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a b s t r a c t 

It is well-known by now that the Hashin–Shtrikman bounds imply that the two-point cor- 

relation functions are not in general sufficient to estimate accurately the response of com- 

posites, especially when their underlying phases exhibit infinite contrast, e.g., porous mate- 

rials. Starting from this longstanding, albeit qualitative result, this work investigates quan- 

titatively the relevance of using two-point correlations to model the effective elastic prop- 

erties of specific isotropic porous materials with and without connectivity. To achieve this 

in an unambiguous manner, we propose three different microstructures that share almost 

identical two-point statistics by design but are rather different morphologically. The choice 

of these microstructures is driven by their wide use in several practical problems ranging 

from polymers to geomaterials. The first microstructure is obtained by a random sequential 

adsorption (RSA) of non-overlapping, polydisperse, spherical and ellipsoidal voids oriented 

randomly in a unit-cell. The second one, termed connected random sequential adsorption 

(CRSA), is obtained from the first one by adding controlled connectivity via cylindrical 

channels of circular cross-section. The porosity resulting from connectivity is compensated 

by reducing the size of the existing voids to have the same overall porosity. Interestingly, 

we find that connectivity does not affect the corresponding two-point statistics. Finally, us- 

ing as an input the numerical one- and two-point correlations of the RSA, we reconstruct 

a thresholded Gaussian random field (TGRF) microstructure. Using FFT numerical simu- 

lations, we show that the resulting effective elastic properties are very different for the 

three generated microstructures, despite them sharing nearly the same two-point corre- 

lation functions. We show, further, that the introduction of connectivity, and in particular 

the partial volume fraction of the connected channels, even small, affects strongly the re- 

sulting effective elasticity of the composite. 

© 2021 Elsevier Ltd. All rights reserved. 

 

1. Introduction 

Random porous materials are omnipresent in nature (e.g. rocks and geomaterials) and in industry, where they are engi- 

neered to exhibit specific properties: auxetic metamaterials ( Ali & Rehman, 2011; Ren, Shen, Ghaedizadeh, Tian, & Xie, 2015 )
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or highly-stiff and light-weight microstructures ( Tarantino, Zerhouni, & Danas, 2019; Zerhouni, Tarantino, & Danas, 2019 ). 

The effective physical properties of such materials are strongly related to their microstructure which offers a large field of 

possibilities for material design ( Ashby, 2013 ). In order to fulfill their potential, modeling the link between the microstruc-

ture and the effective properties of random materials is an important scientific and industrial challenge ( Cadiou et al., 2019;

Dirrenberger, Forest, & Jeulin, 2013; Escoda, Willot, Jeulin, Sanahuja, & Toulemonde, 2011 ). 

Various mean field/effective field estimates of the effective elastic properties have been derived from the 

Eshelby (1957) solution to the ellipsoidal inhomogeneity problem (see Benveniste, 1987; Berryman, Pride, & Wang, 2002; 

Budiansky, 1965; Milton, 1985; Mori & Tanaka, 1973; Norris, 1985; Ramtani, Bui, & Dirras, 2009 , among others). These mod-

els are extremely versatile with respect to the material non-linearities and/or multi-physics couplings that they can account 

for. 

In terms of the microstructure description, however, they are fairly limited (although more advanced models can be 

proposed for specific microstructures, see for example Kanaun (2016) ). The simplest of all microstructural descriptors is 

the volume fraction or one-point probability function of the constituents (e.g. the porosity in the present case). It is a

measurable quantity via tomography, density and volume measurements during fabrication, albeit tricky if several scales 

are involved. Anything beyond this simple microstructural description becomes increasingly complicated. Experiments may 

provide information on the overall symmetry of the material such as isotropy, transverse isotropy or orthotropy. In those 

cases, one may resort to the use of two- or three-point probability functions, directly measured from the experimental 

images or to approximations such as the introduction of a representative spherical or ellipsoidal pore shape and orientation 

with given distribution Ponte Castañeda & Willis (1995) able to reproduce in simple cases the average response but usually 

poor in describing the actual microstructure. Other descriptors, such as connectivity, tortuosity ( Sevostianova, Leinauer, & 

Sevostianov, 2010 ) or the pore-size distribution including clustering ( Altendorf, Jeulin, & Willot, 2014; Torquato, 2002 ) are

usually discarded or remain hidden in the original approximation. As an example, the classical Mori & Tanaka (1973) and

Willis (1981) estimates implicitly assume an infinity of inclusion sizes. 

This intrinsic limitation calls for an in-depth quantitative study of the effect of such statistical descriptors (besides poros- 

ity and pore aspect ratio) and their relative influence on the effective response of the composite material. 

Specifically, a natural hierarchy of statistical descriptors of the microstructure would be the set of n -point probability 

functions (also abusively called n -point correlation functions). In fact, Torquato (1997) proposed for a random two-phase 

composite an exact expansion of the effective moduli involving the whole (infinite) set of such statistical descriptors. In 

practice, experimental measurement of the three-point correlation functions is difficult ( Berryman, 1985; Roberts, 1997 ) and 

impractical for higher-order correlation functions. It is therefore natural to try to restrict the set of statistical descriptors of 

the microstructure to two-point correlation functions to predict the effective properties. Note that experimental measure- 

ment of these correlation functions is possible, through image analysis ( Karsanina, Gerke, Skvortsova, & Mallants, 2015 ) or

other techniques such as small angle scattering of X-rays or neutrons ( Baniassadi et al., 2011; Drummy et al., 2008 ). 

A popular approach to achieve this is to measure experimentally the two-point probability functions on a real sam- 

ple, and generate a 3D virtual microstructure that exhibits the same two-point correlations by means of an appropriate 

stochastic model. Then, the effective properties of the real material can be estimated from the computation of the effective 

properties of the virtual microstructure. Depending on the material and physical process under consideration, this strategy 

delivered good results ( Levitz, 1998 , for molecular transport in Vycor®) or poor agreement with experimental data ( Øren &

Bakke, 2002 , for permeability). The latter case reveals that two-point statistics is generally insufficient to deliver an accurate 

estimate of the effective transport properties. In some cases, this lack of information can be counterbalanced by the random 

process itself that might deliver microstructures which are close enough to the true microstructure without further efforts. 

If that is not the case, the reconstructed microstructure can be constrained by other statistical descriptors (besides the 

two-point correlation functions) such as chord-length distributions ( Teubner, 1991 ), three-point descriptors ( Roberts, 1997 ), 

grain-size distribution ( Roubin, Colliat, & Benkemoun, 2015 ) or geodesic tortuosity ( Neumann et al., 2019 ). 

To the best of our knowledge, a properly designed and comparative quantitative analysis of the information that the 

two-point correlation functions deliver on the effective elastic properties of a random heterogeneous material is lacking. 

Restricting the present study to porous materials, the question boils down to finding out whether the effective elastic 

properties of two heterogeneous materials that share the same two-point correlation functions are equal or at least sim- 

ilar. If the answer to this question is “yes”, then the two-point correlation functions can be considered as “good” de- 

scriptors of the microstructure, at least for upscaling the linear elastic properties. If the answer is “no”, we are inter-

ested to quantify the resulting differences especially in porous materials comprising similar but also widely-used types of 

microstructures. 

To investigate this question, we adopt a purely numerical approach that guarantees that model discrepancies are not 

affected by other sources of errors (such as experimental uncertainties). We therefore generate several virtual, significantly 

different isotropic porous microstructures with the same two-point correlation functions and compute their effective elastic 

properties through full-field simulations. We emphasize that since we restrict attention in this study to isotropic effective 

responses, the orientation of the ellipsoidal voids in the RSA and CRSA microstructures (to be described below) is taken to

be isotropic (uniformly distributed over the unit sphere) and thus is not considered a parameter of the problem henceforth. 

Interestingly, we find that the results are widely different, which confirms in an unambiguous way that the two-point cor- 

relation functions not only are “insufficient” descriptors of the microstructure, as perhaps one could infer from the early 
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studies of Hashin-Shtrikman for infinite contrast composites, but also that the resulting differences in elastic properties are 

substantial even for porous materials belonging to similar classes. 

At this point, it should be noted that many stochastic processes can be simulated to generate random microstructures: 

thresholded gaussian random fields ( Levitz, 1998; Teubner, 1991 ) and various extensions ( Roberts, 1997; Roubin et al., 2015 ),

voxel-based simulations ( Cule & Torquato, 1999 ), boolean models ( Escoda, Jeulin, Willot, & Toulemonde, 2015; Willot & 

Jeulin, 2009 ) or particle-based methods ( Donev, Torquato, & Stillinger, 20 05a; 20 05b ). We initially settled on thresholded

gaussian random fields (TGRF) and random sequential addition (RSA) ( Anoukou, Brenner, Hong, Pellerin, & Danas, 2018; 

Lopez-Pamies, Goudarzi, & Danas, 2013 ) to generate the two families of microstructures to be compared. In line with what

was observed for e.g. conductivity ( Øren & Bakke, 2002 ), our results showed that the effective properties of the two types

of microstructures were quite different. Connectivity obviously plays a significant role on the effective transport properties 

of heterogeneous materials, and RSA (essentially disconnected) and TGRF ( Roubin & Colliat, 2016; Roubin et al., 2015 ) are

substantially different from the perspective of connectivity. In order to assess the effect of connectivity on the effective 

elastic properties, we develop a third family of microstructures, namely a connected random sequential addition (CRSA). 

With this third family of microstructures, we show that connectivity –even when the connecting part occupies only a minor 

fraction of the overall porosity– is an extremely important microstructural property affecting critically the effective elastic 

properties, a result which we did not expect. 

The paper is organized as follows. Section 2 provides background information on second-order statistical descriptors 

of random microstructures. In Section 3 , we describe the generation of the three types of microstructures considered in 

this paper, namely: random sequential addition of polydisperse spheroids (RSA), connected RSA microstructures (CRSA), and 

thresholded Gaussian random fields (TGRF). We note, in particular, that the algorithm that we use to generate the CRSA 

microstructures is new. We also discuss in Section 3 the determination of their effective elastic properties. We then show 

in Section 4 that connectivity, and particularly the type of connectivity, is an essential microstructural feature for the es- 

timation of the effective elastic properties. By contrast, in Section 5 , we show–by comparing the three aforementioned 

microstructures–that the two-point correlations constitute an insufficient microstructural descriptor for estimating the ef- 

fective elastic properties. 

2. Background: Second-order statistical descriptors of the microstructure 

We consider a random two-phase material: index “s” refers to the solid phase, while index “p” refers to the pore space. 

Such a material is fully defined by the indicator function χp (x ) of the pore space. This function is a random field with

values in { 0 , 1 } , that is equal to 1 if and only if x belongs to the pores. The indicator function of the solid phase χs is then

given by χs (x ) = 1 − χp (x ) . 

For statistically homogeneous media, the porosity c (volume fraction of pores) coincides with the expectation of χp , 

defined as c = E [ χp (x )] , where the right-hand side does in fact not depend on x . We further define the two-point correlation

functions 

S αβ (r ) = E [ χα(x ) χβ(x + r )] α, β ∈ { p , s } , (1)

which gives the probability that point x belongs to phase α, while point x + r belongs to phase β . For statistically homoge-

neous materials, this probability does not depend on x and we write 

S αβ (r ) = E [ χα(0 ) χβ(r )] , α, β ∈ { p , s } . (2)

Note that, for isotropic materials, the correlation functions S αβ (r) depend on the norm r = ‖ r ‖ of the lag-vector r only.

The three two-point correlation functions thus defined are in fact linearly dependent (since χp + χs = 1 ), i.e., 

S ss (r ) = 1 − 2 c + S pp (r ) and S ps (r ) = c − S pp (r ) . (3)

In the remainder of this paper, we will therefore focus on the two-point correlation function of the pore space, S pp , which

will be referred to as the two-point correlation function and denoted simply as S. To close this section, some elementary

properties of S are recalled. 

Since χp (r ) ≤ 1 , we have χp (0 ) χp (r ) ≤ χp (0 ) and, taking the average yields S(r ) ≤ c. We further make the assumption

of no-long range order, which states that the phases at x and x + r are statistically independent. In other words, 

S(r ) → c 2 when ‖ r ‖ → + ∞ . (4) 

For isotropic materials, Debye, Anderson, & Brumberger (1957) have shown that the slope of the two-point correlation 

function S(r) at the origin r = 0 is related to the specific surface S v , defined as the interface area per unit volume of material.

More precisely 

d S 

d r 

∣∣∣
r=0 

= −S v 

4 

. (5) 

Finally, it is observed that the Fourier transform of the correlation function 

ˆ S (k ) = 

ˆ S pp (k ) is equal to the power spectrum

of the indicator function χp of the microstructure. Extraction of the two-point correlation function from a (2D/3D) image can 

therefore be performed efficiently by means of discrete Fourier transforms, using the fast Fourier transform ( Drummy et al.,

2008 ). 
3 
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Fig. 1. Example of a generated RSA microstructure, showing some of the parameters introduced in Section 3.1 . 

 

 

 

 

 

 

 

 

3. Generation and mechanical simulation of the microstructures 

In this section, we describe the three families of microstructures analyzed in the present study and the numerical frame- 

work used to compute their effective elastic properties. In particular, the connected RSA microstructure is based on the 

non-connected RSA microstructure and is presented here for the first time. 

3.1. Generation of non-connected RSA microstructures 

We first consider assemblies of non-ovelapping, polydisperse ellipsoidal voids resulting from a random sequential addi- 

tion process (RSA) as extended to polydisperse assemblies by Lopez-Pamies et al. (2013) and Anoukou et al. (2018) . Each

ellipsoidal void is inserted in a sequential manner. Specifically, a random center and a random orientation are proposed for 

the current void, whose shape is already pre-defined. If the insertion results in no overlap, the proposal is accepted and

the simulation moves to the next void. In case of overlap, the proposal is declined, and a new center and orientation are

drawn for the current void. Several points should be noted: i. centers are drawn uniformly in the cubic unit-cell (0 , L ) 3 ,

while orientations are chosen isotropically (each orientation being equiprobable) 1 ; ii. other acceptance criteria (besides non- 

overlap) for discretization purposes are also added, see below; iii. the microstructure is periodic, which requires special care 

in asserting non-overlap ( Anoukou et al., 2018 ). 

The total porosity (volume fraction of pores) is c, so that the total volume occupied by the pores is cV , where V = L 3 

is the volume of the unit-cell. The ellipsoidal pores are organized in N phases families (or phases); within each family r =
1 , . . . , N phases , all pores have the same radii a (r) 

1 
, a (r) 

2 
and a (r) 

3 
and random orientations (see Fig. 1 ). There are N 

(r) pores in

phase r and the total number of pores is 

N pores = 

N phases ∑ 

r=1 

N 

(r) . (6) 

We further introduce the following dimensionless quantities: first, the pore aspect ratios 

ω 

(r) 
1 

= 

a (r) 
3 

a (r) 
1 

and ω 

(r) 
2 

= 

a (r) 
3 

a (r) 
2 

, (7) 

then the size ratio 

α(r) = 

a (r) 
3 

a (1) 
3 

, (8) 

finally, the fraction γ (r) of the pore space occupied by phase r

γ (r) = 

N 

(r) v (r) 

c L 3 
, with v (r) = 

4 
3 
πa (r) 

1 
a (r) 

2 
a (r) 

3 
and 

N phases ∑ 

r=1 

γ (r) = 1 . (9) 

In the remainder of this paper, in order to reduce the number of microstructural parameters analyzed, we will only focus

on spheroids (ellipsoids with two equal radii), and the third local direction will be chosen as the axis of revolution. With no

possible ambiguity, we now assume that the phases are sorted by decreasing size 

a (1) ≥ a (2) ≥ · · · ≥ a 
(N phases ) 

, (10) 

3 3 3 

1 In order to achieve an equiprobable distribution of orientations in the unit sphere and thus approach the overall isotropy more efficiently, we use three 

Euler angles, φ, θ, ψ . It is recalled that the angles φ, ψ are uniformly distributed in (−π, π) , whereas for the third one, cos (θ ) is uniformly distributed in 

(−1 , 1) followed by inversion of the cosine. 

4 
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Table 1 

The relative size α(r) and volume fraction γ (r) of the 6 

families of spheroidal pores considered in this study. 

r 1 2 3 4 5 6 

α(r) 1 0.85 0.75 0.65 0.55 0.45 

γ (r) 20% 30% 10% 10% 10% 20% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

which is also the order in which the pores are inserted in the unit cell (larger pores first). This indeed allows to reach higher

volume fractions. 

To summarize, RSA microstructures considered in this paper are fully described by the following parameters 

c, N phases , a 
(1) 
3 

, ω 

(r) 
1 

, ω 

(r) 
2 

, α(r) , γ (r) (1 ≤ r ≤ N phases ) . (11) 

In addition, all microstructures comprise N phases = 6 phases. All pores are spheroidal with the same aspect ratio for all

N phases families 

ω 

(1) 
1 

= ω 

(1) 
2 

= · · · = ω 

(N phases ) 

1 
= ω 

(N phases ) 

2 
= ω. (12) 

The unique aspect ratio ω takes values in ω ∈ { 0 . 1 , 0 . 2 , 0 . 4 , 0 . 6 , 0 . 8 , 1 } . The relative sizes of pores α(r) and corresponding

volume fraction γ (r) are reported in Table 1 . Note that the resulting pore-size distribution is relatively large, which al-

lows the RSA algorithm to achieve large porosities (up to 25% ). An even larger pore-size distribution may be used to reach

porosities as large as 80%, as detailed in Zerhouni et al. (2019) but this is beyond the scope of the present work. 

Finally, the value of a (1) 
3 

is chosen such that the microstructure contains N 

(1) = 50 pores of the first phase. This leads

to microstructures with a total number of pores which is large enough to obtain representative effective elastic proper- 

ties ( Anoukou et al., 2018 ). With these values of the various microstructural parameters, hereafter, RSA microstructures are 

unambiguously described by their porosity c and pore aspect ratio ω only. 

We close this section by noting that the RSA algorithm presented above has been slightly biased as follows. First, the

proposed location for the current ellispoid E i is rejected if a previously inserted ellipsoid E j is too close to E i . More precisely,

rejection occurs if the distance between E i and E j is smaller than 

1 . 05 × 1 
2 

{
max 

[
a (r i ) 

1 
, a (r i ) 

2 
, a (r i ) 

3 

]
+ max 

[
a 

(r j ) 

1 
, a 

(r j ) 

2 
, a 

(r j ) 

3 

]}
, (13) 

where r i and r j denote the phases to which E i and E j belong, respectively. 

Second, ellipsoid E i must not be too close to the boundary of the unit-cell. More precisely, the proposed location for

ellipsoid E i is rejected if the distance to the closest boundary is smaller than 

1 . 05 × max 
[
a (r i ) 

1 
, a (r i ) 

2 
, a (r i ) 

3 

]
. (14) 

These two additional conditions ensure that the microstructures can be suitably discretized in a finite element frame- 

work. They are not as such necessary for discretization over a cartesian grid used in the present work (see Section 3.4 ).

Nevertheless, these conditions lead to a discretization that no grid-cell is intersected by two ellipsoids at a time. 

3.2. Generation of connected RSA microstructures 

The microstructures considered in this section differ from the microstructures considered in Section 3.1 by the addition 

of channels that connect the ellipsoidal pores. This introduces controlled connectivity in the microstructure. For this pur- 

pose, we develop a modified RSA algorithm, which is presented below. Note that the channels considered here are circular 

cylinders, a choice allowing to maintain the number of microstructural parameters to the minimum possible. However, the 

algorithm can readily be extended to more general channel shapes. 

Besides the microstructural parameters listed in Eq. (11) , our modified RSA algorithm is controlled by only two additional

parameters, namely, η and ζ , to be defined below. For clarity, we illustrate schematically in Fig. 3 the process to obtain

connectivity from the existing RSA microstructure. 

The first parameter is the reduced radius η, that controls the radius R i j of the cylindrical channel connecting two ellip-

soidal pores E i and E j 

R i j = η min 

[
a (r i ) 

1 
, a (r i ) 

2 
, a (r i ) 

3 
, a 

(r j ) 

1 
, a 

(r j ) 

2 
, a 

(r j ) 

3 

]
, (15) 

where r i and r j are defined as in Eq. (13) . 

The second parameter is the coordination number ζ , that controls the total number of channels in the microstructure, 

N channels , as follows 

N channels = 

1 

2 

ζ N pores , (16) 

where it is recalled that N pores denotes the total number of pores [see Eq. (6) ]. In other words, ζ is the average number of

channels per pore. 
5 



O. Zerhouni, S. Brisard and K. Danas International Journal of Engineering Science 166 (2021) 103520 

Fig. 2. Examples of RSA microstructures with porosity c = 25% . Unit cells containing polydisperse (multiple size) voids with aspect ratio (a) ω = 0 . 2 and 

N pores = 204 , (b) ω = 0 . 4 and N pores = 204 , (c) ω = 1 and N pores = 408 . 

Fig. 3. Two-dimensional sketch illustrating the process to obtain the CRSA microstructures. The red channels indicate the connected part of the microstruc- 

ture. In this example, we have a coordination number ζ = 2 . (For interpretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

The channels are introduced a posteriori in a previously generated (unconnected) RSA microstructure. The procedure 

relies heavily on the minimal distance between ellipsoidal pores. More precisely, for two ellipsoids E i and E j , we define the

points x i j ∈ E i and x ji ∈ E j that minimize (
x i j , x ji 

)
= arg min 

{‖ x j − x i ‖ , 
(
x i , x j 

)
∈ E i × E j 

}
, (17) 

as well as the actual pore-to-pore distance 

d i j = d ji = ‖ x ji − x i j ‖ . (18) 

The points x i j and x ji and distance d i j are first computed using the local ball approximation described in 

Anoukou et al. (2018) . Note that, owing to the periodicity of the simulation box, periodic images of the pores must also

be considered for the determination of the above quantities. All (i, j) pairs of ellipsoids are then sorted by order of in-

creasing distance d i j . The N channels first pairs are then selected, where N channels is given by Eq. (16) . For each selected (i, j)

pair, a cylindrical channel is inserted. Its radius R i j is given by Eq. (15) , while its axis is given by x ji − x i j . Note that this

procedure may fail if the number of channels to be inserted is too large (not enough pairs of neighbouring pores available).

In the microstructures presented here, the values of ζ are chosen small enough for this situation never to occur. Examples 

of generated CRSA microstructures are displayed in Fig. 4 . 

We close this section by further noting that introducing cylindrical channels into the RSA microstructures alters its poros- 

ity c slightly. Our goal is to ensure that the final porosity of the CRSA microstructures is indeed c, up to an acceptable

negligible error resulting from polydispersity and the random procedure itself. To enforce this requirement, the initial RSA 

microstructures (prior to channel insertion) were generated with a slightly lower porosity, ˜ c , the value of which was found

by trial-and-error. On average, the actual porosity of the generated CRSA microstructures was within 0 . 1% of the prescribed

value. We will show in Section 5.1 , that the introduction of connectivity does not alter in essence the two-point correlation

functions in the RSA microstructures. 

3.3. Generation of thresholded GRF microstructures 

The third type of microstructures considered here results from thresholding a Gaussian random field (TGRF microstruc- 

tures). The main reason for this choice is the fact that such microstructures can be generated entirely by prescribing the
6 



O. Zerhouni, S. Brisard and K. Danas International Journal of Engineering Science 166 (2021) 103520 

Fig. 4. Examples of CRSA microstructures with porosity c = 25% , channel size determined by η = 0 . 3 and coordination number ζ = 6 . In addition to the 

connecting channels the unit cells contain polydisperse (multiple size) voids with aspect ratio (a) ω = 0 . 2 and N pores = 204 (b) ω = 0 . 4 and N pores = 204 

and (c) ω = 1 and N pores = 408 . The pore channels are shown in red and constitute only a small fraction of the overall porosity. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

two-point correlation functions. In order to investigate the relative effect of the two-point correlation functions to the ef- 

fective properties, we generate the TGRF microstructures such that they exhibit the same two-point correlations as the RSA 

microstructures presented in Sections 3.1 (see Section 5.1 ). Note that using thresholded Gaussian random fields to model mi- 

crostructures is a fairly well-known technique ( Khristenko, Constantinescu, Tallec, Oden, & Wohlmuth, 2020; Roberts, 1997; 

Roberts & Teubner, 1995; Roubin et al., 2015 ); it has recently been applied by Kumar, Tan, Zheng, & Kochmann (2020) to the

inverse design of spinodoid metamaterials. However, most works generally rely on analytical expressions of the two-point 

correlation functions. In the present work, we use correlation functions of real (RSA) microstructures, which are computed 

numerically. This opens the possibility for using this reconstruction process in any type of numerically evaluated two-point 

correlations. 

The TGRF microstructures are defined as random fields. More precisely, the indicator function χp (x ) of the pore space is

defined as 

χp (x ) = 

{
0 if Y (x ) < λ, 

1 if Y (x ) ≥ λ, 
(19) 

where λ is a prescribed threshold and Y is a Gaussian random field with zero mean and unit variance 

E [ Y (x )] = 0 , E [ Y 2 (x )] = 1 and E [ f (Y (x ))] = 

1 √ 

2 π

∫ + ∞ 

−∞ 

f (y ) exp 

(
−y 2 / 2 

)
d y. (20)

The value of the threshold λ is directly related to the porosity c of the microstructure to be generated. Indeed, from the

above equation 

c = E [ χp ] = 

1 √ 

2 π

∫ + ∞ 

λ
exp 

(
−y 2 / 2 

)
d y. (21) 

It is recalled that a Gaussian random field is fully characterized by its translation-invariant covariance function, ρ(r ) = 

E [ Y (x ) Y (x + r )] . In turn, the two-point correlation function S(r ) of the resulting TGRF microstructure is related to ρ(r )

( Lantuejoul, 2002 ) 

S(r ) = c − 1 

2 π

∫ 1 

ρ(r ) 
exp 

(
− λ2 

1 + t 

)
d t √ 

1 − t 2 
. (22) 

In order to generate a TGRF microstructure with prescribed two point correlation function S(r ) , we must first invert the

above relation to find the covariance function ρ(r ) of the Gaussian random field Y (x ) . Observing that the lag vector does

not play any role in the above identity, we therefore seek the S 
→ ρ = R (S) mapping such that 

S = c − 1 

2 π

∫ 
R (S) 

1 exp 

(
− λ2 

1 + t 

)
d t √ 

1 − t 2 
. (23) 

This integral equation is equivalent to the following ordinary differential equation [where the unknown is the function 

R (S) ] 

d R 

d S 
= 2 π

√ 

1 − R 

2 exp 

(
λ2 

1 + R 

)
with R (c) = 1 . (24) 

For a given value of the threshold λ, the above ODE is solved numerically for R (S) . Then the covariance function of the

Gaussian random field to be generated is given by ρ(r ) = R [ S(r )] . Generation of TGRF microstructures therefore proceeds as

follows: 
7 
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Fig. 5. Examples of TGRF microstructures with porosity c = 25% reconstructed by using the two-point correlation functions of the RSA microstructures 

shown in Fig. 2 with void aspect ratio (a) ω = 0 . 2 , (b) ω = 0 . 4 and (c) ω = 1 . 

 

 

 

 

 

 

 

 

 

 

 

1. Measure porosity c and two-point correlation function S(r ) of the RSA microstructure to mimic. 

2. Compute the threshold λ and the mapping S 
→ R (S) from Eqs. (21) and (24) . 

3. Generate a Gaussian random field Y with prescribed covariance ρ(r ) = R [ S(r )] . 

4. Generate the porous microstructure χp by thresholding Y according to Eq. (19) . 

For point 1, the target two-point correlation function S(r ) is obtained by averaging over 50 RSA realizations discretized 

over a 256 3 cartesian grid. Various methods are available to achieve point 3 (see the review by Liu, Li, Sun, & Yu, 2019 ). In

the present study, the random fields are discretized on a not-too-large cartesian grid (see Section 5.1 ). In turn, the spectral

method based on the use of the fast Fourier transform ( Poirion & Soize, 1995; Shinozuka & Deodatis, 1991; 1996 ) is found

to provide a good compromise between ease of implementation and computational efficiency. Examples of generated TGRF 

microstructures are provided in Fig. 5 . 

3.4. Computation of the effective elastic properties 

In this section, we discuss the computation of the effective linear elastic properties of the three types of porous mi-

crostructures presented in Secs. 3.1, 3.2 and 3.3 . Without loss of generality, we consider the solid phase to be isotropic,

linearly elastic described by a shear modulus μs = 0 . 492 GPa and a Poisson’s ratio νs = 0 . 42 . These values correspond to the

experimentally measured properties of a 3d-printed Verowhite material ( Zerhouni et al., 2019 ). It is recalled that the gener-

ated microstructures are periodic and thus periodic boundary conditions are applied to all full-field simulations presented 

below. 

We use the numerical procedure initially introduced by Moulinec & Suquet (1994, 1998) to compute the effective elastic 

properties of the microstructures considered in this study. This method requires the microstructures to be discretized over 

a cartesian grid (all simulations presented here are conducted on 256 3 grids). It relies on the reformulation of the classi-

cal homogenization problem (equilibrium under prescribed macroscopic strain ε and periodic boundary conditions) by the 

following equation 

ε + �0 

[(
C − C 0 

)
: ε 

]
= ε , (25) 

where C 0 denotes the stiffness of an arbitrary reference material and �0 the associated fourth-order Green operator (see 

Appendix B ). The �0 operator is a convolution operator and Eq. (25) is an integral equation. For the numerical solution of

this equation, we use the variational approach of Brisard & Dormieux (2010, 2012) , combining the discrete Green operator

of Willot (2015) with a conjugate gradient linear solver. This approach relies on the equivalent formulation of Eq. (25) (
C − C 0 

)−1 
: τ + �0 (τ ) = ε , with τ = 

(
C − C 0 

)
: ε. (26) 

Here, τ denotes the stress-polarization , which is the principal unknown of the problem. For the reference material, we select 

a stiffness tensor C 0 that is close to, but distinct from, that of the matrix. This avoids singularities due to the (C − C 0 ) 
−1 

factor. 

For a given prescribed macroscopic strain ε , the simulation returns the local stress-polarization τ at each grid-cell. The 

effective stiffness tensor ˜ C is obtained from the volume average of Eq. (26) 

〈 τ 〉 = 〈 C : ε〉 − 〈 C 0 : ε〉 = 

(˜ C − C 0 

)
: 〈 ε〉 = 

(˜ C − C 0 

)
: ε , (27) 

where angle brackets 〈•〉 refer to volume averages over the unit-cell. For each realization, the full, anisotropic, effective 

stiffness tensor ˜ C is retrieved from simulations with six linearly independent values of the macroscopic strain ε . Note that 

for each set of microstructural parameters, 50 realizations were considered. These realizations were discretized over a 256 3 

cartesian grid. As a matter of fact, a smaller number of realizations may prove to be already sufficient ( Anoukou et al., 2018 )

to ensure statistical convergence, especially in the context of linear elasticity. 
8 
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Fig. 6. Effective moduli of the CRSA microstructures for fixed porosity c = 25% and reduced channel size η = 0 . 3 and various values of the pore aspect ratio 

ω and coordination number ζ . (a) effective bulk modulus. (b) Effective shear modulus. In both cases, the secondary right axis shows the volume fraction 

c channels of the cylindrical channels (dotted lines) as a function of the coordination number ζ for the same values of c and η. 

 

 

 

 

 

 

 

 

 

 

 

 

It has already been noted in Section 5.1 that the microstructures considered here exhibit cubic symmetry that should 

evolve to isotropy for large unit-cells. In the present study, we generate microstructures that are large enough to be consid-

ered as representative volume elements (RVEs) ( Ostoja-Starzewski, 2006 ) and the effective stiffness ˜ C should exhibit almost 

perfect isotropy. To quantify this assertion, we introduce the following isotropic stiffness tensor 

˜ C iso = 3 ̃  κ J + 2 ̃  μK , with ˜ κ = 

1 
9 ̃

 C ii j j and ˜ μ = 

1 
10 ̃

 C i ji j − 3 
10 ̃

 κ, (28) 

where J and K denote the spherical and deviatoric fourth-order projection tensors (see Appendix A ). ˜ C iso is the isotropic

tensor that is closest to ̃  C in the sense of the Frobenius norm ‖ A ‖ F = 

√ 

A i jkl A i jkl . Then, the following dimensionless quantity

δiso = 

‖ ̃

 C − ˜ C iso ‖ F 

‖ ̃

 C ‖ F 

(29) 

measures in a quantitative manner the deviation of the effective stiffness tensor ˜ C from isotropy. For all microstructures 

considered in the present study, δiso was found to be lower than 3% , while in most cases this deviation was even smaller

than 1% . Thus, the resulting deviation is deemed satisfactory, whereby detailed values of δiso are reported in Appendix C . 

Note that the above-defined anisotropy index is more general than the Zener ratio, that applies to materials with cubic 

symmetry only. Also, it should be mentioned that δiso is not invariant by inversion: evaluating this index with the compli-

ance tensor would likely have delivered a different value. Since the values of δiso effectively observed are rather small for 

all microstructures considered here, we did not find it necessary to introduce generalized euclidean distances that would 

preserve inversion ( Morin, Gilormini, & Derrien, 2020 ). 

In the following, we first investigate the effect of connectivity in the CRSA microstructures and subsequently, we compare 

all three microstructures in terms of their two-point correlation functions and the corresponding effective properties. 

4. A parametric study of the connectivity parameters 

In order to explore the effect of connectivity on the effective elastic properties, we carry out a fine control over the

degree of connectivity in the microstructures under consideration. Such a parametric microstructural design is not possible 

with the TGRF microstructures (that are either percolated or not). This constitutes one of the main reasons for generating 

the CRSA microstructures, where channel size , described by η, and the average number of channels per pore, described by

the coordination number ζ , are introduced. In the present section, we show that even a relatively small volume fraction of

connecting channels can have a significant effect on the effective elastic properties. It is important to mention at this point

for clarity that introducing channels in the RSA microstructures leaves the two-point correlations nearly unchanged (see for 

instance Fig. 10 ), as we will extensively discuss in the next Section 5 . 

The simulations in this section are performed for three porosities, c = 5% , 15% and 25% . For all porosities, the observed

trends were similar. The figures presented here therefore focus on the c = 25% microstructures, since larger porosities tend 

to emphasize the underlying microstructural effects and interactions between voids. To further simplify the understanding 

of the obtained results, we introduce for this analysis an auxiliary post-measured parameter, the volume fraction c channels of 

channels, which depends on the two main ones η and ζ . 

The influence of the coordination number ζ and channel size η are analyzed in two series of simulations. In the first 

one, we fix the reduced channel size η = 0 . 3 and vary the coordination number ζ from 0 up to the maximum value allowed

by the available number of channel sites in the microstructure under consideration. Fig. 6 shows the resulting effective 

elastic moduli for c = 25% porosity and various values of the pore aspect ratio ω = 0 . 2 , 0.4 and 1. In the second series of
9 
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Fig. 7. Effective moduli of the CRSA microstructures for fixed porosity c = 25% and coordination number ζ = 10 and various values of the pore aspect ratio 

ω and reduced channel size η. (a) Effective bulk modulus. (b) Effective shear modulus. In both cases, the secondary right axis shows the volume fraction 

c channels of the cylindrical channels (dotted lines) as a function of the reduced channel size η for the same values of c and ζ . 

Fig. 8. Effective moduli of the CRSA microstructures for fixed porosity c = 25% and various values of the pore aspect ratio ω, coordination number ζ and 

reduced channel size η. Solid lines: η = 0 . 3 , ζ varies as in Fig. 6 ; dotted lines: ζ = 10 and η varies as in Fig. 7 . (a) Effective bulk modulus. (b) Effective 

shear modulus. 

 

 

 

 

 

 

 

 

 

 

 

 

 

simulations, the coordination number is kept fixed ζ = 10 , and the reduced channel size η is varied from 0 to 0.4. The

effective moduli are plotted in Fig. 7 , again for c = 25% and ω = 0 . 2 , 0.4 and 1. 

Increasing ζ with η fixed or increasing η with ζ fixed leads in both cases to an increase in the volume fraction of 

channels c channels (see the secondary axis in Figs. 6 and 7 ). Note, however, that the total porosity remains fixed. In both cases,

this induces a decrease of the effective elastic moduli. The effect on the effective bulk modulus is very significant, especially

for spherical voids corresponding to ω = 1 . The effect of connectivity becomes gradually less significant with decreasing

ω. As an example, a 15% reduction is observed for ˜ κ and ω = 1 . Instead, for ω = 0 . 2 , the effective bulk modulus remains

fairly unchanged with connectivity. It should be noted, however, that as the voids become more flat, the volume fraction 

of channels becomes significantly smaller. The reason for such a behavior is related to the fact that as the voids become

flatter ( ω 
 1 ), the distance between two neighboring voids in some direction becomes much shorter than that in spherical

voids. As a consequence, the connection is achieved with a much smaller channel length , leading to smaller channel porosity

in total. One could introduce a different strategy to connect the voids introducing connectivity at larger distances. Such an 

approach, albeit easily envisaged, is not considered in the present work since the goal is to have a tractable minimum set

of microstructural parameters. Interestingly, the effect of connectivity on the effective shear modulus is much more limited, 

leading to a maximum 5% reduction in the case of spherical voids. 

In order to reveal more clearly the relative weight of the coordination number ζ and the reduced channel size η, we

cross-plot in Fig. 8 the effective elastic moduli obtained in both series of simulations, as a function of the channel volume

fraction , c channels . It is observed that the curves for η fixed and ζ fixed overlap with an excellent precision. This seems to

indicate that c channels is the first-order parameter in this elasticity problem. This conclusion is somewhat different than that 

by Nirmalraj et al. (2012) , where it was shown that ζ is the dominant parameter in the context of connected nano-wires.

Nevertheless, the latter microstructure is substantially different than the one considered here, where the main ingredient is 

the original ellipsoidal voids, which are subsequently connected by cylindrical channels. This observation suggests strongly 

that the effect of connectivity is highly sensitive to the particular details of each microstructure. 
10 
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Fig. 9. Two-point correlation functions of the RSA microstructures for porosity c = 25% and pore aspect ratios ω = 0 . 2 , 0 . 4 and 1 . 

Fig. 10. Comparison of the two-point correlations for the three types of microstructures (RSA, CRSA and TGRF), with c = 25% and various values of ω. (a) 

ω = 0 . 2 . (b) ω = 1 . For the CRSA microstructures, η = 0 . 3 and ζ = 6 . 

 

 

 

 

 

 

 

5. The effect of the two-point correlations on the effective elastic properties 

In this section, we analyze the effect of the two-point correlation functions on the effective elastic properties using the 

three microstructures discussed in Secs. 3.1, 3.2 and 3.3 . We carry out first a statistical analysis in Section 5.1 and subse-

quently, we evaluate in Section 5.2 the corresponding effective bulk and shear moduli resulting from those microstructures. 

5.1. Statistical analysis of the generated microstructures 

All microstructures generated in Secs. 3.1, 3.2 and 3.3 are discretized over a 256 3 cartesian grid prior to any further

analysis. This leads to a cell-size h � a min / 6 ( c = 5% ), h � a min / 8 ( c = 15% ) and h � a min / 10 ( c = 25% ), where a min denotes

the minimum radius over all spheroidal pores 

a min = min { a (r) 
1 

, a (r) 
2 

, a (r) 
3 

, 1 ≤ r ≤ N phases } . (30) 

The two-point correlation functions are then computed by means of discrete Fourier transforms (using a fast Fourier 

transform implementation) 

S h = N 

−1 
cells 

DFT 

−1 
[| DFT (χ h ) | 2 ], (31) 

where N cells denotes the total number of grid cells, χh denotes the indicator function of the pore space, discretized over the

cartesian grid, and S h the resulting discretized two-point correlation function. An empirical mean is then computed over 50 

realizations for each set of microstructural parameters. 

For finite-size unit-cells, only cubic symmetry is to be expected for S h . However, for sufficiently large unit-cells ( L → + ∞ ),

the computed two-point correlation function S(r) should be nearly isotropic for small magnitudes of the lag-vector r . This 

is verified empirically by comparing 1D sections of S h along the three axes of the box; Figs. 9 and 10 actually display the

following mean 

S h (r) = 

1 
3 

[
S h (r, 0 , 0) + S h (0 , r, 0) + S h (0 , 0 , r) 

]
. (32)
11 
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Table 2 

Comparison of the specific surface area S v for a porosity c = 15% 

and three values of the aspect ratio ω. Values of S v are reported 

in dimensionless form through the product � c S v , where � c de- 

notes the correlation length defined through equation (33) . 

ω � c S v ( RSA ) � c S v ( CRSA ) � c S v ( TGRF ) 

0.2 0.582 0.591 0.582 

0.4 0.449 0.478 0.448 

1.0 0.476 0.532 0.478 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that, owing to the periodicity of the generated microstructures, the correlation functions are symmetric about r = 

L/ 2 : S h (L − r) = S h (r) . Therefore, in Figs. 9 and 10 , S h (r) is plotted only for 0 ≤ r ≤ L/ 2 . The correlation length � c introduced

in Table 2 is defined as follows 

� c = 

∫ L/ 2 

0 

S h (r) d r. (33) 

For the sake of simplicity, the h superscript will be omitted in the remainder of this paper, keeping in mind that all fields

are discretized over a 256 3 cartesian grid. 

The two-point correlation function of the RSA microstructures is displayed in Fig. 9 , for a total porosity c = 25% and

various values of the aspect ratio ω. It is observed that for assemblies of spheres, a strong correlation occurs at r/L � 0 . 1 .

For anisotropic pores ( ω < 1 ), polydispersity (in orientations) tends to flatten the S(r) curves. 

Fig. 10 shows the two-point correlation functions for all three types of microstructures, c = 25% and ω = 0 . 2 , 1 . As ex-

pected, although visually different if one observes Figs. 2 and 5 , the RSA and GRF microstructures exhibit by construction

almost identical two-point correlation functions. More surprising though is the fact that the introduction of channels in 

the CRSA microstructures did not alter the two-point correlations, at least up to an extremely weak percentage. This is 

quantitatively confirmed by the evaluation of the specific surfaces S v which are fairly close, as shown in Table 10 . 

5.2. Effective elastic properties of the generated microstructures 

In the previous Section 5.1 , we have shown that the three generated families of microstructures, RSA, TGRF and CRSA,

exhibit almost the same second-order statistics, even though they are morphologically fairly different. We now confront 

these purely morphological results to the corresponding mechanical elasticity results. 

Fig. 11 shows the effective bulk and shear moduli ˜ κ and ˜ μ for the RSA, CRSA and TGRF microstructures as a function of

the porosity c, for various values of the void aspect ratio ω = 1 , 0 . 4 , 0 . 2 . The effective values are normalized by the elastic

moduli of the solid phase, κs and μs and for the CRSA microstructures, η = 0 . 25 and ζ = 4 . 

We observe that the case of spherical voids ω = 1 ( Fig. 11 a,b) is the case for which the three analyzed microstructures

deliver estimates that differ most. The differences are more pronounced for the bulk modulus than for the shear modulus. 

In this case, the TGRF microstructure leads to the lowest values and the RSA to the stiffest ones. In fact, in several studies

(see for instance Anoukou et al., 2018 ), it was shown that the RSA microstructure is very close to the Hashin-Shtrikman

bounds ( Hashin & Shtrikman, 1963 ) for isotropic porous materials. Decreasing the void aspect ratio to ω = 0 . 4 ( Fig. 11 c,d)

leads to a particular case where the bulk modulus predicted by all microstructures is fairly close for all porosities. This

observation, however, does not carry on entirely to the corresponding shear modulus. Finally, as we further decrease the 

aspect ratio to ω = 0 . 2 ( Fig. 11 e,f), we observe that the RSA and CRSA curves almost overlap for both the bulk and shear

moduli, indicating that connectivity has a minor effect in this case. In turn, the TGRF microstructure is much stiffer than

the RSA and CRSA microstructures in this case. Interestingly, the maximum difference between the RSA (resp. CRSA) and the 

TGRF microstructures is observed for porosities in the order of ∼ 10% . 

In order to have a more complete perspective of those results, Fig. 12 presents a cross-plot of the same normalized

effective bulk and shear moduli as a function of ω and for three selected porosities c = 5 , 15 and 25%. For clarity, we also

include the partial channel porosity c channels for the CRSA as a secondary axis in all plots. We also note that for the CRSA

microstructures, η = 0 . 25 and ζ = 4 . 

We immediately observe that the effective bulk modulus is more sensitive to the aspect ratio ω than the shear modulus. 

In addition, for aspect ratios ω < 0 . 4 , the introduction of connectivity moves the CRSA estimates towards the TGRF ones,

making the overall response of the CRSA material softer than the RSA one. This effect is rather strong for the bulk modulus,

where for ω = 1 the difference between the RSA and CRSA microstructures is more than 13% for c = 15% ( Fig. 12 c). In this

case, c channels is also the largest. Similar trends are obtained also for the shear modulus, but the effect of connectivity is

somewhat less pronounced. In turn, the effect of the aspect ratio becomes extremely critical for ω < 0 . 3 . 

5.3. Discussion on the relevance of the two-point correlations and connectivity 

In view of these results, one may clearly state that connectivity indeed plays a significant role on the effective elastic

properties, particularly for the effective bulk modulus, and that differences in connectivity could explain why the RSA and 
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Fig. 11. Effective normalized bulk ˜ κ/κs and shear ˜ μ/μs moduli of the RSA, TGRF and CRSA microstructures as a function of the porosity c, for a pore aspect 

ratio (a,b) ω = 1 , (c,d) ω = 0 . 4 and (e,f) ω = 0 . 2 . For the CRSA microstructures, η = 0 . 25 and ζ = 4 . 

 

 

 

 

TGRF microstructures exhibit so different effective elastic properties while sharing the same two-point correlations. In par- 

ticular, the RSA microstructures are fully disconnected, whereas the TGRF ones have some degree of connectivity (depending 

on the volume fraction) and can even be percolated ( Øren & Bakke, 2002; Roubin & Colliat, 2016; Tomita & Murakami, 1988 ).

It is known that the effective conductivity and bulk modulus have similar behaviors (one could compare for example 

the three-point bounds on these two quantities in Torquato & Lado (1986) ). The decrease of the effective bulk modulus

observed here with an increasing volume fraction of connecting channels is therefore consistent with previous studies of 

the effective conductivity of two-phase materials, where connectivity was shown to play a central role ( Neumann, Stenzel, 

Willot, Holzer, & Schmidt, 2020; Stenzel, Pecho, Holzer, Neumann, & Schmidt, 2016 ). It is also consistent with recent ob-

servations by Cai et al. (2019) regarding the effective elastic properties. The present study further shows that the effective 

shear modulus is less affected by connectivity than the bulk modulus. 

We also conclude that, from the point of view of solid mechanics, the two-point correlations are highly insufficient 

descriptors. Although not shown here in order not to scramble the main message of this study, we recall that the gen-

eral expression of the Hashin-Shtrikman bounds on the effective properties include the two-point correlation functions 

( Willis, 1977 ). However, for isotropic microstructures , these functions vanish from the resulting bound. Therefore, the bounds 

on the effective properties coincide for all isotropic microstructures. While this universality may be regarded as a strength 
13 
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Fig. 12. Effective normalized bulk ˜ κ/κs and shear ˜ μ/μs moduli of the RSA, TGRF and CRSA microstructures as a function of the void aspect ratio ω for 

various porosities (a,b) c = 5% , (c,d) c = 15% and (e,f) c = 25% . For the CRSA microstructures, η = 0 . 25 and ζ = 4 . The secondary right axis shows the partial 

channel porosity c channels for the CRSA. 

 

 

 

 

 

 

 

of the Hashin–Shtrikman bounds, in the sense of being able to bound an immense set of isotropic porous materials, from

the perspective of this paper, it shows, in turn, that the two-point correlation functions are not relevant descriptors of the

microstructure. By contrast, one could have used the more elaborate Hashin–Shtrikman–Willis estimates ( Willis, 1981 ) (with 

their projection in the isotropic space as in Gatt, Monerie, Laux, & Baron, 2005 ), which allow to describe directly the void

aspect ratio and their distributions ( Ponte Castañeda & Willis, 1995 ). Nevertheless, such a model would be only capable to

deliver estimates for the RSA microstructures, as already shown in Anoukou et al. (2018) . It would be inappropriate for the

CRSA and TGRF microstructures. 

From a different regard, Torquato (1997) expressed the effective elastic properties of two-phase materials as a series 

expansion in powers of the so-called “elastic polarizabilities” (a normalized difference of the elastic moduli of the two 

phases). The most notable result of this formal study is that the term of order k involves the correlation functions up to

order k . These expansions were specialized to isotropic materials by Torquato (1998) , where it was shown that the term of

second order (which should therefore involve the two-point correlations only) vanished in that case. In other words, from 

the perspective of the effective elastic properties, the two-point correlation functions alone do not carry more information 

than the volume fractions, which is consistent with what is observed numerically here and confirms that the two-point 

correlation functions are not relevant descriptors of the microstructure. 
14 
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6. Concluding remarks 

In the present study, we propose a quantitative investigation of the influence of the microstructure on the effective elas- 

tic properties of porous materials. In particular, we focus the study on the question of whether the two-point correlations 

in a given microstructure are sufficient to describe accurately its effective elastic properties. In order to address this ques- 

tion unambiguously in the context of linear elasticity, we use three paradigms of well-defined microstructures that share 

almost identical two-point statistics but are morphologically different. The first microstructure comprises non-overlapping 

polydisperse spherical and ellipsoidal voids oriented randomly. Its construction is achieved by use of the random sequential 

adsorption (RSA) algorithm. The second microstructure, termed connected random sequential adsorption (CRSA) and intro- 

duced for the first time in this work, derives directly from the RSA by introducing cylindrical with circular cross-section 

porous channels that connect the existing spherical or ellipsoidal voids. The third microstructure, based on a thresholded 

Gaussian random field (TGRF) process, is constructed on purpose by direct use of the numerical two-point correlations of 

the RSA microstructure. As a result, the RSA and TGRF have almost identical one- and two-point correlations. Perhaps more 

interestingly, we also find that the introduction of connectivity to obtain the CRSA microstructure affects very weakly the 

two-point correlations. These paradigms–which are extensively used to model porous materials spanning geomaterials, ce- 

ramics, wood and so on–allow to have three rather different microstructures in terms of connectivity and more generally 

local geometric features but with the same two-point statistics. 

Using next FFT numerical simulations, we compute and compare the effective bulk and shear moduli in those three cases. 

In this study, we show by direct comparison that the two-point correlations alone are insufficient to describe quantitatively 

the effective elastic properties of porous materials in general. The three microstructures used in this study are found to 

exhibit significantly different effective elastic properties, and especially different bulk moduli, even if their two-point statis- 

tics are almost identical. More precisely, we observe that connectivity in the CRSA materials tends to decrease the effective 

properties when compared with the original RSA microstructure. In particular, we find that even a relatively small number 

of connected regions in the closest neighborhood of a given void is sufficient to lead to a significant drop of the effective

elastic properties (see also recent work by Cai et al., 2019 , along these lines). Moreover, we find that in the present CRSA

procedure the dominant parameter is the volume fraction of the connecting channels. In turn, the TGRF microstructures 

are found to be softer than both the RSA and the CRSA for void aspect ratios between 0.4 (oblate) and 1 (spherical voids).

Instead, as the void aspect ratio decreases to values less than 0.3, the RSA and CRSA become increasingly softer reaching

very low values for the effective bulk and shear moduli, much lower than the corresponding TGRF ones. 

The versatile and highly non-trivial effect of the local microstructural features on the effective elastic properties reveals 

simply that a wide number of extensively used analytical micromechanical models, that are based on two-point correla- 

tions or an ideal inclusion of ellipsoidal shape (e.g., self-consistent estimates, Hashin-Shtrikman bounds, Mori-Tanaka and 

many other) have a very specific range of validity and should be used with extreme caution, especially when comparison 

is attempted with experiments, where the material microstructure is extremely complex. In particular, in a large number of 

geological and metallic materials, the voids exhibit irregular shapes (see for instance the TGRF microstructures shown above) 

and more often than not are connected in several regions (e.g. due to fracturing or coalescence). While identifying an ideal

ellipsoidal shape that fits the elastic response may prove useful in certain circumstances, such a practice can lead to sub-

stantial errors when permeability or nonlinear effects (such as plasticity, nonlinear elasticity etc) need to be modeled. This 

in fact may explain partially the very large span of models that have been proposed in the context of analytical linear and

nonlinear homogenization, as well as their difficulty to model actual materials at small and finite strains. From a different 

point of view, the present results indicate that slight perturbations in the initial conditions during an optimization process 

may lead to microstructures that deliver substantially different effective properties. Finally, we note that while the present 

work focuses on isotropic porous materials, we expect that similar conclusions may be drawn for other types of large con-

trast microstructures, such as anisotropic ones, particle reinforced composites and multi-phase materials. Nevertheless, a 

complete study along these lines needs to be carried out to validate without doubt such a proposition. 
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Appendix A. The fourth-order isotropic projection tensors 

Let I denote the second-order identity tensor and I the fourth-order identity tensor over the space of symmetric, second- 

order tensors 

I = δi j e i � e j and I = 

1 
2 

(
δik δ jl + δil δ jk 

)
e i � e j � e k � e l . (A.1) 
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The spherical and deviatoric fourth-order projection tensors J and K are defined as follows 

J = 

1 
3 

I � I , K = I − J , with J : J = J , K : K = K , J : K = K : J = O . (A.2)

It is known that any fourth-order, isotropic tensor with minor symmetries is a linear combination of these two projectors 

( Walpole, 1984 ). 

Appendix B. The fourth-order Gamma operator 

For periodic boundary conditions, the classical homogenization problem reads 

div 
[
C : 

(
ε + sym grad u 

per 
)]

= 0 , (B.1) 

where u 

per is a periodic displacement field, to be determined. In the above problem, the stiffness C of the heterogeneous

material is a field, that depends on the observation point. When the material is homogeneous with stiffness C 0 , the above

problem is trivial ( u 

per = 0 ). A closely related problem can be constructed in that case with the introduction of a so-called

stress-polarization field τ

div 
[
C 0 : 

(
sym grad u 

per 
)

+ τ
]

= 0 . (B.2) 

Note that in the above problem, the material is homogeneous and the macroscopic strain is null. Owing to linearity, 

the solution to Problem (B.2) depends linearly on the parameter τ (which is a tensor field ). In particular, the total strain

sym grad u 

per (also a field) depends linearly on τ . Following Korringa (1973) , Zeller & Dederichs (1973) and Kröner (1974) ,

the Gamma operator is defined as the operator that maps linearly the stress-polarization onto the opposite of the induced 

strain tensor, i.e., 

sym grad u 

per = −�0 (τ ) . (B.3) 

It is again emphasized that both τ and �0 (τ ) are (second-order, symmetric) tensor fields. The Gamma operator has a 

number of properties that can be found in e.g. Michel, Moulinec, & Suquet (2001) . 

Appendix C. On the mechanical isotropy of the generated microstructures 

In this appendix, we report the values of δiso for the microstructures considered in the present article. It is recalled that

δiso is defined in Section 3.4 and measures the deviation of the effective stiffness tensor from its isotropic projection. In 

other words, smaller values of δiso refer to “more elastically isotropic” microstructures. Note that the degree of linear elastic 

isotropy that is measured here is less stringent than the rotational invariance of the correlation functions, which defines a 

statistically isotropic microstructure. 

The values of δiso are reported in Table C.3 for the RSA microstructures, Table C.4 for the CRSA microstructures and

Table C.5 for the TGRF microstructures. We observe that in all cases, we obtain sufficiently isotropic microstructures, with 

the maximum deviation obtained for the TGRF unit cells and porosity c = 25% . 
Table C1 

Values of δiso for the RSA microstructures, for various values 

of the porosity c and pore aspect ratio ω. 

RSA ω = 0 . 2 ω = 0 . 4 ω = 1 

c = 5% 0 . 21% 0 . 12% 0 . 04% 

c = 15% 0 . 66% 0 . 60% 0 . 17% 

c = 25% 2 . 06% 1 . 76% 0 . 32% 

Table C2 

Values of δiso for the CRSA microstructures, for various val- 

ues of the porosity c and pore aspect ratio ω. For all mi- 

crostructures, η = 0 . 25 and ζ = 4 . 

CRSA ω = 0 . 2 ω = 0 . 4 ω = 1 

c = 5% 0 . 88% 0 . 40% 0 . 12% 

c = 15% 1 . 74% 1 . 11% 0 . 43% 

c = 25% 2 . 36% 1 . 28% 0 . 55% 

Table C3 

Values of δiso for the TGRF microstructures, for various val- 

ues of the porosity c and pore aspect ratio ω. 

TGRF ω = 0 . 2 ω = 0 . 4 ω = 1 

c = 5% 0 . 17% 0 . 12% 0 . 04% 

c = 15% 0 . 71% 0 . 60% 0 . 17% 

c = 25% 2 . 65% 1 . 76% 0 . 35% 
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