effort. It can be solved by
a standard Newton–Raphson algorithm in a straight-forward manner. Depending on the size of the boundary-value
problem, the additional cost required for the solution of the local (spatially point-wise) nonlinear-equation is more
or less negligible when compared to that of the overall solution time of a global nonlinear boundary value problem,
e.g., a FEM simulation. As a simpler alternative, we have also successfully employed the explicit fifth-order Runge–
Kutta scheme discussed in Kumar and Lopez-Pamies [54] and Ghosh et al. [69] and the differences were found to
be negligible for the examples considered here.

Remark 5. We note that for the given incompressible dissipation potential Dm, which in the present model
explicitly depends on Cv, it is not possible to derive the second-order accurate Crank–Nicolson scheme from an
incremental variational principle, but only a semi-implicit first-order scheme. Nonetheless, we have found that
the implicit scheme is inaccurate (in particular with respect to viscous incompressibility) and leads to substantial
convergence problems. In any case, in the context of incompressible problems, the fifth-order Runge–Kutta explicit
scheme is found to be robust and easily applicable with regard to maintaining unity for J v.

.1.2. Time discretization of the ferromagnetic (rate-independent) evolution in the magnetic particles
In the case of the ferromagnetic rate-independent evolution, we face an optimization problem with an inequality

onstraint. A fully implicit discrete version of (44) (or (46)) using ∆Λ = ∆t Λ̇ is represented by the system

Hr(H) =Hr
n +∆Λ

∂Φ(Br)
∂Br with Br

= −
∂Ψ r,mag(H,Hr)

∂Hr (54a)

ubject to

∆Λ ≥ 0 ∧ Φ(Br) ≤ 0 ∧ ∆ΛΦ(Br) = 0. (54b)

ince the switching surface Φ(Br) is a function of Br only, the evolution Eqs. (54) can be obtained as the stationary
onditions of the time-discrete version of (45) and (48), i.e.

{Hr,Br, Λ̇}(H) = arg
{

inf
Hr

sup
Br

inf
Λ̇≥0

[
W p(F, H,Hr)+∆t Lp

(
Ḣr

(Hr),Br, Λ̇
)]}

(55a)

r

{Hr,Br,∆Λ}(H) = arg
{

inf sup inf
[
W p(F, H,Hr)+ Lp (Hr

−Hr
n,Br,∆Λ

)]}
, (55b)
Hr Br ∆Λ≥0

13
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respectively. In contrast to the viscoelastic evolution, the scheme selected for magnetic evolution is of first order
only. This choice is justified by the non-smoothness of the evolution problem at hand.

Both the “direct” (54) and the “optimization” (55) ferromagnetic evolution problem can be solved by active-set
lgorithms [83] of which the well-known return-mapping schemes [84,85] first devised for plasticity are a special
ase. In the present case, we opt for a rather generic approach outlined in Algorithm 1. Note that in this algorithm
he condition on the trial state ensures that ∆Λ ≥ 0 thus allowing to drop the inequality constraint and employ a
tandard Newton–Raphson scheme to solve the nonlinear evolution equations. In a computer implementation, one
ight check whether ∆Λ ≥ 0 is indeed fulfilled afterwards. Moreover, Br and ∆Λ are only auxiliary results of

which the history is not of concern. Storing them is thus not necessary but might save some iterations through
improved initial “guesses” depending on the actual nonlinear solver scheme and implementation.
Algorithm 1: Abstract scheme for the local ferromagnetic evolution at an outer iteration k + 1

1 {F, H} ← {F(uk+1
n+1), H(ϕk+1

n+1)}
2 Br

trial ←−∂W p(F, H,Hr
=Hr

n)/∂Hr
n

3 if Φ(Br
trial) ≥ 0 then

4 compute Hr(F, H) from Eq. (54) or Eq. (55); recall that ∆Λ ∈ R \R− is expected when Φ(Br
trial) ≥ 0

5 else
6 Hr(F, H)←Hr

n

7 end
8 Hk+1

n+1 ←Hr(F, H)

Remark 6. For the validity of the optimization approach (55), it is required that the function Lp does not explicitly
depend on Hr but only through the rate Ḣr

. While this holds in the present setting, it might not hold automatically
for more complicated ferromagnetic evolution models. Any explicit dependence on Hr then has to be substituted
by Hr

n . We remark also that the evolution equation for the internal magnetic state in terms of F and H (and history
states) is practically independent of F in the present setting of quasi-rigid particles where C ≈ 1.

3.1.3. Global time-discrete problem
With the material models for the individual domains or phases defined in Section 2.3 and the discrete evolution

laws given in Sections 3.1.1 and 3.1.2, we provide next the time-discrete IBVP for the particle–matrix-system under
consideration. We consider the generic IBVP given by (12) and (13) as a starting point. In the present setting, those
lead to the (incremental) system

{un+1, ϕn+1} =

arg

⎧⎪⎪⎨⎪⎪⎩ inf
u
∈

K(tn+1)

sup
ϕ
∈

G(tn+1)

[∫
Vm

W m(F, H,Cv)dV +
∫
Vp

W p(F, H,Hr)dV +
∫
Va

W a(F, H)dV
]⎫⎪⎪⎬⎪⎪⎭ , (56)

where F = F(u), H = H(ϕ) and the internal states Cv and Hr correspond to solutions of the discrete evolution
equations in Section 3.1.1 and Section 3.1.2, respectively. Accordingly, in (56), Cv

= Cv(F(u)) and Hr
=Hr(H(ϕ))

are functions of the external fields u and ϕ. History states at time t = tn , while not explicitly mentioned, are of
course relevant to the solution procedures for Cv and Hr. Also, the auxiliary internal states Br and ∆Λ are not
mentioned in the global problem above as they do not appear explicitly in the energy densities W i but only in the
local evolution equations.

For a complete overview of the solution of the time-discrete IBVP, we provide Algorithm 2 that summarizes the
global scheme.

Thereby, we remark that the iterative solution of the time-discrete system (56) is conducted in individual steps for
the solution of the external and internal states (lines 9 to 11). In particular, we emphasize that the solution increments,
which eventually yield the updated external state {u, ϕ}k+1

n+1 in line 9, are obtained from the linearization of (56). The
internal states are updated in separate steps afterwards by a solution of the respective nonlinear evolution problems.
For a fast convergence of the loop started in line 8, the aforementioned linearization has to be consistent in the
sense that changes in the internal states due to changes in the external states must be accounted for. This is known

as algorithmically consistent linearization and is outlined in Appendix A.

14
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Algorithm 2: Generic overall solution procedure for time-discrete problem
Data: ∆t, tstart, tend, ustart, ϕstart,Cv

start, pv
start,Hr

start,Br
start,∆Λstart

1 n← 0;
2 tn ← tstart;
3 {un, ϕn,Cv

n, pv
n,Hr

n,Br
n,∆Λn} ← {ustart, ϕstart,Cv

start, pv
start,Hr

start,Br
start,∆Λstart};

4 while tn < tend do
5 tn+1 ← tn +∆t ;
6 k ← 0;
7 {u, ϕ,Cv, pv,Hr,Br,∆Λ}kn+1 ← {u, ϕ,Cv, pv,Hr,Br,∆Λ}n;
8 while Not converged do
9 solve the linearization of the BVP Eq. (56) at state {Cv, pv,Hr,Br,∆Λ}kn+1 to obtain {u, ϕ}k+1

n+1;
10 solve the evolution equations for {Cv, pv

}
k+1
n+1 with {F, H} = {F(uk+1

n+1), H(ϕk+1
n+1)} (see Section 3.1.1);

11 solve the evolution equations for {Hr,Br,∆Λ}k+1
n+1 with {F, H} = {F(uk+1

n+1), H(ϕk+1
n+1)} (see

Section 3.1.2);
12 k ← k + 1;
13 end
14 {u, ϕ,Cv, pv,Hr,Br,∆Λ} ← {u, ϕ,Cv, pv,Hr,Br,∆Λ}kn+1;
15 n← n + 1;
16 end

3.2. Spatial discretization

The initial boundary value problems considered within the present work can be discretized by classical finite
lement approaches for magnetomechanics. In the numerical examples we restrict ourselves to simplicial meshes and
mploy second-order Lagrange elements for the displacements u and also for the scalar-valued magnetic potential

[22,30]. In general, we employ a quadrature of degree two but under-integrate (degree zero) the volumetric
dilatation) terms in the stored energy W m. The discrete values representing the internal states will be associated
ith finite element quadrature points of the degree-two quadrature rule. The actual implementation is done in the
ython front-end of the finite element toolbox FEniCS [56] named dolfin together with materiauXdolfin from the
ateriaux material modeling kit for the convenient handling of evolution equations and internal states. In addition,
e have also developed Abaqus user elements (UELs). Both the FEniCS and the Abaqus implementation are
rovided as supplementary material. Furthermore, code examples showing the complete chain from the creation
f a material model up to the basic definition of a discrete nonlinear FE problem are provided as supplementary
ocuments hyperelastic model.pdf, viscoelastic model.pdf and ferromagnetic model.pdf.

3.3. Deformation in free space

In the Lagrangian finite element formulation of magnetomechanics one requires an appropriate extension of
the deformation map y(X) from the actual bodies V into the surrounding empty space Va, whereby “appropriate”
essentially means det F > 0. Since empty space has practically vanishing elastic properties, one can assign any
reasonable soft elastic material law to the empty space to guide the adaption of the free space to the deformation
and motion of the embedded magnetoelastic, deformable bodies. A robust and clean approach to this problem is
the one employed by Psarra et al. [32], Psarra et al. [33] and Mukherjee et al. [42]. This method essentially uses
(non-local) multipoint constraints that control the displacements in empty space based on the displacements at the
boundary of the body ∂V .

While this approach is supported by the FE software Abaqus via the *EQUATION command if the constraints are
linear or by means of either a non-local penalty method or *MPC command if the constraints are nonlinear, it is not
directly supported by the current stable release (2019.1.0) of the FE toolbox FEniCS. Instead, with FEniCS, one

a
may follow the approach of Pelteret et al. [63], which removes all mechanical stiffness from the air domain V and

15

https://gitlab.com/materiaux/materiauXdolfin
https://gitlab.com/materiaux/materiauXdolfin
https://gitlab.com/materiaux
https://gitlab.com/materiaux
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fixes the discrete deformation within Va. In turn, a suitable extension of the deformation in V to Va is computed in
a completely separate step. Our approach of such a staggered scheme is detailed in Section 3.3.2. In comparison
with [63], our version is designed for larger displacement increments and thus allows for larger load steps, which
significantly accelerates the overall solution procedure in most scenarios. Both the non-local multipoint constraints
and the staggered scheme are by construction free of any artificial stiffness contribution in empty space and thus
regarded as accurate. There are, however, important differences between the two approaches. On the one hand,
the staggered scheme fails in certain problems, such as large transformations induced in beam bending problems
with strong coupling between magnetic field and magnetoelastic structures (e.g. in the beam example presented in
Section 4), a situation that in general poses no problem for the non-local multipoint constraint approach. In turn,
the latter may be not trivial to implement for complex geometries (such as the one considered in [58]), whereas the
staggered approach does not suffer from such a limitation.

A third possibility – used extremely often in the literature – is to directly equip empty space with a fictitious
auxiliary “material” law, i.e. treat empty space as an extremely soft non-magnetic elastic medium [22]. This,
however, introduces an additional stiffness to the original problem, which can be significant depending on the
relative stiffness of the MRE structure. In fact, the artificial stiffness is limited from below due to ill-conditioning
of the discrete system of equations and, depending on absolute stiffness values, also due to spurious deformations
in regions with strongly non-uniform fields [86, Section 9.3]. Thus, we rather regard this approach as a fall-back
solution, albeit very useful in complex geometrical problems to get a qualitative estimate of the process.

As a further possibility, we mention the work of Liu et al. [87] who solve in an alternate manner the decoupled
mechanical and magnetostatic subproblem until convergence in a staggered manner is achieved. By that, they
apparently avoid the spurious magnetomechanical coupling in free space and thus are able to use a much softer
elastic material in the empty domain. In turn, they have to pay the cost that comes along with important coupling
effects. It eventually depends on the problem, whether such an approach is advantageous or not.

Below we present essential details of three important ways to extend the displacement field into the free space
surrounding the deformable magnetomechanical bodies, namely

(i) non-local multipoint constraints,
(ii) the staggered scheme with a separate deformation phase for the free space, and

(iii) the treatment of empty space as a very soft non-magnetic solid.

In addition, in 4.1 we assess the accuracy of approach (iii) through a comparison with approach (i). In this case
of large beam deflections and thus large air deformations the staggered scheme becomes highly unstable and is
not shown. Instead, in Section 5, the staggered scheme is used successfully to simulate a rotating 3D MRE ellipse
subjected to non-monotonic and rotating magnetic fields.11

.3.1. Non-local mesh-coupling
In order to obtain a numerically feasible “deformation” in the free space, we apply a linear constraint on every

ode in the air domain Va following the approach described first in [33]. This implies that all air nodes move
elative to the deformable body and any spurious deformation modes induced by the magnetic non-uniformities
ecome irrelevant since they are canceled out by the imposed deformation. To achieve this, we first define a distance
oefficient for each node in Va. This requires to find the closest node on the boundary of the deformable body ∂V
o the node in Va. This is easily achieved by a simple nearest neighbor search algorithm. The distance coefficient
s subsequently defined to be

d (n)
i = 1−

⏐⏐⏐X (n)
i

⏐⏐⏐
∂V
− X (n)

i

⏐⏐⏐Va

⏐⏐⏐
0.5LAir

, (57)

where LAir is the side length of the free-space box12 and n is the number of active constraints and by definition
equals the number of mechanical degrees of freedom in Va, i.e., the subscript i = 1, 2 in two-dimensions and
= 1, 2, 3 in three-dimensions.

11 We note here that the staggered and the non-local constraint scheme have shown the same accuracy in the two-dimensional beam
problem but considering a stiffer beam material to reduce the overall deformations.

12 More general, L can (or has to) be replaced by any value large enough to ensure that d(n) is strictly positive.
Air i
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Subsequently, we employ a constraint between every pair of nodes, the one at the boundary of the deformable
olid and that in the air, which reads

C(n)
i ≡

⎧⎨⎩d (n)
i u(n)

i

⏐⏐⏐∂V − u(n)
i

⏐⏐⏐Va = 0, if 0 < d (n)
i ≤ 1

u(n)
i

⏐⏐⏐Va = 0, otherwise.
(58)

This constraint is a linear constraint between the displacement degrees of freedom of the body boundary ∂V
nd those of the free space Va. Obviously a more complex non-linear constraint may be imposed if necessary.
he linear constraint may be imposed using various different approaches. In the earlier works of Psarra et al.

32] and [33], a penalty method has been implemented. In this work, given that the constraints are linear, we
mploy a direct elimination technique by use of the pre-built *EQUATION command in Abaqus. This way the
onstraint is exactly satisfied without the use of any penalty parameter. Various checks that have been done show
hat the elimination technique and the penalty method proposed in the earlier studies delivers practically the same
esults. More importantly, the proposed method allows for large transformations of the air without compromising
he convergence rates and accuracy of the magnetomechanical solutions.

.3.2. Staggered approach
In this approach, the discrete deformation in empty space Va is fixed during the numerical solution of the coupled

oundary value problem and only adapted to the deformation on ∂V in a completely separate step [63]. As a
onsequence, the solution domain of u in Line 9 of Algorithm 2 is not V∞ but actually V whereas ϕ is still solved
or in V∞. The adaptation of y or, respectively, u in Va then requires a correction of the magnetic potential ϕ in

a, possibly followed by re-computation of the magnetomechanical equilibrium. The simplest implementation of
his approach first solves the nonlinear magnetomechanical problem and then, if required, computes a new free-
pace deformation. This comes, however, with the caveat that since the boundaries of physical bodies move but the
eighboring ones in empty space do not, the boundary deformation is limited. This results in certain constraints on
he size of load steps or time increments before the deformation of free space is adapted.

This problem even increases with increased spatial resolution of the problem geometry, i.e. finer meshes. As a
emedy, the free-space adaption step can be performed before the assembly of the residual vector and the system
atrix of the coupled problem such that free-space deformation happens within the nonlinear solver loop. The

bstract free-space deformation problem to be solved before13 Line 10 in Algorithm 2 is given as

uk+1
n+1

⏐⏐
Va = arg

{
inf

u∈Wu(Va; uk+1
n+1

⏐⏐⏐
V

)

∫
Va

Ψ (F(u))dV
}

(59)

ith

Wu(Va
; uk+1

n+1

⏐⏐
V ) = {u | u ∈ H1(Va) ∧ u = 0 on ∂Va

∩ ∂V∞ ∧ u|Va = uk+1
n+1

⏐⏐
V on ∂Va

∩ ∂V} (60)

here u|Va and u|V indicate a restriction to the disjoint domains Va and V , respectively. Thus, the solution space
u(Va
; u|V ) ensures that uk+1

n+1

⏐⏐
Va + uk+1

n+1

⏐⏐
V = uk+1

n+1. Note that it is not required to solve this problem to a high
ccuracy since its sole purpose is to prevent material interpenetration, i.e. to maintain det F > 0. The next step
fter the free-space motion is to correct or restore the magnetic equilibrium, which can be approximately done by
projection that minimizes the L2-distance between the current h-field before and after free space motion. In the

ase of strong structural coupling, that is when the shape of the magnetoelastic body or structure is highly sensitive
o magnetic fields, even tiny changes in the current configuration of the free space affect the deformation of the
ody. Then it is paramount to repeatedly equilibrate the coupled problem and (re-)adapt the deformation in free
pace before proceeding to the next load step. Otherwise, both the accuracy and the robustness of the staggered
cheme can suffer dramatically.

In principle, the choice of the actual material model is quite arbitrary. In the present work we employ an energy
ensity of the form

Ψmm(I1, I3, X) = w(X)

{∑
i

31−αi

2αi
G i
[
(I1 − 2 ln J )αi − 3αi

]
+ G ′ (J − 1)2

}
, (61)

13 This is a mere choice. The free-space motion problem could also be solved, for example, after Line 11, i.e. as the last sub-step of the
nonlinear solver iteration.
17
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Table 1
Combinations of material models.

Elastomer Magnet

Dissipative Non-dissipative (bc
→ 0)

dissipative visc/hard visc/soft
non-dissipative (η→ 0) hard soft

with G1 = G2 = 1, G ′ = 0.5 and a weight function

w(X) =
1

del(X)
(62)

here del(X) is the “diameter” (in FEniCS/UFL parlance) of the undeformed finite element containing X. A variant
f this approach consists in applying w only to G i but not G ′.

emark 7. We note that the additional computational effort to solve the free-space deformation problem and the
ubsequent correction of ϕ is usually negligible since the linear systems involved are much smaller and much easier
o solve than those for the coupled problem. Moreover, free-space deformation is not always necessary but may be
riggered by some heuristic criterion. In the present work, we initiate free-space motion as soon as the maximum
orm of the discrete residual of the free-space motion problem (59) reaches a certain threshold or in case of material
nterpenetration.

.3.3. Auxiliary energy density of free space
The ad-hoc auxiliary energy density given below is proposed in order to minimize the resulting perturbation of

he original problem, i.e. minimize the additional stiffness. For this purpose we employ a neo-Hookean-type energy
f the form (61) where we let the weighting function w(X) depend on the volume V el

0 (X) of the undeformed finite
lement containing X, i.e.

w(X) = max
[
wmin, min

(
1

V el
0 (X)/Vref

, wmax

)]
(63)

uch that the stiffness decreases with element size, whereby Vref is a certain reference element size and wmin and
max refer to the lower and the upper bound of w(X). This heuristic proposition is appropriate for meshes that are
ner in the vicinity of magnetic bodies and gradually become coarse at larger distances from them.

We note that finite element discretizations may suffer from spurious magnetomechanical deformations in
ery soft non-magnetic media as described in [86, Part II, Section 9.3.1]. Thus, an auxiliary energy density
ith varying coefficients as the one above is only an attempt to balance the required stiffness to cope with

purious magnetomechanical effects with a minimal perturbation of the original problem. It thus has certain limits,
n particular, for boundary value problems of mechanically very soft magnetic media and compliant magnetic
tructures. As we will see, this approach may lead to quantitative errors as demonstrated by a comparison with
he non-local multipoint constraint approach and thus must be used with great care. In turn, it is easier to employ,
specially in domains where the free-space geometry is extremely complex (see for instance the modeling of an
RE device by Dorn et al. [58]).

. 2D numerical examples: a two-dimensional magnetoelastic beam

In this section and the following one, we present a set of examples which demonstrate the capabilities of the
roposed numerical framework and its implementation. At the same time, the examples demonstrate the combined
ffect of viscoelasticity and dissipative ferromagnetism as a motivation for future material modeling efforts. We note
hat all material models employed are implemented for the general three-dimensional case being totally agnostic of
he spatial dimension of the initial boundary value problems below.

In all the simulations shown in the remainder of this section, we consider a plane strain setting and employ

he same set of material parameters, whereby we consider four material combinations as shown in Table 1. The
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Fig. 5. A slender elastomer beam embedding thirteen circular magnetic particles (a) with diameter d (c). The beam is placed within a
ree-space box (b), whereby it is centered vertically and has its left end at a distance of c to the left outer boundary. The premagnetization
eld b∞,pre (blue, dashed) is applied in x1- or x2 direction whereas the subsequently applied operation field b∞,op (blue) is aligned with

x2 or x1, respectively. The indicated dimensions are given as L = 20, O1 = 10, O2 = 10, l = 3, b = 0.25, c = 2 and d = 0.1. (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

able 2
enter coordinates of the particles embedded in the slender elastomer beam.

# 1 2 3 4 5 6 7 8 9 10 11 12 13

x1 −1.80 −1.60 −1.35 −1.10 −0.90 −0.70 −0.45 −0.20 0.00 0.25 0.47 0.65 0.90
x2 r/2 -r/2 r/2 -r/2 r/2 -r/2 r/2 -r/2 r/2 -r/2 r/2 -r/2 r/2

comparison of these cases provides important insight into the practical effect of the dissipative behavior of both the
magnetic particles and the elastomers. The precise forms of the individual material laws can be found in Section 2.3.
The non-dissipative (hyperelastic) variant for the elastomer is simply the hyperelastic part Ψ eq of the behavior,
whereas the non-dissipative magnetic response is given by (49). The actual parameters employed are provided for
each example below.

The first example considers a chain of circular magnetic particles embedded in a slender beam. This geometry is
inspired by Zhao et al. [45] and Mukherjee et al. [42]. However, in contrast to these earlier studies, in the present
contribution, we numerically resolve a small, finite number of particles instead of considering a (macroscopically)
homogeneous beam mainly due to lack of a complete ferromagneto–viscoelastic continuum material model. The
structure under consideration is depicted in Fig. 5. The center coordinates of the thirteen particles are chosen
arbitrarily but are fairly uniformly spaced (see Table 2).

As indicated in Fig. 5, those instances of the beam that carry magnetically hard particles are either premagnetized
in x1- or x2-direction with a field of b∞ = b∞,pre. During “actuation” of the (premagnetized if magnetically hard)
beam, the field b∞ = b∞,op is applied in the perpendicular direction such that the angle between premagnetization
and actuation field is 90◦ in either case. The premagnetization field reaches a peak value of b∞ = 2 T before

linear decrease to zero. During this phase, we block all displacements at the boundary of the beam ∂V , at the
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Table 3
Material parameters for the particle-chain example.

Domain Function Parameters

elastomer W m (25) mech: {G1, G2} = {500, 500} kPa, {α1, α2} = {1, 3}, G ′ = 1 GPa, g1 = 600 kPa, a1 = 1
magn: µ0 = 4π × 10−1 µm T A−1

Dm (28) η = ηd
= 40 kPa s, ηs

= ∞

particles Ψp (37) mech: G = 500 MPa, G ′ = 250 GPa
magn: µ0 = 4π × 10−1 µm T A−1, ms

= 0.67 MA m−1, χ e
= 0.105, χ r

= 8.0
Dp (43) bc

= 1.062 T

vacuum Ψmm
+Ψvac mech: {G1, G2} = {40, 40}Pa, {α1, α2} = {1, 3}, G ′ = 200 Pa

(61), (19) magn: µ0 = 4π × 10−1 µm T A−1

outer boundary of the domain ∂V∞ and within the “empty” space V∞ \ ∂V . For magnetically soft beams, the
premagnetization phase is irrelevant and thus is omitted.

In the subsequent actuation phase, the field magnitude b∞ = b∞,op is linearly increased starting from zero at a
rate of ḃ∞ = 5 Ts−1. In this phase, the beam is only clamped at its left end as indicated in Fig. 5a. The maximum
operation load is chosen such that the beam shows a normalized deflection of |u2/ l| ≈ 0.5 whereby u2 is evaluated
at point “A”, the right-top corner of the beam (Fig. 5a). Limiting the deflection prevents crashes of the simulation
due to excessive mesh distortion in the empty space. Because of substantially different responses for magnetically
hard and soft cases, the above described approach results in actuation fields of b∞ ≤ 0.06 T and b∞ ≤ 0.8 T,
respectively. For both the magnetically hard and soft cases, the loading stage is followed by a relaxation phase with
a duration of 1 s before unloading. For the cases under consideration, this was sufficient for a practically complete
relaxation. The unloading rate is of the same magnitude as the loading rate, i.e. |ḃ∞| = 5 T s−1.

In the present example, we employ an elastomer phase whose stiffness is somewhat stiffer than that considered
by Zhao et al. [45] and Mukherjee et al. [42] but at the same order. Table 3 reports the material parameters for the
individual phases.

4.1. Effect of the modeling of free space

In order to assess the error introduced by the auxiliary air stiffness, we compare the deflection responses in the
hard case with premagnetization in x1- and operation field in x2-direction. For this, we use as a reference accurate
solution the non-local (NL) constraint scheme (see Section 3.3). Note that for the aforementioned choice of material
parameters, the staggered scheme is rather unstable and is not shown. For the non-uniform (NU) air stiffness (61),
we employ G1 = G2 = 40 Pa in free space, which is less than one percent of the elastomer shear moduli in the
beam. For the weight function (63), we employ parameters wmin = 1× 10−5, wmax = 1 and Vref = 1× 10−4. We
emphasize that these choices are heuristic and mesh dependent. In addition, a uniform (U) weight function scheme
is also shown in an attempt to reveal the relative stiffness induced by the presence of a soft air model.

Fig. 6 shows that the additional stiffness (see (61)) of the free space (air) domain does not cause any significant
error provided that it is employed with an appropriate weight function. Instead, the remaining curves that use the
trivial weight w(X) = 1, i.e. uniform air stiffness, lead to significant deviations from the NL zero air-stiffness
model. We note again that due to involved numerical issues, it is not possible to simply further reduce the uniform
air stiffness.

Fig. 7 exhibits the employed non-uniform weight function. It clearly displays a unit weight only inside a boundary
layer around the beam. Outside this layer, where the non-uniform magnetic field contributions are expected to be
much smaller than in the vicinity of the beam, the stiffness is reduced drastically. The beam itself is not part of the
air domain and thus not shown.

4.2. Hard versus soft magnetic particles

In the following, we investigate the effect of soft versus hard magnetic particles upon the beam deflection using

the NU stiffness implementation with the aforementioned parameters, which turned out to be considerably faster
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Fig. 6. Comparison of two approaches of air treatment for the beam example; (a) inviscid (purely elastic) elastomer, (b) viscoelastic elastomer.
In (a) and (b) only the auxiliary stiffness approach with weighted non-uniform moduli (NU) shows almost perfect agreement with the exact
no air stiffness at all) non-local constraint approach (NL constraint). For uniform air stiffness (U) the results are very inaccurate. The
umbers in the legend denote the values of the auxiliary air shear moduli Gvac

1,2 . (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 7. Contours of the weight function (63) employed for air stiffness (63) with parameters wmin = 1×10−5, wmax = 1 and Vref = 1×10−4.

han our Abaqus implementation. At this point, it is useful to note again that the staggered approach to free-space
eformation (see Section 3.3.2) did not work in the example under consideration. The approach suffered from the
xtreme sensitivity of the beam’s deformation with respect to the magnetic solution, which is slightly perturbed by
ach adaption of deformation in free space. Our staggered implementation has not been designed with such issues
n mind and further research has to be done along these lines.

We begin the discussion of the results with the magnetically hard cases hard and visc/hard with premagnetization
in x1-direction and actuation field in x2-direction, as depicted in Fig. 8. We observe a significant effect of the
elastomer viscoelasticity, which is not only due to the chosen value of the viscosity η = 40 kPa s but also due the
high sensitivity of the beam with respect to the applied field which leads to a rather high effective loading rate.
Besides that, the selected contours at instances “1” to “4” show that the magnetization (yellow arrows) follows
the center line of the (deflected) beam. This indicates that the deflection of the beam is a result of its bending
stiffness/compliance, i.e. a structural property, rather than due to local shearing. Furthermore, we note that the
bending process is driven by the magnetic torque that is applied by b∞ on the magnetized particles and which is

∞ ◦
of greatest magnitude for an angle |∡(b , m)| = 90 .
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Fig. 8. Deflection response of a (viscous) elastomer beam comprising magnetically hard particles with horizontal premagnetization under
vertical applied field. The contours at instances “1” to “4” refer to the current magnetic field magnitude, the yellow arrows indicate the
magnetization. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Comparison of the full solution with a simple magnetic torque model.

For additional validation and in order to put these results into context with recent works on h-MREs [45,88,89],
we compare our fully coupled PDE approach to simpler torque models (presented briefly in Appendix C) in Fig. 9.
Since the interaction of particles is rather week for the example under consideration, the difference is mainly
explained by the mismatch of the saturation magnetization and the actual magnetization in the full PDE model.
The latter, albeit practically uniform within each particle, has a magnitude of only 0.6 MA m−1 (saturation value is
.67 MA m−1) despite the fact that a premagnetization field magnitude of b∞ = 2 T has been applied. The reason for
his is that in actual magnets upon unloading from the fully magnetized state, a part of the magnetization decreases
ollowing the magnetic laws presented in the context of Fig. 4b. Therefore, a key weakness of the torque model
pproach arises from the difficulty that the remanent magnetization is in general not known a priori – even for the
ather simple structures considered here. In a sense one needs to solve the premagnetization problem as accurately
s possible in order to feed the torque model. As a remedy, one might come up with an intermediate approach
hat exploits the approximate uniformity of magnetization for the ferromagnetic evolution. The situation of course
ecomes non-trivial when non-uniform magnetization is to be expected upfront or when particles come closer to
ach other as a result of large structural deformations as might be the case for magnetoelastic grippers. In such
ases, the solution of the coupled PDE system with ferromagnetic evolution and – importantly – also the free space
s paramount to obtain meaningful results.

Next, we investigate the converse premagnetization/loading case, i.e. b∞,pre in x1- and b∞,op in x2-direction

ith the corresponding results shown in Fig. 10, where we only consider the case visc/hard. In this example, the
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Fig. 10. Deflection response of a viscous elastomer beam comprising magnetically hard particles with vertical premagnetization under
horizontal applied field. The contours at instances “1” to “4” refer to the current magnetic field magnitude, the yellow arrows indicate the
magnetization. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

deflection is downwards which is a direct result of the orientation-switched premagnetization and loading directions
in comparison with Fig. 8. Apart from changed directions, the deformation response is essentially the same as before,
which confirms the torque-driven nature of the bending problem for the premagnetized beams under consideration.
Nevertheless, the magnetic field contours at instances “1” to “4” in Fig. 10 show obvious differences to Fig. 8 due
to different (pre)magnetization and actuation field directions.

In addition to the magnetically hard cases above, we show for comparison the response of a magnetically soft
beam (case visc/soft) in Fig. 11 with the applied field in x2 direction. We chose instance “1” to be not at zero
pplied field but near b∞ = 0.4 T to better visualize the magnetization in the still practically undeformed beam. As

one can see, the magnetization is perfectly aligned with the x2 direction, which is the direction of the applied field.
As the loading increases, we reach instance “2” where the beam is still magnetized almost perfectly in x2 direction.
Thus, the deflection of the beam at hand cannot be driven by magnetic torques exerted upon the particles. Instead,
even beyond “1”, there is only a rather small deflection observed which results from the imperfect wavy particle
alignment. At later stages, approaching “2”, sufficiently deflected portions of the beam experience a compass-type
torque, which drives the bending further. We observe a kink at point “2” where the magnetic field has reached
its maximum value of b∞ = 0.8 T such that the beam enters the viscous relaxation regime. At instance “3”
the relaxation is complete, which can be nicely observed in a plot of the deflection over time instead of applied
field, which is deferred to Fig. 13. After the beam has come to rest at “3”, the effect of viscosity is again clearly
visible during unloading from “3” to “4” and also in the following viscous relaxation at vanishing applied field. We
emphasize that the maximum applied (actuation) field in the magnetically soft case has a magnitude of more than
ten times of that in the magnetically hard cases shown previously.

The responses for all three loading cases are compared in Fig. 12. Therein, we point out the (almost) “mirrored”
responses for the visc/hard(hard) cases depending on the premagnetization and actuation field directions as well
as the instability that governs the response of the magnetically soft beam during loading. In addition, we show for
completeness a green line that corresponds to cases that show no deflection and only minor axial deformation (not
shown explicitly).

We close this section by investigating the deflection response in terms of |u2|/ l as a function of time in Fig. 13.
The loading and unloading responses of the beam with magnetically hard particles are shown in Fig. 13a, where
one observes the immediate bending reaction (solid) to changes in the external field (dashed). The inset shows that
the kink in the deflection graph happens at the same time as the loading stops to increase, i.e. when the b∞ graph
ontinues horizontally. From this point on, the change in the deflection is entirely due to viscous relaxation.

In Fig. 13b, we show the response of the beam with magnetically soft particles during loading and unloading.
herein, one observes a delayed reaction during loading, while such a delay cannot be observed during unloading.
his is because the deflection initially results from the imperfect particle alignment. Later, once a certain
eflection has been reached, compass-type torques exerted on the deflected portions of the beam further drive the

eformation.
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a
t

Fig. 11. Deflection response of a viscous elastomer beam comprising magnetically soft particles under vertical applied field. The contours
t instances “1” to “4” refer to the current magnetic field magnitude, the yellow arrows indicate the magnetization. (For interpretation of
he references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Comparison of deformation responses of viscous elastomer beams comprising magnetically hard or soft particles under different
magnetic loading directions. The “red”, “marine blue” and “violet” responses are detailed in Figs. 8 to 11. The labels “S1” and “S2”
correspond to premagnetization and operation steps, respectively. The respective arrows indicate the direction of the applied field during
these steps. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

5. 3D Numerical examples: An ellipsoidal particle in a viscoelastic matrix

As a second geometry, we consider a single ellipsoidal magnetic particle embedded in an elastomer cube of side
length l = 1, which itself is surrounded by an empty space box of side length L = 6 as depicted in Fig. 14. The
angle between the major axis of the ellipsoid and the 1–3-plane is π/4. The major and minor axes of the ellipsoid
have lengths 0.6 and 0.3, respectively. Furthermore, θ denotes the angle of the applied field b∞ defined at the
x1–x3-plane. Note that the x3-component b∞3 = 0 throughout this section. The material parameters are summarized
in Table 4, where we highlight that the matrix material is chosen to be rather soft with a “total” shear modulus less
than 100 kPa.
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m

t

p

Fig. 13. Loading and unloading responses during the operation phase “S2” for a viscous elastomer beam with (a) magnetically hard and (b)
magnetically soft inclusions. Solid lines represent the deflection response, dashed lines show the magnitude of the applied magnetic field.
The arrows next to the labels “S1” (premagnetization) and “S2” (operation) indicate the direction of applied magnetic field in the respective
phase. The time axis is broken to exclude excessive relaxation periods.

Table 4
Material parameters for the embedded-ellipsoid example.

Domain Function Parameters

elastomer W m (25) mech: {G1, G2} = {20, 20} kPa, {α1, α2} = {1, 3}, G ′ = 40 MPa, g1 = 120 kPa, a1 = 1
magn: µ0 = 4π × 10−1 µm T A−1

Dm (28) η = ηd
= 8 kPa s, ηs

= ∞

ellipsoid W p (37) mech: G = 100 MPa, G ′ = 50 GPa
magn: µ0 = 4π × 10−1 µm T A−1, ms

= 0.67 MA m−1, χ e
= 0.105, χ r

= 8.0
Dp (43) bc

= 1.062 T

vacuum Ψvac (19) magn: µ0 = 4π × 10−1 µm T A−1

We consider two representative cases, (i) non-monotonic uniaxial magnetic loading in Section 5.1 and (ii) a non-

onotonic, rotating magnetic loading in Section 5.2. In both cases, the adaptation of the free space deformation to

hat of the boundary of the body is achieved by the staggered scheme, as described in Section 3.3.2.

The evaluation of useful quantities associated with the ellipsoid, such as its rotation and magnetization is

erformed near the origin “O” (0, 0, 0). Note that the ellipsoid does not deform but only rotates such that all
25
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Fig. 14. Elastomer cube (yellow; side length l) with an embedded ellipsoid at the origin O is placed in a free-space box (side length L) and
exposed to a uniform external magnetic field b∞ under angle θ . The angle between the (upper) major axis of the ellipse and the x1–x3-plane
is 45◦. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 15. Slow (a) and fast (b) loading regimes. The magnitude of the applied magnetic field increases up to and decreases from
b∞ = ∥b∞∥ = 2 T at a (a) a “slow” rate ḃ∞ = ±5 Ts−1 and (b) at a “fast” rate ḃ∞ = ±0.5 Ts−1.

ulerian magnetic quantities may be considered approximately uniform in the interior of the ellipsoid under a
niform applied magnetic field b∞ (but see discussion about this point in [19]).

.1. Non-monotonic uniaxial applied magnetic field

The magnetic loading in this example is along the x2-direction only. The magnitude of the applied field b∞ is
inearly increased over time up to a maximum value of 2 T. Then, it is held for a relaxation time of 5 s before it is
ecreased to zero again as detailed in Fig. 15. In order to visualize the effect of viscosity, i.e. the rate-dependence
f the responses, we consider two different loading rates, ḃ∞ = 0.5 Ts−1 (“slow”; see Fig. 15a) and ḃ∞ = 5 Ts−1

“fast”; see Fig. 15b).
We first discuss the response of magnetically hard ellipsoids. Fig. 16a shows contours at six different instances

or a non-viscous matrix material (case hard) and “fast” loading. Interestingly, the magnetization is almost perfectly
ligned with the applied field (vertical direction) throughout the loading phase while the ellipsoid rotates slightly.
nly from instance “5” to “6”, we observe a slight rotation of the magnetization vector. This rotation occurs during
nloading, where the magnetized ellipsoid rotates back to its initial position. Figs. 16b,c provide details of the

otation evolution of the ellipsoid and the magnetization vector. In both subfigures, one may observe the effect
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i

Fig. 16. Deformation and magnetization response of the embedded magnetically hard ellipsoids. Subfigure (a) shows selected deformed
configurations for the hard material combination. The contours indicate the magnitude of the current magnetic field b, the yellow arrows
represent magnetization m, blue arrows the applied field b∞ and the thin white arrows the major axis of the ellipsoid. Subfigure (b) shows
the angle of the ellipsoid over the applied field. The angle and the magnitude of the magnetization are shown in subfigures (c) and (d),
respectively. Note that the ellipsoid is uniformly magnetized in this scenario. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

of matrix viscosity and loading rate, whereby the “slow” loading rate is already quite close to the non-dissipative
limit. Obviously, rotation of the ellipsoid is rather small and the alignment of the ellipsoid does not have a strong
effect on the direction of the magnetization evolution. While this result might be surprising, it is perfectly in line
with experimental observations [90]. As can be seen from Fig. 16d, viscosity does not affect the typical hysteretic
magnetization response in terms of the magnitude m, which is a rather important result for the understanding of
coupling between magnetic and mechanical properties in such materials.

Next, we discuss the results for magnetically soft ellipsoids under the same loading conditions. Fig. 17a shows
contours at six different instances for viscous matrix material (case visc/soft) and “fast” loading. The magnetization
is almost perfectly aligned with the applied field direction. This time, the ellipsoids show a much more important
rotation such that the misalignment between the major axis and the magnetization is much smaller than in the
magnetically hard case (c.f. Fig. 16). As for the magnetically hard case discussed previously, the effect of viscosity
on the ellipsoids rotation is rather pronounced. In turn, in this example, we observe no significant effect on the
magnetization magnitude as well as on the resulting magnetization direction. In this example of a soft magnetic
particle, one thus may safely consider a negligible coupling between magnetic response and viscoelasticity of the
matrix.

5.2. Rotating magnetic field

Let us now consider the case where the ellipsoid is first pre-magnetized by a procedure similar to the one
discussed in Section 5.1, whereby the field magnitude is not decreased to zero but to b∞ = 0.5 T. Once this value
s reached, the field b∞ is held for five additional seconds for relaxation. Then, the field angle θ is changed from

90◦ to 270◦, while the magnitude b∞ remains unchanged as depicted in Fig. 18. The loading rates for the magnetic
˙∞ −1 ˙ ◦ −1
field magnitude and the field angle are b = 5 Ts and θ = 90 s , respectively.
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Fig. 17. Deformation and magnetization response of the embedded magnetically soft ellipsoids. Subfigure (a) shows selected deformed
configurations for the visc/soft material combination. The contours indicate the magnitude of the current magnetic field b, the yellow arrows
represent magnetization m, blue arrows the applied field b∞ and the thin white arrows the major axis of the ellipsoid. Subfigure (b) shows
the angle γ of the ellipsoid with respect to the x2-axis over the applied field magnitude. The angle with respect to the x2-axis and the
magnitude of the magnetization are shown in subfigures (c) and (d), respectively. Note that the ellipsoid is uniformly magnetized in this
scenario. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 18. Magnitude (a) and angle (b) of the applied field b∞ over time. A first “premagnetization” phase (“S1”) with a maximum field of
b∞ = ∥b∞∥ = 2 T is followed by an “operation” phase (“S2”) with a field of 0.5 T with changing angle θ (see Fig. 14b) for t ≥ 1.7 s. The
elaxation periods where b∞ and θ are held constant have a duration of 0.5 s.

We focus here only on viscoelastic matrix materials such that the two material combinations under consideration
re visc/hard and visc/soft (see Table 1).

The main features of the responses of both cases are depicted in Fig. 19, where part (a) shows deformed
onfigurations for the case visc/hard and part (f) shows deformed configurations for the case visc/soft. In both
ubfigures the contours correspond to the current magnetic field b, yellow arrows indicate the magnetization m,
lue arrows the applied field b∞ and thin white arrows the orientation of the major axis of the ellipsoid. In Fig. 19a,
e see that the ellipsoid undergoes a significant rotation from around 40◦ to almost 90◦ with respect to the vertical
28
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Fig. 19. The deformation and magnetization response of the embedded ellipsoid under rotating applied field. (a) and (f) depict magnetic
field contours in selected deformed configurations for the material combinations visc/hard and soft, respectively, whereby blue arrows refer
to the applied field b∞ and yellow arrows to the magnetization m. Subfigures (b), (c) and (d) show the current angle γ of ellipsoid, the
angle of the magnetization vector ̸ m and the angle between applied field and magnetization, i.e. θ − ̸ m, as a function of the angle θ of
the applied field, respectively. While the magnitude of the applied field is constant during rotation, that of the magnetization changes with
the field angle θ as depicted in (e). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

direction as the applied field rotates. During this process, the angle between the major axis and the magnetization of
the ellipsoid changes only weakly. Instead, the angle between the magnetization direction and the applied magnetic
field increases rapidly once the applied field rotation starts. In a sense the hard magnetization of the ellipsoid resists
to the applied external field b∞. The peak rotation of the magnetically hard ellipsoid is not observed at the maximum
rotation of the applied field attained at 180◦ but some time before – between instances “4” and “5” – where the angle
between the applied field and the magnetization is ∡b∞−∡m = 90◦. Near this instant, the magnetic torque reaches
ts maximum. Beyond that angle, the magnetic torque decreases and the mechanical response of the matrix pushes
ack the ellipsoid by some small angle. Note that the magnitude of the magnetization also changes significantly
uring the field rotation phase “S2”. In particular, in Fig. 19e, one can see a kink in the yellow graphs. This indicates
he onset of a magnetic evolution: beginning from a field angle θ ≈ 115◦ the magnitude of the magnetic internal
ariable decreases and its angle varies non-monotonically. The respective details can also be observed in Figs. 19b
o 19e.

The behavior of the magnetically soft ellipsoid is rather different as can be seen from the deformed configurations
nd contours in Fig. 19f but also from the graphs in Figs. 19b to 19e. In this case, the magnetization rotates much
ore since no energy is dissipated during the rotation of the magnetization with respect to the ellipsoid. As a result,

he ellipsoid initially follows closely the rotating applied field and magnetization but eventually loses track of the
agnetization near instance “3”, albeit only weakly. At this point, the magnetic torque on the ellipsoid changes

irection. As the applied field reaches its final orientation at instance “6”, the magnetization is reversed with respect
29
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Fig. 20. Evolution of the internal magnetic state for a magnetically hard ellipsoid under rotation applied field. Magnitude (a) and angle ̸ Hr

with respect to the vertical-upward (x2-)direction (b) as a function of the applied field angle θ . The numbers in orange circles in subfigure
b correspond to the labels in Fig. 19a.

to instance “1” but the mechanical state of the system at “6” is practically identical to “1”. This behavior of the
magnetically soft case is explained by the fact that the magnetic torque exerted on the ellipsoid is due to the shape
anisotropy of the ellipsoid.14 Hence, the system is invariant with respect to a simultaneous reversal of applied field
and magnetization. What essentially distinguishes “1” from “6” is only a small effect of viscosity near these two
states.

Finally, we point out that in the magnetically hard case, the evolution of the magnetization is a manifestation of
changes in the internal magnetic state Hr as shown in Fig. 20. Therein, we observe changes in both the magnitude
H r and the angle of Hr with respect to the vertical direction.

6. Conclusion

The capabilities and the generality of the computational framework and its implementation in two different
software packages, FEniCS and Abaqus are demonstrated by carefully selected examples inspired by prospective
locomotion and actuation applications. Specifically, the effect of schemes used to model the surrounding air are
also discussed in some detail and their advantages and disadvantages are clearly identified. In particular, we find
that the non-local constraint scheme is able to provide the more accurate responses, yet it may require a more
case-to-case analysis to implement in complex confined geometries (such as air spaces between a magnet and an
MRE or an internal material void space). The staggered scheme, where the air and solid are solved separately, is
able to simulate accurately more complex geometries but tends to become unstable and non-convergent in certain
cases of strong structural magnetomechanical coupling (such as in the beam deflection problem). An ad-hoc scheme
using a non-uniform air stiffness distribution is able to deal with all cases, but it is geometry dependent and mesh
dependent and requires an independent error estimation (for instance by using one of the two previously discussed
schemes). Finally, the classical approach of a weakly stiff air, which is the easiest of all to employ, is shown to lead to
quantitative inaccuracies. Yet, it is a powerful tool that allows for a proper qualitative analysis of the system. Finally,
a simple torque model for hard MREs is also used, where it is shown to have a good qualitative agreement but in
the case of realistic hard magnetic responses it can lead to quantitative errors since the actual magnetization value is
unknown in the magnetic phases. This last approach also requires an independent calculation of the premagnetization
response by some other numerical or analytical means and is only of use in very small magnetic actuation fields,
where the response remains magnetically non-dissipative.

In the first set of examples, we discuss the magnetomechanical response of a slender viscous elastomer
beam carrying circular particles that are arranged in an imperfect wavy chain pattern. For magnetically hard
particles, we consider different directions of premagnetization combined with a magnetic loading transverse to
the premagnetization direction. For these cases, we observe that the magnetic torque exerted by the applied field

14 There would not be any magnetic torque on a magnetically soft sphere with uniform magnetization.
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upon the magnetized particles governs the deflection of the beam. In contrast, such local magnetic torques did not
play any role for the beam with magnetically soft particles. In both cases, we find significant viscous effects despite
the rather low viscosity parameter and the small underlying local strains in the beams. This is directly related to
the fast loading rates applied, which are of potentially great practical relevance in rapid actuation scenarios. In a
sense, the obtained results imply the necessity of viscoelasticity in the design of such beam actuators.

In the second set of examples, we present simulations of an elastomer with an embedded magnetic ellipsoid
xposed to a magnetic field. We study the response and the magnetization process under uniaxial magnetic loading
here we observe significant qualitative differences between elastomers with magnetically hard and magnetically

oft particles. Moreover, we study extensively the effect of viscosity of the elastomer for two different loading rates
pon the magnetization response. This effect is found to be more significant for the magnetically hard case than for
he magnetically soft one, especially for the orientation of the magnetization vector and less for its amplitude. This is
somewhat surprising result that demonstrates the complex interactions of mechanically and magnetically-induced

issipative phenomena in h-MREs. In the second loading case, we consider a rotating magnetic field whereby
he magnetically hard ellipsoid is premagnetized beforehand. Then, both the magnetically hard and soft ellipsoids
nitially follow the rotation of the applied field. Nevertheless, the magnetically soft ellipsoid snaps back to its initial
osition after some critical value is reached due to the symmetries of the geometrical ellipsoidal shape. By contrast,
he (premagnetized) magnetically hard ellipsoid continues to follow the applied field much further until the peak
orque is reached.

From our numerical results, one deduces that both the magnetization history in the case of magnetically hard
articles and the viscosity in the case of sufficiently fast magnetic loading play a significant role for the overall
esponse of MREs. This observation does not only hold for device-type geometries (e.g., the beam problem)
ut also for more material-type systems (e.g., the ellipsoid embedded in a matrix). Moreover, both dissipative
henomena interact in a non-trivial way such that carefully designed numerical simulations are paramount for a
eeper understanding and accurate modeling of both soft and hard MREs.

By virtue of the results presented here, the proposed computational framework can be easily used to carry out
umerical homogenization studies in the context of microstructurally-guided modeling of magnetically soft and hard
agnetorheological elastomers similar to the works of Mukherjee et al. [27] and Mukherjee et al. [42], respectively.
uch a work is left for a future study.
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ppendix A. Consistent linearization of dissipative material responses

An important aspect of Algorithm 2 is that {un+1, ϕn+1} are the solution of a spatially global problem whereas
he equation for the internal state In+1 is spatially local, i.e. pointwise. While one could solve both problems
imultaneously, the fact that the evolution problem is local suggests the two-step procedure in the innermost loop
f Algorithm 2. However, this innermost loop represents an iterative solver step for a nonlinear problem, e.g., a
ewton–Raphson iteration, which might not only require the evaluation of equilibrium or stationary conditions but
lso their linearization with respect to the (external) state {un+1, ϕn+1}. In this sense, the internal state is regarded
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as a function of the external state, i.e. In+1 = In+1(un+1, ϕn+1) which has implications on the linearization of the
roblem with respect to {un+1, ϕn+1}. For what follows, we introduce the notation

S = {F(u), H(ϕ)} and ∆{•}k = {•}k+1
− {•}

k . (A.1)

he magnetomechanical equilibrium conditions can accordingly be written as∫
V∞

δS ·
∂W
∂S

dV = 0 (A.2)

of which the linearization in a domain VI
⊂ V with internal state I reads∫

VI
δS ·

[(
∂2W (S, I)

∂S2

⏐⏐⏐⏐k
n+1
+

∂2W (S, I)
∂I∂S

⏐⏐⏐⏐k
n+1

∂I
∂S

⏐⏐⏐⏐k
n+1

)
∆Sk

n+1

]
dV = 0, (A.3)

here the term of interest is ∂I/∂S|kn+1. To find it, we first abstractly write the time discrete evolution equation as

E(Sn+1, In+1) = 0 (A.4)

ith the full linearization around a solution state (Ek
= 0)

∂E
∂S

⏐⏐⏐⏐k
n+1

∆Sk
n+1 +

∂E
∂I

⏐⏐⏐⏐k
n+1

∆Ik
n+1 = 0. (A.5)

From the latter we obtain

∆Ik
n+1 = −

(
∂E
∂I

⏐⏐⏐⏐k
n+1

)−1

·
∂E
∂S

⏐⏐⏐⏐k
n+1
·∆Sk

n+1, (A.6)

which can be substituted for ∂I/∂S|kn+1 ·∆Sk
n+1 in (A.3). The resulting linearization∫

VI
δS ·

⎧⎨⎩
⎡⎣ ∂2W (S, I)

∂S2

⏐⏐⏐⏐k
n+1
−

∂2W (S, I)
∂I∂S

⏐⏐⏐⏐k
n+1

(
∂E

∂In+1

⏐⏐⏐⏐k
)−1

∂E
∂S

⏐⏐⏐⏐k
n+1

⎤⎦∆Sk
n+1

⎫⎬⎭ dV (A.7)

s symmetric if and only if

∂E
∂S

⏐⏐⏐⏐k
n+1
= c

∂2W (S, I)
∂S∂I

⏐⏐⏐⏐k
n+1

with c ∈ R \ {0} (A.8)

which depends on the chosen parameterization of both W and D, which governs E. The above symmetry condition
is necessary and sufficient for the existence of an incremental (reduced) potential Π that governs the evolution of
the internal state I as presented in Sections 3.1.1 and 3.1.2.

Appendix B. Viscous evolution equation

In this section, we carry out the algebra leading to the viscous evolution equation for a compressible (30) and
incompressible (31) viscous dissipation potential. We start by considering the non-equilibrium energy function (27)
and the viscous dissipation potential in (28). Before proceeding further, we first write down some intermediate
results necessary for the subsequent algebra. Those read

∂ I e
1

∂Cv = −C
v-1 CCv-1,

∂ J e

∂Cv = −
J e

2
Cv-1, (B.1)

where use of relations (24) has been made.
To proceed further, we rewrite the dissipation potential as

Dm(dv) =
ηK

2
dv
· dv
+

ηJ − ηK

2
dv
·J dv, dv(Ċv

;Cv) =
√

Cv-1 · Ċv
√

Cv-1, (B.2)

where Ji jkl = δi jδkl/3 is the hydrostatic fourth-order projection tensor.
In the following, we evaluate the two terms involved in the GSM equation (29). Using index notation and Cv as

the state variable, we obtain the intermediate result
∂ D
= ηKCv-1ĊvCv-1

+
ηJ − ηK (Ċv

· Cv-1)Cv-1. (B.3)

∂Ċv 3
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To get this expression, we have used the intermediate result ∂dv
rs/∂Ċv

i j =
√

Cv
ri

√
Cv

js .
Now using the partial results of (B.1), the first term in (29) is readily written as

∂W m

∂Cv =
∂W m

∂ I e
1

∂ I e
1

∂Cv +
∂W m

∂ J e

∂ J e

∂Cv = −
∂W m

∂ I e
1
Cv-1 CCv-1

−
J e

2
∂W m

∂ J e Cv-1. (B.4)

Gathering the last two results provides the GSM equation

∂ D

∂Ċv
= −

∂W m

∂Cv ⇒ ηKCv-1ĊvCv-1
+

ηJ − ηK

3
(Ċv
· Cv-1)Cv-1

=
∂W m

∂ I e
1
Cv-1 CCv-1

+
J e

2
∂W m

∂ J e Cv-1. (B.5)

Multiplying next this last equation from the left side with Cv and taking the trace, such that tr ĊvCv-1
= Ċv

·Cv-1,
one gets

ηJ Ċv
· Cv-1

=
∂W m

∂ I e
1
C · Cv-1

+
3J e

2
∂W m

∂ J e (B.6)

Contracting again Eq. (B.5) from both sides with Cv leads to

ηK Ċv
+

ηJ − ηK

3
(Ċv
· Cv-1)Cv

=
∂W m

∂ I e
1
C+

J e

2
∂W m

∂ J e Cv. (B.7)

Substituting the intermediate result (B.6) into this last equation, leads to

ηK Ċv
+

ηJ − ηK

3ηJ

(
∂W m

∂ I e
1
C · Cv-1

+
3J e

2
∂W m

∂ J e

)
Cv
=

∂W m

∂ I e
1
C+

J e

2
∂W m

∂ J e Cv (B.8)

After some straightforward algebra, this last relation may be recast to the compressible form given in (30). The
incompressible form is then readily obtained in Eq. (31).

Appendix C. Comparison with a simplistic torque model

In some recent publications concerned with h-MREs [45,47,88,89], the magnetization of the structure under
consideration has been assumed to be known a priori and more importantly be piecewise (per domain) constant.
Also, the modeling is done for small magnetic fields such that the amplitude of the magnetization remains “almost”
constant thus inducing no dissipative effects. The range of validity of such an approach obviously needs to be
assessed to avoid entering in actual hysteretic regimes of response. However, that is only possible via the full
framework including dissipation.

Even so, the assumptions above greatly simplify the coupled PDE problem which becomes purely energetic
in magnetism. In fact, it reduces the magnetomechanical problem to a purely mechanical one with body torque
magnetic loads, whereas the air domain Va is no more needed.

We shall compare this approximate approach with our solutions of the full problem. For that purpose, one may
imply assume, even though it might be inconsistent with the Maxwell field equations, the magnetization in the
articles to be uniform and equal to15 m = RM. Therein, R is the rotational component of F and M is the given

and fixed magnetization density of a rigid particle. Specifically, M = (ms, 0, 0) for a particle premagnetized in
X1-direction. The body torque then automatically results from the energy contribution

Ψtorque(F) = −b∞ ·m = −b∞ · RM. (C.1)

We refer to Mukherjee et al. [42] for a discussion of torques in the more complex case of deformable magnetic
bodies.

Below we summarize the energy densities employed in the torque-model BVP. As no air domain and no magnetic
solution variable are needed, the energy densities of the elastomer matrix (W m, see (25)) and the quasi-rigid
magnetically hard particles (W p, see (37)) reduce to

W m
= ρ0Ψ

eq(I1, J )+ ρ0Ψ
neq(I e1 , J e) (C.2)

W p
= ρ0Ψ

mech(I1, J )+Ψtorque(F). (C.3)

15 This is parallel to the kinematical assumptions in Section 2.3.3.
33
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As this torque approach does not take care of ferromagnetic evolution, only viscous evolution (30) needs to be
considered. The corresponding results are shown in Fig. 9, where both the full and the torque-model employ the
same value for the magnetic saturation parameter ms

= 0.67 MAm−1. Note that the choice of using the saturation
magnetization value in the torque approach appeared most plausible to us. Other choices are possible but require
more involved analysis which undermines the simplicity of the magnetic torque approach.

Remark 8. The torque contribution Ψtorque(F) is objective despite the explicit dependence on F through R because
ot only R but also the prescribed magnetization vector M transforms in a change of material frame.

emark 9. The rotational component R can simply be approximated by F in the case of quasi-rigid particles,
hich greatly facilitates computer implementations.

emark 10. The torque approach cannot be used in the second example of the three-dimensional ellipsoid
mbedded in the matrix phase (see Section 5), since the applied magnetic fields are large and induce significant
agnetic hysteresis. Thus, making the torque model inapplicable.

ppendix D. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.cma.2021.114500.
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