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Abstract

These notes put together a number of theoretical and numerical models and results obtained for
magnetically soft and hard magnetorheological elastomers, denoted as s-MREs and h-MREs, re-
spectively over the last five years in our group. We present in a unified manner both s- and
h-MREs. In particular, we regard MREs, in the general case, as magnetically dissipative nonlinear
elastic composite materials comprising a mechanically-soft, non-magnetic elastomeric matrix in
which mechanically-rigid, magnetically-dissipative particles are embedded isotropically and ran-
domly. The proposed incremental variational frameworks are general enough to deal with more
complex microstructures such as particle-chains or others that do not yet exist in the lab. More
importantly, we propose homogenization-guided, analytical, explicit models that are consistent as
one moves from the dissipative h-MREs to the purely energetic s-MREs. In parallel, we propose
numerical frameworks allowing to simulate a very wide variety of microstructures and boundary
value problems in magneto-mechanics.
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1. Introduction

By now a large body of research exists in the literature on magneto-active solids. There are
mainly two classes of magneto-active solids:

(i) mechanically-stiff magnetic materials made of permanents hard magnets (e.g., NdFeB in
polycrystal or powder form embedded in a stiff polymer or at very large volume fractions)
exhibiting significant magnetic dissipation or magnetically soft ferromagnets (e.g., Fe and
compounds of it) with negligible magnetic dissipation.

(ii) mechanically-soft polymer-based composite materials (e.g. with shear modulus less than 1
MPa) comprising the former magnetic metals in powder or micron-sized particle form.

The main difference between those two classes of magneto-active materials is the ability of the latter
soft polymeric ones to deform substantially under the application of a magnetic field. Usually in
the first class of mechanically-stiff magneto-active solids, one may reach magnetostrictive strains
ranging from a few to several thousands ppm (i.e., in the order of 10−6 − 10−3). By contrast, use
of magneto-active polymers also known as “magnetorheological elastomers” or MREs1 allows to
obtain fairly large effective magnetostrictive strains even as large as 0.4 − 0.5 (depending on the
compliance of the polymer), which is several orders of magnitude larger than those of metals or
stiff polymers.

In turn, the first class of magnetic materials exhibits superior magnetic properties (such as
initial magnetic permeability or susceptibility, magnetic saturation, magnetic coercivity and so on)
as compared to the corresponding soft polymer composites. The reason for this is fairly simple
and is related to the actual quantity of particles that can be embedded in the polymer retaining at
the same time its soft mechanical properties. In practice, most of mechanically-soft MREs contain
volume fractions of magnetizable particles ranging between 0-30vol%. Any further addition of
rigid particles in the polymer leads rapidly to significant material stiffening and thus to loss of its
interesting magnetostrictive capabilities.

The deformation mechanisms in those two classes of materials are entirely different and require
in general very different modeling approaches. While one can write down the same general concepts
and equations relating magnetics with mechanics, the details required to describe adequately these
two classes of materials are extremely different. The metallic materials deform under the appli-
cation of an externally applied magnetic field due to a complex motion, interaction, nucleation,
annihilation and reconfiguration of magnetic walls lying at the nanometer scale. Several nano-,
micro- and macroscopic theories have been proposed to describe those deformation mechanisms
over the last fifty years and will not be discussed in the present notes. In turn, MREs, which is the
main topic of the present note, deform due to rearrangement and (static/dynamic) reconfiguration
of the magnetic particles, which carry along with them the surrounding non-magnetic soft poly-
mer matrix. In this sense, the word magnetostriction in MREs serves to describe this collective
particle rearrangement leading to an effective (or average) deformation of the composite polymer.
Evidently, the magnetic particles themselves also deform due to magnetic domain wall motions at

1In the literature, one may find a number of equivalent names such as MAEs (magneto-active elastomers), MAPs
(magneto-active polymers), MREs (magnetorheological elastomers), MSEs (magneto-sensitive elastomers) and many
others. The word MREs was the first one, perhaps because these materials were first synthesized by material scientists
(Jolly et al., 1996; Ginder et al., 1999) that worked before on magnetorheological fluids, a close cousin to the present
mechanically-soft MREs.
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the lower nanometer scale. Nonetheless, those strains are orders of magnitude smaller than those
occurring at the larger scale of the polymer composite (several tens of microns all the way up to
millimeter scale) and thus are usually neglected to simplify the overall analysis.

While the above discussion focused on the material response, recent works, in the last decade,
have used and synthesized MREs in simple or more complex macroscopic shapes, such as beams,
films, spheres, cylinders, ellipsoids, trusses or even more fancier shapes mainly with the advent
of 3D-printing capabilities. The literature is too vast to include in this introductory section, but
interested readers may refer to numerous reviews on the subject in the literature (see for instance
Bastola and Hossain (2020) and Lucarini et al. (2022b)). Precisely, this manufacturing capability to
obtain complex geometrical, structural shapes made from MREs has led to their rapid development
and more recent use in high end biomedical and sensing applications. By contrast, the original
metallic magnetic materials are extremely difficult to shape (especially NdFeB or cobalt) since
they are very brittle and thus their use is constrained to larger devices or engines (such as electric
motors) where complex shaping is not needed at least up to now.

Having made this distinction, it is worth mentioning that in the literature, it is usually common
to mix the notions of a material and a structure into the combined word of meta-material. Even
so, whether those polymer composites are fabricated using magnetically soft particles, denoted
henceforth as s-MREs, or magnetically hard particles, denoted as h-MREs, they exhibit extremely
interesting coupled magneto-mechanical properties both at the material and structural level and
for that reason they are still under extensive investigation.

In these notes, we focus on the modeling of MREs both at the material and the structural
level. We present first the general finite strain theory on magnetically dissipative magneto-active
solids and focus on the modeling of isotropic (quasi)-incompressible MREs. Subsequently, those
material models are assessed by full three-dimensional representative volume element (RVE) finite
element (FE) periodic simulations. A special augmented potential energy is developed for the
results to be sensible. The developed models are based on homogenization theory and numerical
data but also comprise phenomenological parts. This last choice is done in order to obtain simple,
robust and above all explicit analytical material models for the MREs. These models may then
be implemented in general purpose finite element codes (such as ABAQUS (2017) or FEniCS).
Their simplicity allows to model complex two-dimensional and three-dimensional boundary value
problems, including “meta-material” (or more correctly meta-structural) response of MRE-based
structures, such as homogeneously or inhomogeneously magnetized beams or films.

2. Preliminary definitions in magneto-elasto-statics

In this section, we lay out some important definitions required for the development of general
finite strain models for MREs. We state at this point that the subsequent presentation of the
theory of MREs lies naturally at the domain of continuum mechanics and at scales that are that
of the particles and larger. With this, we make clear that the goal of the following quantities and
equations is to describe the response of MREs at a scale much larger (i.e., several micro-meters
and above) than that of the so-called magnetic domain walls, which naturally occur at a scale of
a few nano-meters. The reason for these approximations is two-fold. First, the main interest is to
provide simple and explicit constitutive laws for composite MRE materials at the macroscale (i.e.
millimeter and above) bringing from the lower scale the effect of magnetic particles embedded in a
soft polymer matrix. Second, the nucleation and evolution of domain walls usually occurs rather
fast and at the scale of the particles, which in turn strongly interact with each other. It is therefore
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evident that it is extremely difficult (if not practically impossible) to resolve the domain-wall scale
together with the particle interaction scale and at the same time recover a simple explicit model
that can serve to analyze real boundary value problems (BVPs). For these reasons, we choose to
describe the magnetic quantities in the particles in a rather continuum way, i.e., by assuming that
pointwise (i.e. at X) at each particle the magnetic quantities are described by continuum magnetic
vector variables that follow simple constitutive laws (albeit nonlinear and dissipative ones) without
however resorting to the resolution of the domain walls. It is noted that a gradient finite-strain
variational phase-field framework following the early works of James and Kinderlehrer (1993) and
DeSimone and James (2002) has been proposed recently by Keip and Sridhar (2018). In that
work, the authors managed to resolve domain wall evolution at the level of the particles and then
numerically resolve a small assembly of them in two-dimensions. They have shown qualitatively
and quantitatively similar responses with those obtained by ignoring those domain walls and simply
using local constitutive magnetic laws at the particle level. We thus follow the second option in
the present note.

Figure 1: (Left) Typical sketch of the reference configuration of a magneto-active solid of volume V0 and boundary
∂V0 (usually in the order of several mm-cm) embedded in an air domain, occupying a volume R3 \V0. (Right) Sketch
of a representative material unit-cell comprising usually a non-magnetic polymer matrix phase and mechanically-stiff
magnetizable particles with sizes ranging from 2− 50 µm.

2.1. Finite strain kinematics

For simplicity, we consider at this stage a deformable, magneto-active solid with volume V0 (V)
in its reference (current) configuration that is embedded in R3. The domain R3 \ V0 is in general
non-magnetizable and usually serves to denote the surrounding air (see Fig. 1). The magneto-
active solid may not necessarily be a homogeneous body but could comprise several magnetic (e.g.,
particles) or non-magnetic phases (e.g. polymer matrix). For simplicity, at this introductory stage
of the article, the reader could regard the body as homogeneous to avoid confusion for the various
definitions.

The boundary of the solid is assumed to be smooth and is designated by ∂V0 (∂V), while N
(n) denotes the unit normal on ∂V0 (∂V) in the reference (current) configuration (see Fig. 1). The
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deformation of the solid from the reference to current configuration is defined to be a continu-
ous, twice differentiable (except on the boundary/interfaces), one-to-one mapping y(X). Thus,
the position of any point X in the reference configuration is given by x = y(X) in the current
configuration. In turn, the mechanical displacement field u(X) relates the current position vector
to the reference so that x = X + u(X). The deformation gradient is then defined to be

F = Grad y(X) = I + Grad u(X), J = det F > 0, (1)

where I is the second-order identity tensor, whereas J > 0 imposes the impenetrability condition,
or simply positive volume condition. It is recalled that the Grad = ∂/∂X as well as that F is a
compatible two-point tensor, i.e., satisfies CurlF = 0.

After introducing the conjugate quantity to the deformation F, the first Piola-Kirchhoff stress
S, conservation and angular momentum lead to the pointwise equilibrium, symmetry and boundary
conditions

Div S = 0 in R3, SFT = FST , [[S]] ·N −T = 0 on ∂V0 \ ∂Vu0 , (2)

where ∂Vu0 and T denote the displacement Dirichlet part of the solid boundary and the mechanical
traction in the reference configuration. One may write the equivalent form of the equilibrium,
symmetry and boundary conditions in the current configuration by introducing the Cauchy stress
σ, such that

div σ = 0 in R3, σ = σT , [[σ]] · n− t = 0 on ∂V \ ∂Vu. (3)

Here, ∂Vu and t denote the displacement Dirichlet part of the solid boundary and the mechanical
traction in the current configuration, respectively. One may show using a push forward or pull-back
transformation that (Ogden, 1997)

σ =
1

J
SFT , or S = J σF−T . (4)

The above definitions are standard in continuum mechanics and will not be further analyzed.

2.2. Magnetostatics

Following the seminal works of Maxwell (1861,1865,1873), a set of equivalent balance laws may
be derived in the context of magnetism. For such derivations, one may refer to several textbooks or
thesis documents, such as the recent thesis manuscript of Mukherjee (2020). We proceed by briefly
recalling those laws and definitions. Traditionally, in the physics community and in the absence
of electric currents and charges, one may use three quantities to describe the magnetic state of a
solid in the current configuration:

• the magnetic field b,

• the h-field h,

• the magnetization m which is naturally zero in non-magnetic domains.

It is important to note, however, that those three quantities are not independent of each other.
They are related by the constitutive relation

b = µ0(h + m) or m =
1

µ0
b− h in V, (5)

where µ0 is the magnetic permeability of vaccuum, air or non-magnetic solids.
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Remark 1. In fact, the second expression in (5) is a definition of the magnetization vector in the
current volume V, which however is not defined on its boundary ∂V. By definition m = 0 in a non-
magnetic body. This implies that as a quantity is insufficient to describe the presence of magnetic
lines (in the sense of Maxwell) in the surrounding air or in a non-magnetic solid such as the polymer
matrix which is also of interest here. In these two last cases, one is left with the relation b = µ0h,
which implies–in the sense of a continuum medium–that b is linearly dependent on h and vice
versa via the constitutive parameter µ0. Henceforth, we will focus on the original Maxwell fields
b and h as independent variables that are related via linear and/or nonlinear constitutive laws,
while m will serve as a quantity that can be readily computed by equation (5), but instead will
not be considered as an “independent” variable itself. In fact, in Section 7.1 we show by example
that m may be regarded as an internal state variable in most of the cases.

2.2.1. Ampère’s law

Assumptions. The present study pertains to magneto-mechanical problems ignoring all electrical
effects. This suggests that, henceforth, we consider that any effects resulting from electric charges,
electric fields and varying electric displacements are negligible. Moreover, this implies that any
variations of magnetic fields should be sufficiently small such that ∂b/∂t is negligible. Thus, we
do not deal with high frequency effects in the present study. Moreover for further simplicity, we
assume that there exist no surface currents k throughout this work and there are no relativistic
effects in the matter.

Current configuration. In the general case of free volume currents, j, running across a surface
∂V in the current configuration, but in the absence of electric charges and time varying electric
displacements (i.e., ∂d/∂t) and surface currents (known as the Eddy current approximation),
Ampère’s law takes the following form (dropping for simplicity the explicit dependence on x):∮

C
h · d` =

∫
∂V

j · n dS. (6)

In this equation, C is a smooth arbitrary closed curve lying on the smooth closed surface ∂V, d` is
an infinitesimal line element with direction tangent to the curve C, and n is the outward normal
to ∂V. By assuming sufficient smoothness of h, use of the standard Stokes theorem leads to the
differential form of (6), which reads∫

∂V
curl h · n dS =

∫
∂V

j · n dS, (7)

where the operator curl is defined with respect to the deformed position x.
In order to retrieve seamlessly the boundary conditions along a given interface, one may gener-

alize this last result to the case of a surface ∂V containing a hypothetical line of discontinuity (an
argument that will be subsequently dropped) γ where the corresponding integrand curl h is not
defined. In that case, by use of the modified Stoke’s theorem (Eringen, 1967; Eringen and Maugin,
1990), the last equation may be rewritten as∫

∂V\γ
curl h · n dS +

∮
γ

[[h]] · d` =

∫
∂V\γ

j · n dS, (8)

where continuity of j is considered along the surface ∂V.
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These last integrals together with the arbitrary nature of the surface S and the localization
lemma lead readily to the pointwise differential equations and jump conditions (Eringen and Mau-
gin, 1990)

curl h = j in V, [[h]]× n = 0 on ∂V. (9)

In the absence of free currents, i.e., j = 0, Ampère’s law (9) reads

curl h = 0 in V, [[h]]× n = 0 on ∂V. (10)

The last relation also holds in the air domain which may extend to R3 \ V or in non-magnetic
domains enclosed in V. Moreover, this last form will be used in most of this study, while (9) has
been used in the study of Dorn et al. (2021) but is not included in the present notes.

Reference configuration. In an exactly similar fashion, one may rewrite the above laws in
the reference configuration. This is a necessary operation in the present work, since we deal with
finite strains and it is natural to use Lagrangian measures. Thus, in the general case of free volume
currents, J, running across a surface ∂V0 in the reference configuration and in the absence of surface
currents K), electric charges and time varying electric displacements (i.e., ∂D/∂t), Ampère’s law
takes the following form (using also the standard Stoke’s theorem):∮

C0

h(X) · Fd`0 =

∫
∂V0

j · JF−TN dS0 or∫
∂V0

Curl H ·N dS0 =

∫
∂V0

J ·N dS. (11)

Here, C0 is a smooth arbitrary closed curve lying on the smooth closed surface ∂V0, d`0 is an
infinitesimal line element with direction tangent to the curve C0, N is the outward normal to ∂V0

and the operator Curl is defined with respect to the undeformed position X. Moreover, we have
used the Lagrangian definitions

H = FT h, J = J F−1j, or h = F−T H, j = J−1 FJ, (12)

as well as the standard line and surface (i.e., Nahnson formula) transformations between the current
and reference configuration

d` = Fd`0, ndS = JF−TNdS0. (13)

Again considering a hypothetical line of discontinuity (an argument that will be subsequently
dropped) Γ where the integrand CurlH may not be defined, the second integral equation in (11)
can be written as ∫

∂V0\Γ
Curl H ·N dS0 +

∮
C\Γ

[[H]]×N d`0 =

∫
∂V0

J ·N dS. (14)

Given the arbitrariness of the surface ∂V0 and curves C0 and Γ, the above operations readily
lead by use of the localization lemma to the pointwise differential equations

Curl H = J in V0, [[H]]×N = 0 on ∂V0. (15)
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In the absence of free currents, i.e., J = 0, Ampère’s law (9) reads

Curl H = 0 in V0, [[H]]×N = 0 in ∂V0. (16)

The last relation also holds in the air domain which may extend to R3 \ V0 or in non-magnetic
domains enclosed in V0.

Definition 2 (Scalar potential). In the absence of free currents, i.e., when J = 0, one may define
a scalar potential ϕ(X) such that

H(X) = −Gradϕ(X) (17)

which implies
Curl(Gradϕ) = 0 in V0 [[ϕ]] = 0 in ∂V0.

This definition allows to satisfy identically relation (16)1, since the curl of a gradient of a scalar
field is identically zero. This definition is extremely useful since it allows to satisfy one of the two
Maxwell equations (see the second equation in the next section). This condition is similar to the
one in mechanics, where the deformation gradient is given in terms of the gradient of a displacement
vector field and in that case one satisfies identically the compatibility condition CurlF = 0.

It is noted here that one could define in a similar fashion a scalar potential in the current
configuration. Nonetheless, in the present work, all variables will be defined in the reference
configuration and thus such a definition is not of use. Furthermore, in a small strain setting the
reference and current configurations coincide and again such a distinction becomes inconsequential.

2.2.2. Absence of magnetic monopole - Faraday’s law

Current configuration. Under the same assumptions stated in the previous section and under
the hypothesis of the absence of magnetic monopole, the normal component of a sufficiently smooth
magnetic field b(x) integrated over a closed smooth surface ∂V vanishes identically, such that∫

∂V
b · n dS = 0. (18)

Use of the modified divergence theorem (Eringen, 1967) considering potential jumps across a dis-
continuous surface s leads to ∫

V\s
divb ∂V +

∫
s

[[b]] · n dS = 0. (19)

Using the localization lemma and the arbitrariness of the volume V and the surfaces ∂V and s, we
obtain the general pointwise balance equations and boundary conditions

divb = 0 in V, [[b]] · n = 0 on ∂V. (20)

Again, this last relation also holds in the air domain which may extend to R3\V or in non-magnetic
domains enclosed in V.
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Reference configuration. Similarly, one may obtain the corresponding balance laws in the
reference configuration by using the transformations (13) in (18) and the modified divergence
theorem to write∫

∂V0
b · JF−TN dS0 = 0 ⇒

∫
∂V0\Σ

DivB ∂V0 +

∫
Σ

[[B]] ·N dS0 = 0, (21)

Here, again, ∂V0 is a closed surface in the undeformed configuration, Σ a discontinuous surface,
while the operator Div is defined with respect to the undeformed position X. Moreover, we have
used the definitions

B = J F−1b, or b = J−1 FB. (22)

Using again the fundamental lemma of the variational calculus for the arbitrariness of the V0 and
∂V0, we obtain the pointwise balance equations and boundary conditions

DivB = 0 in V0, [[B]] ·N = 0 in ∂V0. (23)

Again, this last relation also holds in the air domain which may extend to R3\V0 or in non-magnetic
domains enclosed in V0.

Definition 3 (Vector potential). One may always define a vector potential A(X) such that

B(X) = CurlA(X), (24)

which implies
Div(CurlA) = 0 in V0, [[A]]×N = 0 in ∂V0.

This definition allows to satisfy identically relation (23)1, since the divergence of a curl of a vector
field is identically zero. This condition is similar to the one in mechanics, where the stress field may
be written in terms of an Airy stress function thus allowing to satisfy identically the equilibrium
equations DivS = 0 (in the absence of body forces and inertial terms).

Again, it is noted here that one could define in a similar fashion a vector potential in the
current configuration. Nonetheless, in the present work, all variables will be defined in the reference
configuration and thus such a definition is not of use. In turn, in a small strain setting the reference
and current configurations coincide and such a distinction becomes inconsequential.

For simplicity, we can summarize the main transformation rules that will be extensively used
in the following between Eulerian and Lagrangian quantities as

σ =
1

J
SFT , b =

1

J
FB and h = F−TH. (25)

3. Thermodynamics and general variational formulations

In this section, we present a general incremental thermodynamically consistent variational
framework allowing to describe in a general manner dissipative and nonlinear magnetoelastic solids.
The presentation that follows is carried out such that stationarity of the variational formulations
leads to the previously defined balance laws and boundary conditions. Moreover, one of the pilars
of the proposed framework is the Generalized Standard Materials (GSM) approach (Halphen and
Son Nguyen, 1975). Therein, we assume that there exists an energy density W and a dissipation
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potential D that depend respectively on the chosen independent variables and their rates. The
subsequent formulations include therefore the balance laws and Maxwell equations, the boundary
conditions and the magneto-mechanical constitutive material laws. This is, in our opinion, the
most elegant and concise manner to describe the magneto-mechanical solids of interest here. On
the contrary, they are not absolutely necessary in the sense that the set of derived equations are
those used in practice to carry out the simulations. Note, however, that writing the problem in a
minimum energy principle allows in some cases of interest to obtain rigorous results in the context
of instabilities.

Remark 4. Henceforth, we propose two equivalent formulations the F −H and the F − B one,
and as their name states clearly the first considers the magnetic scalar potential and the second
the magnetic vector potential as independent magnetic variables, respectively. An alternative
formulation may use an additional variable, m (Danas et al., 2012; Danas and Triantafyllidis,
2014). Such formulation still is equivalent to the first two (see for example the appendix in Danas
(2017), or Bustamante et al. (2008) and more recently Sharma and Saxena (2020)). Nevertheless,
m is not a sufficiently general variable but instead is defined via the equation (5). The main
reason for this is that one cannot use only m and apply magnetic boundary conditions, since it is
not defined at the boundary (or at interfaces) as opposed to h or b (see discussion in Section 3).
Even so, in some problems involving magnetic domains and permanently magnetized solids that
the state of magnetization is given in terms of a known amplitude and a direction locally, it might
be advantageous to work directly with m to obtain analytical and numerical solutions (James and
Kinderlehrer, 1993; DeSimone and James, 2002; Keip and Sridhar, 2018). In the present case,
however, since we are interested in solving general boundary value problems, one must retain
either ϕ or A to analyze the magnetic fields in non-magnetic domains (e.g., matrix or air), where
the magnetization is null. Thus the addition of m does not offer any clear advantage, instead it
requires additional numerical approximations (such as static condensation in order to deal with
jumps across interfaces).

3.1. Scalar potential-based F-H formulation

In this formulation, we consider the mechanical deformation u and the scalar magnetic potential
ϕ to be the independent primary variables along with a set of internal variables ξ 2. For this to be
valid, we need to assume also that we have no free currents, i.e., J = 0. The case of free currents
can only be considered in the F−B setting presented in the following section.

Following the statements in Section 2.2, one may define the rate of the potential energy stored
in the system, shown in Fig. 1, as

ṖH =
d

dt

∫
R3

W H(C,H, ξ) dV0 −
∫
∂V0\∂Vu

0

T · u̇ dS0. (26)

Here, W H(C,H, ξ) is the local potential energy density, where C = FTF is the right Cauchy-Green
tensor and T is the mechanical traction. The operators ˙(�) and d/dt in (26) denote the material
time derivative. Notice that the local energy density W H(F,H, ξ) is non-zero both inside and
outside V0, which is typical in the magneto-mechanical formulation (Kankanala and Triantafyllidis,

2For the moment, we keep ξ general and a more precise choice will be done further below. This choice depends
on the dissipative mechanisms that are modeled. For instance viscous strains and/or magnetic dissipation.
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2004). Nonetheless, for (26) to be bounded, the energy W H must vanish as |X| → ∞, which is
a realistic condition. In practice, in realistic and numerical boundary value problems, we always
analyze finite domains that are subsets of R3. Those domains are sufficiently large allowing for the
magnetic fields to reach an approximately zero value at their external boundary. More discussion
about this point will be carried out further below.

The dissipation potential D associated with the solid is also given in terms of the local dissi-
pation potential D, such that

D =

∫
V0
D(ξ̇;C,H, ξ) dV0. (27)

Notice that the dissipation is only considered inside the solid domains, whereas it vanishes identi-
cally for all X ∈ R3 \ V0. In addition, it is a principal function of the rate of the internal variable
ξ̇, while the use of C,H and ξ indicates mainly a history dependence.

With the above definitions in place, we propose an incremental variational principle following
the seminal works of Onsager (1931a,b), such that

Π̇H = inf
u̇∈Ũ

sup
ϕ̇∈G̃

inf
ξ̇

[
ṖH + D

]
. (28)

The admissible sets for u̇ and ϕ̇ are given by

Ũ ≡
{

u̇(X) :Ḟ(X) = Grad u̇(X) ∀ X ∈ R3,

π(u̇(X)) = π(u̇(X)) ∀ X ∈ ∂Vu0
}

(29)

and

G̃ ≡
{
ϕ̇(X) :Ḣ(X) = −Grad ϕ̇(X) ∀ X ∈ R3,

ϕ̇(X) = ϕ̇(X) ∀ X ∈ ∂Vϕ∞
}
, (30)

respectively. The symbol π in (29) denotes a projection operator that enables applying the con-
straints only on certain components on u̇ for all X on the domain boundary ∂Vu0 , where the
displacement is constrained to vary with a reference rate u̇. Similarly, the boundary where the
magnetic potential ϕ varies according to a given rate ϕ̇ is denoted as ∂Vϕ∞. Since the magnetic
fields are typically applied at a distance (and usually far away) from the MRE sample, we consider
∂Vϕ∞ to be a boundary surface enclosing the solid’s boundary ∂V0. This particular consideration,
of course, does not affect the generality of the variational principle (28) and different boundary
conditions on ϕ may be imposed.

The stationarity conditions for Π̇H along with the arbitrariness of the considered volume element
in V0 leads to the local governing equations and the boundary conditions in this scalar potential
formulation. Thus, straightforward algebraic manipulations (see Kankanala and Triantafyllidis
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(2004) or Bustamante et al. (2008) for instance) leads to

Div S = 0 in R3, S = 2F
∂W H

∂C
, [[S]] ·N −T = 0 on ∂V0 \ ∂Vu0 , (31)

Div B = 0 in R3, B = −∂W
H

∂H
, [[B]] ·N = 0 on ∂V0, (32)

∂W H

∂ξ
+
∂D

∂ξ̇
= 0 for all X ∈ V0, with Br =

∂D

∂ξ̇
= −∂W

H

∂ξ
. (33)

Here, Br is the work conjugate to the corresponding internal variable ξ. We see thus that the
stationarity of Π̇H leads to the field balance equations and boundary conditions described in Sec-
tion ??. In addition, it provides via the definition of the energy density W H, the corresponding
constitutive relations. Finally, the variational principle also leads to the GSM relation (33)1, which
provides, in fact, the local evolution equation for the internal variable ξ. Notice that unlike the
primary variables u and ϕ, the internal variable ξ does not need to satisfy any differential or
boundary constraints. Moreover, the evolution equation (33)1 only holds in the MRE domain, i.e.,
for all X ∈ V0.

Entropy imbalance and constraint on D(ξ̇): The local form of the entropy imbalance equation,
also known as the Clausius-Duhem inequality reads for the F−H model

S : Ḟ−B · Ḣ− Ẇ H(C,H, ξ) ≥ 0. (34)

Expanding the derivative Ẇ H followed by substitutions of the constitutive relations (31)1, (32)1

and (33)1 into (34), we obtain
∂D

∂ξ̇
· ξ̇ ≥ 0, (35)

which is typically referred as the dissipation inequality. Notably, any function D(ξ̇;C,H, ξ) that
is convex in ξ̇ satisfies automatically the dissipation inequality, thus ensuring positive dissipation
during any loading/unloading operation.

3.2. Vector potential-based F-B formulation

In this section, we provide a dual formulation (under certain conditions) to the previous F−H
one. Specifically, we derive the local balance laws and constitutive relations for an equivalent dual
F − B-based formulation. Notice that, the B field is divergence-free and hence is now expressed
in terms of a vector potential A, as defined in (24). In this formulation, we consider u and A to
be the primary variables, whereas the internal variable remains the same, i.e., ξ.

The rate of total potential energy is then given by

ṖB =
d

dt

∫
R3

W B(C,B, ξ) dV0 −
∫
∂V0

T · u̇ dS0 (36)

with

W B(C,B, ξ) = sup
H

[
W H(C,H, ξ) + H ·B

]
, (37)

which is the partial Legendre-Fenchel transform of W H(C,H, ξ) with respect to H (Bustamante
et al., 2008). In turn, the dissipation potential, D , is defined only in terms of the rate of the internal
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variable ξ̇ from equation (27) and thus is identical to that introduced in the F −H formulation.
Thus, the minimization variational principle in terms of ṖB and D now reads

Π̇B = inf
u̇∈Ũ

inf
Ȧ∈B̃

inf
ξ̇

[
ṖB + D

]
, (38)

where the admissible set Ũ for the rate u̇ is given by (29) and that for Ȧ reads3

B̃ ≡
{

Ȧ(X) : Ḃ(X) = Curl Ȧ(X) ∀ X ∈ R3, Ȧ(X) = Ȧ(X) ∀ X ∈ ∂VA∞
}
, (39)

where the specific rate Ȧ is considered on the boundary ∂VA∞ that encloses the MRE solid boundary
∂V0. Note further that contrary to (26) which is a saddle point stationary principle, the F − B
potential (36) is a purely minimization principle.

In this regard, minimization of Π̇B with respect to the rates u̇, Ȧ and ξ̇ leads to the local
balance laws, constitutive relations along with the boundary conditions, so that

Div S = 0 in R3, S = 2F
∂W B

∂C
, [[S]] ·N −T = 0 on ∂V0 \ ∂Vu0 , (40)

Curl H = 0 in R3, H =
∂W B

∂B
, N × [[H]] = 0 on ∂V0, (41)

∂W B

∂ξ
+
∂D

∂ξ̇
= 0 for all X ∈ V0, with Br =

∂D

∂ξ̇
= −∂W

B

∂ξ
. (42)

Notice that (40) and (42) remain identical to (31) and (33), respectively, with the only difference
being the replacement of W H with W B. The minimization of Π̇B with respect to Ȧ yields the local
balance law (41)1, constitutive relation (41)2 and the interface/boundary condition (41)3 on ∂V0.

The F −B version of the local Clausius-Duhem inequality can be readily obtained by substi-
tuting (37) into (34). In turn, the dissipation inequality can be derived mutatis mutandis from the
F−H case. In fact, the final form of the dissipation inequality remains identical to (35).

Remark 5. The above potential energy may be modified in a straighforward manner to include
the Eddy current approximation and free volume currents J, such that

ṖB =
d

dt

∫
R3

W B(C,B, ξ) dV0 −
∫
∂V0

T · u̇ dS0 −
∫
V0

J · Ȧ dV0. (43)

Then the only equation changing in the local balance laws is (41)1, which becomes Curl H = J in
V0. The free volume current is effectively a body force term in domains that the magnetic vector
potential Ȧ 6= 0.

3The numerical solution for the three-dimensional vector potential-based BVPs requires an additional constraint
on A, namely, Div A = 0, commonly referred as the Coulomb gauge. The latter is not necessary in a two-dimensional
problem, whereas the three dimensional implementation is discussed further below.
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4. Modeling of isotropic hard-MREs

In this section, we lay out the constitutive laws necessary to describe the response of isotropic
incompressible h-MREs. The procedure is of course general, however, the choice of functions
pertains only to the specific class of materials analyzed here.

Before we proceed to specific constitutive propositions, we discuss first the constraints that
need to be imposed on the energetic and dissipation potentials, W H or W B and D, respectively,
in order to ensure (a) an even magneto-mechanical coupling, (b) material frame indifference, (c)
isotropic material symmetry and (d) positive dissipation. For conciseness, we will use the symbol

G =

{
H, if F−H formulation

B, if F−B formulation
(44)

to denote compactly the two formulations, wherever that is possible.

4.1. Internal variable for magnetic dissipation

A thermodynamically consistent model for any dissipative material may be constructed through
the definition of a finite number of internal variables, which reflect the irreversible processes the
material undergoes under external loads. In this regard, one of the principal differences between
h-MREs and s-MREs is the underlying magnetic dissipation of the filler particles (e.g. NdFeB) in
the former. Due to the finite strains and the magneto-mechanical coupling, upon cyclic magnetic
loading, the response of the h-MRE composite exhibits both magnetic and mechanical (due to
magneto-mechanical coupling) hysteresis.

Current 
configuration

Intermediate 
configuration

Reference 
configuration

Figure 2: Definition of the reference, intermediate and current configurations of volume V0, Vi and V, respectively,
along with the different field variables defined therein.

In the work of Mukherjee et al. (2021), it was shown via extensive assessment with numerical
RVE simulations that only one internal magnetic vectorial variable suffices to describe both the
magnetic and the mechanical (due to coupling) dissipation in the h-MRE in the case of moderately
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soft to hard polymer matrices. This is a mere constitutive choice and does not constitute a unique
way to address this coupled dissipative effect4.

Specifically, we consider that the internal variable is a vector,

ξ ≡Hr ∈ R3, (45)

which lies in the stretch-free, intermediate configuration Vi, as shown in Fig. 2. This internal
variable is a remanent H-like vectorial quantity that will be shown in practice to be strongly
linked to the magnetization of the MRE. The central assumption behind this “choice” is that the
average magnetization of the composite and thus magnetic dissipation is affected by macroscopic
rotations of the magnetization but is independent of macroscopic stretches in the specific case of
incompressible MREs. A more detailed discussion of the consequences of this assumption will be
carried out in Section 7 in parallel with the presentation of specific results.

The range of validity of this assumption depends mainly on the shear modulus of the matrix
phase, given that the particles are almost mechanically rigid and thus do not deform but may rotate,
whereas the bulk modulus of the matrix phase is very large giving rise to a quasi-incompressible
macroscopic response of the h-MRE. In fact, the shear modulus of the matrix controls the capability
of the magnetized particles to rotate upon application of a magnetic load that is non-aligned with
their magnetization vector. In a soft polymeric matrix, the particles rotate mechanically but also
evolve their magnetic state via dissipative mechanisms (such as domain wall motions) in order to
align their magnetization with the externally applied magnetic field (Kalina et al., 2017). The softer
the matrix the more the rotations prevail over the magnetic dissipation mechanisms. By contrast,
when the shear modulus of the matrix has a moderate value (e.g. greater than ∼ 100 kPa), local
particle rotations are much less pronounced (provided that the particles are not very elongated
either) and dissipative processes dominate the response of the h-MRE, while any rotations of
the magnetized particles follow approximately the overall macroscopic rotation. This last case
corresponds well to actual, fabricated h-MREs in the literature (see for instance Zhao et al. (2019),
Ren et al. (2019), Garcia-Gonzalez et al. (2023)).

In view of this discussion, use of the standard polar decomposition F = RU directly implies
that the reference (in V0) and current (in V) remanent fields, Hr and hr, respectively are functions
of Hr and are given by

hr = RHr, Hr = UHr. (46)

whereby the following standard decompositions also hold (Mukherjee and Danas, 2019)

h = he + hr, H = He + Hr. (47)

Here, h and he are the Eulerian total and energetic h-fields, while H and He are the corresponding
Lagrangian ones. The introduction of Hr in the intermediate configuration Vi further implies that
the Eulerian hr is stretch-free function of R and Hr, while the Lagrangian Hr is a function of U
and Hr.

Obviously, the propositions (46) remain open to further refinements if required by the problem
at hand. Nonetheless, we will show in the results presented in Section 7 that the single internal

4Works by McMeeking and Landis (2005); McMeeking et al. (2007); Rosato and Miehe (2014) in the context
of ferroelectricity, a somewhat similar problem, use both mechanical and polarization internal variables that are
eventually related via additional constitutive relations.
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variable Hr is sufficient to achieve very good agreement with the corresponding numerical periodic
cell simulations under a wide range of cyclic and non-aligned loading conditions. Addition of
compressibility in the matrix is expected to change this feature and in that case extensions of the
aforementioned choices shall be necessary. Finally, with this observation, the standard materials
relations (33) and (42) are also defined in Vi instead of V0. In this view, the conjugate variable
to Hr will be denoted for consistency with Br and is fairly similar to the backstress in purely
mechanical elasto-plastic systems. The relevant GSM relations (33) and and (42) then become

∂W G

∂Hr +
∂D

∂Ḣr = 0 for all X ∈ V0, with Br =
∂D

∂Ḣr = −∂W
G

∂Hr , (48)

where again G = {H,B} has been introduced in (44).

Remark 6. The recent work of Mukherjee and Danas (2022) denotes the internal variable by
ξ ≡ Hr. Given the fact that the dissipation potential D is identical in both the F −H and the
F−B formulations, a choice of a neutral notation was done there to avoid confusion. Nonetheless,
we maintain in this manuscript the original Hr one, since in future works ξ may be used to denote
additional internal variables as is the case of viscoelasticity (Rambausek et al., 2022; Lucarini et al.,
2022a).

4.2. General properties of the free energy density and the dissipation potential

We recall first that material objectivity and symmetry conditions are well-known for s-MREs
(Kankanala and Triantafyllidis, 2004; Dorfmann and Ogden, 2004). However, as shown in Fig. 2,
the present models for h-MREs introduce a remanent internal variable that is insensitive to the
stretch U, leading to non-familiar magneto-mechanical invariants and rates. Hence, this section
focuses on stating explicitly all the aforementioned constraints in the context of isotropic h-MREs.
The proposed invariants may then be simplified to attain those that remain also valid for s-MREs.

Even magneto-mechanical coupling. The magneto-mechanical energy density W G and dissipa-
tion potential D must be exactly the same when both G and Hr change simultaneously sign. This
condition reads

W G(C,−G,−Hr) = W G(C,G,Hr), D(−Ḣr
) = D(Ḣr

), (49)

and ensures a symmetric, butterfly-type magnetostriction response for the h-MRE, as will be
discussed in the results Section 7.

Material frame indifference. This physical property imposes that W and D must remain in-
variant under a change of observer. A change of observer leads to the new current position vector
x∗ = c + Qx, where c is a rigid displacement field and Q is a proper rotation matrix (Gurtin,
1982, p. 139-142). Since the arguments of W G and D, i.e. C,G,Hr and Ḣr

are unaffected by such
a transform, the requirement of material frame indifference imposes no further restrictions on W G

and D. This observation is in agreement with the objectivity conditions used in mechanical visco-
plasticity, where the intermediate strain-like variables remain unaffected by a change of observer
(Dashner, 1993; Kumar and Lopez-Pamies, 2016).

Material symmetry. For isotropic MREs, W G and D must remain invariant under a change in
the reference configuration via a constant matrix K ∈ Orth+. The material symmetry conditions
on the potentials thus read

W G(KTCK,KTG,KTHr) = W (C,G,Hr),

D(KT Ḣr
; KTCK,KTG,KTHr) = D(Ḣr

;C,G,Hr). (50)
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Here, we note that the intermediate Hr transforms as Hr → KTHr, which follows from (46)
and the transformation U → KTUK under a change in the reference configuration. We further
remark that in mechanical visco-plasticity the change in the reference configuration also modifies
the intermediate plastic internal variables (Dashner, 1993; Bennett et al., 2016).

4.3. The isotropic magneto-mechanical invariants for h-MREs

A straightforward and elegant way to satisfy the conditions of even magneto-mechanical cou-
pling, isotropic material symmetry and frame indifference is to express the energy density and
dissipation in terms of properly chosen isotropic invariants. First, we define the general set of
available invariants given the corresponding arguments C, G and Hr. Subsequently, a reduced
number of them will be chosen to model the h-MREs. The choice is mainly motivated by corre-
sponding numerical RVE simulations of two-phase h-MRE composites and does not constitute a
rigorous result but merely an efficient homogenization-guided strategy that allows to maintain the
number of invariants small and the model entirely explicit.

Mechanical invariants.

I1 = tr(C), I2 = tr(C)2 − tr(C2), I3 = J2 = detC = 1, (51)

Magneto-mechanical invariants in F−H formulation.

IH4 = H ·H, IHHr4 = H · C1/2Hr, IHr4 = Hr · CHr

IH5 = H · C−1H, IHHr5 = H · C−1/2Hr, IHr5 = Hr ·Hr.

IH6 = H · CH, IHHr6 = H · C3/2Hr, IHr6 = Hr · C2Hr. (52)

Magneto-mechanical invariants in F−B formulation.

IB4 = B ·B, IBHr4 = B · C−1/2Hr, IHr4 = Hr · CHr

IB5 = B · CB, IBHr5 = B · C1/2Hr, IHr5 = Hr ·Hr.

IB6 = B · C2B, IBHr6 = B · C3/2Hr IHr6 = Hr · C2Hr. (53)

The energetic invariants, i.e., those that do not involve Hr, are the standard ones employed
usually in the context of s-MREs (Kankanala and Triantafyllidis, 2004; Ponte Castañeda and
Galipeau, 2011; Danas et al., 2012; Danas, 2017; Mukherjee et al., 2020). The remaining invariants
are mixed or purely remanent ones, and are necessary in the modeling of h-MREs. We note here
that the use of the rational exponents in the mixed invariants are chosen in order to allow the
proper amplitude of coupling. Moreover, it is emphasized that Hr has the same units as the h-
field and thus proper addition of µ0 is required in the final energy expressions. Finally, in order
to satisfy the invariance of the dissipation potential, we additionally employ the Euclidean norm

|Ḣr| =
√
Ḣr · Ḣr

as an invariant of Ḣr
.

We further note that the “uncoupled” I5-type invariants are unaffected by mechanical defor-
mation when a certain Eulerian magnetic field is independently controlled whereas the I4 do vary
in this case (see relevant discussion in Danas (2017)).

18



4.4. Form of energy densities

We now express the energy densities associated with an incompressible h-MRE in terms of
these invariants. In particular, both W H and W B are considered to be the sum of three distinct
energy densities, namely, the purely mechanical, purely magnetic and coupling free energy density,
such that

W H(C,H,Hr) = ρ0Ψmech(I1) + ρ0ΨH
mag(I

H
5 , I

HHr
5 , IHr5 )+

+ ρ0ΨH
couple(I

HHr
4 , IHr4 , IHHr5 , IHr5 )− µ0

2
IH5 (54)

and

W B(C,B,Hr) = ρ0Ψmech(I1) + ρ0ΨB
mag(I

B
5 , I

BHr
5 , IHr5 )

+ ρ0ΨB
couple(I

Hr
4 , IBHr5 , IHr5 , IBHr6 , IHr6 ) +

1

2µ0
IB5 . (55)

We will show later in this section that W B is an exact dual of W H in the sense defined in (36)2. For
this to be possible, one should have fairly simple expressions that allow for an analytical Legendre-
Fenchel transform. That will be the case here but it is not always possible, as we will show in the
case of purely energetic s-MREs in Section 5.

In both expressions, ρ0 is the reference density of the solid, while the last terms µ0I
H
5/2 in (54)

and IB5/2µ0 in (55) represent the energy associated with free space with µ0 being the magnetic
permeability in vacuum or in non-magnetic solids such as the polymer matrix phase.

Remark 7. In absence of any magnetic material, ΨG
mag = ΨG

couple = 0, however the energy density
W H or W B does not vanish. Instead the presence of the last term in (54) or (55) allows the magnetic
fields to exist in the vacuum or in non-magnetic materials, such as the matrix phase. These terms
are in general necessary even if one works with a magnetization based formulation. In formulations
that these terms are omitted, the effect of the surrounding space or neighboring non-magnetic
materials are in general not taken into account. This, however, is primordial in the present case of
the modeling of particle-filled MREs, since these terms allow to retain the long-range interactions
between the particles. Such interactions in nonlinear materials are in general non-trivial and cannot
be fully described by simpler particle-particle (nearest neighbors) dipole-bases models.

The introduction of such an incompressible material model necessitates the modification of the
constitutive relations (31)2 and (40)2 for the total stress S, such that

S = 2F
∂W G

∂C
+ pF−T , (56)

where the superscript G refers the notation introduced in (44) and p is the Lagrange multiplier
associated with the incompressibility constraint J = 1. In practice, p adds on to the local (point
wise) number of unknowns to be solved after optimization of the variational principle.

Remark 8. We note that the quasi-incompressible equivalents of the proposed incompressible
models are often useful in the numerical computations. Thus, we extend the proposed F−H and
F−B-based MRE models in a rather ad-hoc way so that the energy densities read

W H
comp(C,H,Hr) = ρ0Ψ

comp
mech(I1, J) + ρ0ΨH

mag(I
H
5 , I

HHr
5 , IHr5 )

+ ρ0ΨH
couple(I

HHr
4 , IHr4 , IHHr5 , IHr5 )− µ0

2
JIH5 (57)
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and

W B
comp(C,H,Hr) = ρ0Ψ

comp
mech(I1, J) + ρ0ΨB

mag(I
B
5 , I

BHr
5 , IHr5 )

+ ρ0ΨB
couple(I

Hr
4 , IBHr5 , IHr5 , IBHr6 ) +

IB5
2µ0J

, (58)

respectively. Note that the proposed quasi-incompressible energy functions are not meant to be
used for compressible MREs, since the proposed expressions do not take into account any coupling
between volumetric deformations and magnetic fields. Such coupling requires an entirely inde-
pendent analysis (Gebhart and Wallmersperger, 2022a,b) and more importantly should reflect a
realizable compressible MRE. Currently, most MREs existing in literature are fairly incompressible
except earlier and more recent studies on MRE foams (Diguet et al., 2021). Nonetheless, in those
cases, taking into account the precise microstructure is of essence. Such studies are in progress and
will be presented elsewhere in the future.

4.5. The mechanical energy density

The purely mechanical free energy density ρ0Ψmech is the same for both formulations and cor-
responds to the analytical homogenization estimate by Lopez-Pamies et al. (2013) for a two-phase
composite made of an incompressible nonlinear elastic matrix comprising isotropic distributions of
rigid-particles, such that

Ψmech(I1; c) = (1− c)Ψm,mech(I1), I1 =
I1 − 3

(1− c)7/2
+ 3, (59)

where c is the particle volume fraction and Ψm,mech is the free energy density of the matrix. Notably,
the homogenization estimate (59) holds for any I1-based incompressible rigid-particle–matrix com-
posite. Thus, the choice for the matrix constitutive law remains versatile in the present modeling
framework. Evidently, in the limit of c = 0, the homogenized energy recovers that of the matrix
phase, i.e., Ψmech(I1, 0) = Ψm,mech(I1). By contrast, Ψmech(I1, 1) = +∞ when c = 1, hence, recov-
ering the energy of a rigid material. This part may be replaced readily by any other mechanical
estimate, homogenization-based or phenomenological, that may be required.

An ad-hoc modification of the above incompressible energy allows to obtain a quasi-incompressible
counterpart that proves useful in numerical computations. In particular, the term Ψ

comp
mech(I1, J) in

(57) and (58), may be written as

ρ0Ψ
comp
mech(I1, J) = (1− c)ρ0Ψm,mech(Icomp1 ) +

G′m
2(1− c)6

(J − 1)2,

with Icomp1 =
I1 − 3− 2 lnJ

(1− c)7/2
+ 3. (60)

In this expression, we typically set the Lamé parameter G′m ≥ 200Gm, which ensures a quasi-
incompressible response with J ≈ 1.

4.6. The magnetic and coupled energy densities

Next, the magnetic and coupling free energy functions along with the dissipation potential are
proposed. Special care is taken in proposing these functions so that the magnetization response
yields several limiting cases, especially, in the limit of small primary and remanent magnetic fields.
In the following, we provide these functions without elaborating on their individual significance.
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Table 1: Inverse saturation function choices for the remanent potential

Function name fp(x)

Inverse hypergeo-
metric function

−[log(1− x) + x]

Tangent function − 4

π2
log
[
cos
(π

2
x
)]

Arctanh function −
[
(1− x) tanh−1(x)− log(x+ 1)

]
Inverse Langevin
function (approx.)

1

3

(
−x3

3 + x2 −
(
0.0571x2 − 0.0093

)
cos(3.5x)

−x− log(1− x) + 0.0327x sin(3.5x)− 0.0093
)

4.6.1. F-H expressions for h-MREs.

The pure magnetic free energy is expressed in terms of the I5-based invariants, so that

ρ0ΨH
mag(I

H
5 , I

HHr
5 , IHr5 ) =− µ0

2
χeIH5 + µ0(1 + χe)IHHr5 +

µ0

2

(
1− c

3c

)
IHr5

+
µ0

c

(ms)2

χrp
fp

(√
IHr5

ms

)
. (61)

Here χrp is the remanent susceptibility of the underlying magnetic particle, whereas the “effective”
parameters χe and ms for the composite are given in terms of the particle magnetic properties and
its volume fraction c as

χe =
3cχep

3 + (1− c)χep
, ms = c ms

p

(
1 + χep
1 + χe

)
, (62)

where χep and ms
p are the particle energetic susceptibility and saturation magnetization (a graphic

explanation of these parameters is provided later in the context of Fig. 3). Moreover, fp(x) is
a nonlinear function that leads to a saturation-type magnetization behavior. Additionally, fp(x)
must satisfy the properties such that (i) it is smooth and at least twice differentiable for all
0 ≤ x < 1, (ii) f ′p(x) leading to an inverse saturation (sigmoid) function that tends to +∞ in the
limit of x → 1 and (iii) the leading order Taylor series expansion of fp(x) around x = 0 goes as
x2. Of course, the specific choices for fp(x) depends on the saturation response of the (hard/soft)
magnetic particles. A set of representative choices for such hard magnetic particles are provided
in Table 1.

Finally, the coupling free energy ΨH
couple is proposed in terms of both, the I4 and I5-based

invariants as defined in (52), so that

ρ0ΨH
couple(I

HHr
4 , IHr4 , IHHr5 , IHr5 ) = c β(c)µ0

[(
IHr4 − IHr5

)
− 2χe

(
IHHr4 − IHHr5

)]
(63)

with
β(c) = 19.0c2 − 10.4c+ 1.71. (64)

21



Figure 3: (a) Magnetization response under applied uniaxial cyclic h-field h = h1e1. Both, ideal (χep = 0) and actual
(χep > 0) hysteresis loops are shown along with the slopes of the m − h response before and after switching. (b)
Magnetization responses for finite and zero coercivity leading to, respectively, hysteretic and energetic magnetization
responses. (Taken partly from Mukherjee and Danas (2022)).

Notice that the I4-type “coupling” invariants only appear in the coupling free energy ΨH
couple,

whereas, the purely magnetic free energy (61) is only a function of the “pure magnetic” or “decou-
pled” I5-type invariants. Moreover, the coupling parameter β(c) in (63) may be further calibrated
against experimental data or numerical homogenization estimates. In this study, we will use the
expression (64) as obtained by direct calibration with corresponding FE simulations in Section 7.1,
and thus it is valid for c ≤ 0.3. We also note the simple linear dependence on the invariants of the
coupled energy density in (63). This will prove extremely useful in obtaining a dual energy density
for the F−B model in the following.

4.6.2. F-B expressions for h-MREs.

The proposed W H in (54) along with the invariants in (52) lead to a strictly concave energy
density function in terms of H, i.e., for a given C and Hr, W H is a strictly concave function of
H. Note that the remaining invariants are functions of the internal variable Hr, which remain
exactly the same for the dual F−B version we describe here. Consequently, in order to obtain the
equivalent, dual F−B energy density, we seek for a closed form partial Legendre-Fenchel transform
of W H following (36)2. Straightforward algebraic manipulations lead to the expression for W B in
(55).

More specifically, the mechanical free energy Ψmech in (55) remains identical to (59), whereas
the transformed magnetic free energy ΨB

mag(I
B
5 , I

BHr
5 , IHr5 ) becomes

ρ0ΨB
mag(I

B
5 , I

BHr
5 , IHr5 ) =− 1

2µ0

χe

1 + χe
IB5 + IBHr5 +

µ0

2

(
χe +

1 + 2c

3c

)
IHr5

+
µ0

c

(ms)2

χrp
fp

(√
IHr5

ms

)
, (65)
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where all the model parameters along with the function fp(x) remain identical to their respective
definitions for the F−H model presented earlier. Finally, the coupling free energy reads

ρ0ΨB
couple(I

Hr
4 , IBHr5 , IHr5 , IBHr6 , IHr6 ) = cβµ0(1− 2χe)

{
IHr4 − IHr5

}
− 2cβχe

1 + χe

{
IBHr6 − IBHr5

}
+ 2µ0

(cβχe)2

1 + χe

{
IHr5 + IHr6 − 2IHr4

}
. (66)

Notice further that the particle volume fraction remains limited to c ≤ 0.3 in all practical applica-
tions of h-MREs (Zhao et al., 2019; Alapan et al., 2020). Consequently, we obtain 0 < χe � 1 for
the h-MREs comprising NdFeB particles. Thus, the last term in the expression for ρ0ΨB

couple in
(66) turns out to be substantially smaller than the preceding ones and hence, can be dropped for
all practical modeling purposes. Consequently, the coupling energy in the proposed F−B model
simplifies to

ρ0ΨB
couple(I

Hr
4 , IBHr5 , IHr5 , IBHr6 ) =

cβ

[
µ0(1− 2χe)

{
IHr4 − IHr5

}
− 2χe

1 + χe

{
IBHr6 − IBHr5

}]
. (67)

With this, the definition of the F−B based energy density becomes complete. Being the closed-
form Legendre-Fenchel transform of the F−H model, the derived F−B model exhibits the exact
same features as the corresponding F −H model discussed previously. Consequently, no further
calibration of β(c) parameter, defined in (64), is needed in (67). Specific comparisons between the
local responses of the F−H and F−B models will be shown later in Section 7.1.

4.7. The dissipation potential

It remains to define the dissipation potential D, which along with W H and W B completes
the model constitutive relations. Given that we do not include viscoelastic effects in the present
manuscript, we propose the rate-dependent dissipation potential to be a simple power law in terms
of Ḣr

only, such that (Mukherjee and Danas, 2019)

D(Ḣr
) =

n bc

n+ 1
|Ḣr|

n+1
n , with 1 ≤ n < +∞. (68)

Here, |.| is the standard Eulerian norm and bc is the effective coercive field of the composite (see
graphical representation in Fig. 3) that is given in terms of the particle and effective energetic
susceptibility via

bc = bcp

(
1 + χe

1 + χep

)4/5

. (69)

Here, bcp is the particle ceorcivity. Typically, for a hard-magnetic composite the effective coercivity
is given by bc = bcp (Idiart et al., 2006b). Nonetheless, the term multiplying bcp in (69) essentially
serves as a correction term for an actual magnet, whose saturation magnetization slope is not
identically zero.

The dissipation potential D(Ḣr
) in (68) is strictly convex (except for n = +∞ that becomes

simply convex), hence, satisfies automatically the dissipation inequality constraint. Moreover, the

rate |Ḣr| =
√
Ḣr · Ḣr

satisfies the material frame indifference and material symmetry conditions.
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By observing the experimental data on magnetic materials, we focus next on rate-independent
ferromagnetic hysteresis responses. Thus, we consider the limiting case n = +∞ at which, the
dissipation potential (68) becomes D(Ḣr

) = bc|Ḣr|, whose derivarive with respect to Ḣr
is non-

unique at |Ḣr| = 0. Hence, we start from the Legendre-Fenchel transform of D, i.e., D∗ such
that

D∗(Br) = inf
Ḣr

[
Br · Ḣr − bc|Ḣr|

]
(70)

in the rate-independent limit. The minimization condition of the last expression leads to a criterion
known as ferromagnetic switching surface

Φ(Br) := |Br|2 − (bc)2 = 0, (71)

which must be satisfied during the energy dissipation in a magnetic loading/unloading cycle. With
(71), we rephrase the dissipation potential D(ξ̇) by introducing a (non-negative) Lagrange multi-
plier Λ̇, so that

D(Ḣr
) = sup

Br
inf
Λ̇≥0

[
Br · Ḣr − Λ̇Φ(Br)

]
. (72)

In fact, substituting Br = bcḢr
/|Ḣr| (the minimization condition of (70)) yields exactly D(Ḣr

) =
bc|Ḣr| but now with a constraint (71), which must be satisfied to make the term Λ̇Φ(Br) in (72)
to vanish.

The constrained dissipation potential in (72) thus needs to be employed in the variational
principle (28) to obtain a set of equations necessary to obtain the evolution of Br. These stationarity
conditions of (72) are

Ḣr
= Λ̇

∂Φ

∂Br , Φ(Br) ≤ 0, Λ̇ ≥ 0 and Λ̇Φ = 0, (73)

where the latter three is commonly referred to be the Kraush-Kuhn-Tucker (KKT) conditions.
With (73), the evolution equation for the internal variable Hr is now fully defined.

Remark 9. The limiting case of c = 0 leads to the energy densities associated with the non-
magnetic elastomer for both, F−H and F−B models. Specifically, the condition c = 0 leads to
the magnetic free energies (for both the models) so that

ρ0ΨH/B
mag =

{
+∞ if Hr 6= 0,

0 if Hr = 0.
(74)

This condition essentially constraints Hr to remain 0 for c = 0. Thus, the dissipation potential
(68) vanishes and the energy densities for the F−H and F−B models read, respectively, W H

c=0 =
ρ0Ψmech(I1) − (µ0/2)IH5 and W B

c=0 = ρ0Ψmech(I1) + (1/2µ0)IB5 . The limit of c → 1, on the other
hand, leads to the mechanically rigid hard-magnetic particle response, essentially yielding the pure
magnetic switching surface model. Note, however, that in this important special case of c → 1,
one should replace the mechanical energy in (59) (or (60)) with one that is not infinite but instead
with a large modulus in order to allow a numerical resolution of the problem.

4.8. Total Cauchy stress in h-MREs
Although the constitutive model definitions are complete so far, the expression for the total

Cauchy stress in terms of the current magnetic and mechanical variables are often sought after to
gain more insight to the different stress contributions. Thus, the expressions for σ in terms of B,
h, b and hr, where B = FFT is the left Cauchy-Green tensor, in the F −H and F − B settings
are provided in the following.
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4.8.1. Cauchy stress in the F-H model

We first express W H in terms of F, H and Hr and subsequently express it to be W H(F,H,hr) ≡
wh(B,h,hr) = ρoψ

h(B,h,hr)− (µ0/2)Jh ·h, where ψh is the Helmholtz free energy density associ-
ated with the h-MRE. Moreover, we treat the Eulerian fields to be functions of F (or R) and their
referential (or intermediate) counterparts, such tha h = h(F,H) and hr = hr(R,Hr). With these,
a straightforward algebraic exercise starting from the variational statement (28) and utilizing (25),
(46) leads to (see Appendix A of Mukherjee et al. (2021) for details)

σ =
2ρ0

J

[
∂ψh

∂B

]
h,hr

B︸ ︷︷ ︸
σe

+
2

J det Z

[
Z skw

(
hr ⊗ br

)
VZ

]
︸ ︷︷ ︸

σr

+

[
h⊗ b− µ0

2
|h|2I

]
︸ ︷︷ ︸

σmaxw

, (75)

where three distinct components of the total σ, namely the elastic σe, remanent σr and Maxwell
σmaxw stress parts are obtained. In this last expression, we introduce the Eulerian counterpart of
Br to be br = −ρ0[∂ψh/∂hr]B,h, such that, br = RBr. Moreover, in (75) we use the explicit fourth
order tensor expression for ∂R/∂F from (Chen and Wheeler, 1993), which, in turn, introduces the
tensors V and Z defined as

V = FRT and Z = tr[V]I−V. (76)

By its very definition from (25)1, where S is given by (31)2, the total σ is symmetric. However,
its components σe, σr and σmaxw are not, in general, symmetric.

4.8.2. Cauchy stress in the F-B model

Similarly, the expression for total σ in the F − B model can be obtained by first expressing
W B(F,B,Hr) ≡ wb(B,b,hr) = ψb(B,b,hr)−(1/2µ0)Jb ·b with the Helmholtz free energy density
now expressed in terms of B, b = b(F,B) and hr = hr(R,Hr). The expression for σ from the
variational statement (38) and (25), (46) becomes

σ =
2ρ0

J

[
∂ψb

∂B

]
b,hr

B︸ ︷︷ ︸
σe

+
2

J det Z

[
Z skw

(
hr ⊗ br

)
VZ

]
︸ ︷︷ ︸

σr

+

[
h⊗ b− µ0

2

(
|h|2 − |m|2

)
I

]
︸ ︷︷ ︸

σmaxw

, (77)

where br = −ρ0[∂ψb/∂hr]B,b. Thus, the expressions for the elastic and remanent Cauchy stresses
remain the same in the F −H and F −B models, of course, the latter has a free energy density
ψb, while the former has ψh in their constitutive relations. Moreover, the hydrostatic part of the
Maxwell stress gets modified in the case of the F − B model, which is in agreement with the
existing s-MRE constitutive models (Kankanala and Triantafyllidis, 2004; Dorfmann and Ogden,
2004; Danas, 2017).
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Next, with a relative abuse in the notations5, we express the non-Maxwell part of σ to be simply
the mechanical Cauchy stress contribution, so that σmech = σe + σr. Of course, not only the
mechanical strains, but also the magnetic remanent fields in the h-MRE contribute to σmech. In fact,
the expressions of σr in (75) and (77) show that the remanent stress arises whenever the currnet
remanent magnetization hr and its dual br cease to be parallel. This particular scenario arises
during the non-aligned loading of the h-MREs, leading to a “magnetic torque”-like contribution to
the total σ.

The Maxwell stress σmaxw, on the other hand, remains independent of the material properties,
while only depending on the local h and b fields at any point in the continuum. The mechanical
and Maxwell parts of the first Piola-Kirchhoff stress can then be obtained directly via Smech =
JσmechF−T and Smaxw = JσmaxwF−T , such that S = Smech + Smaxw.

5. Modeling of isotropic soft-MREs

In this section, we propose fully explicit, homogenization-guided phenomenological models for
the s-MRE using both F − H and F − B formulations. These models have been developed in-
dependently of the previous h-MRE models and as we will show in the following are not exact
duals. Instead, they are explicit and fully energetic exhibiting no dissipation. They are meant
to be simpler but robust alternatives to the previous dissipative models when no (or very weak)
magnetic dissipation is present.

The present phenomenological models are proposed in terms of two additional modeling pa-
rameters, which are subsequently obtained by calibration with the h-MRE models since the latter
have been already calibrated with available RVE simulations. First, we propose models for incom-
pressible MREs and then extend in an ad-hoc manner those models for quasi-incompressible ones.
This extension serves only practical purposes since it allows for a simpler numerical implementa-
tion but should not be considered as an extension for arbitrarily compressible responses. In the
following, we directly report the final expressions, while the reader is referred to the original work
of Mukherjee et al. (2020) to find details on their derivations.

In this section, we will use only the energetic invariants, IHi and IBi (with i = 4, 5, 6) defined in
(52) and (53). The rest of the invariants involving the internal variable Hr are not relevant in the
context of s-MREs.

5.1. F-H expressions for s-MREs

We propose a phenomenological energy function for incompressible s-MREs in terms of three
distinct energy contributions, namely, a fully decoupled mechanical and magnetic energy and an
additional coupling energy, which reads

W H(F,H) = ρ0Ψmech(I1) + ρ0ΨH
mag(I

H
5 ) + ρ0ΨH

couple(I
H
4 , I

H
5 )− µ0

2
IH5 , (78)

valid for all isochoric deformations states, i.e., J = 1. The effective mechanical energy Ψmech is
given by (59), while the invariants IH4 and IH5 are those defined in (52).

5Perhaps the best word for this term would have been the stress in the material, i.e., σmat to distinguish it from
the Maxwell part that is present even when there is no material. Nevertheless, for historical reasons we keep here
the earlier notations.
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Magnetic energy. The purely magnetic part ΨH
mag is given in terms of a Gaussian Hypergeometric

function, denoted by 2F1, as

ρ0ΨH
mag(I

H
5 ) = −µ0 χ

2
IH5 2F1

 1

kH
,

2

kH
, 1 +

2

kH
,−

(
χ
√
IH5

ms

)kH . (79)

In this expression, kH is a positive integer that will be calibrated against numerical data. Further-
more, ms denotes the effective saturation magnetization and χ ≡ µ/µ0−1 is the effective magnetic
susceptibility (and µ the effective permeability) given by

ms = cms
p, χ =

3 c χp
3 + (1− c)χp

. (80)

Here, χp is the magnetic susceptibility of the particles. Usually, values between 10 − 100 are
representative of iron particles, while a value of χp = 30 was shown to correspond well to the
commercially available carbon iron particles (CIP). This value is four times larger than that for
hard magnetic NdFeB particles discussed in the previous section. The estimate for χ in (80) cor-
responds to the Maxwell-Garnett (or equivalently Hashin-Shtrikman) bound and was shown to be
particularly accurate for isotropic s-MRE by comparison with corresponding experiments in Psarra
et al. (2017) up to volume fractions of c = 0.3. Note further that the estimate for ms is an exact
homogenization result and has been verified by experiments in Danas et al. (2012) and numeri-
cal simulations Danas (2017) as well as shown via the approximate homoegenization estimates of
Galipeau and Ponte Castañeda (2013). It implies that the effective saturation magnetization of
the s-MRE composite is independent of its microstructure (e.g. whether particles are distributed
isotropically or in particle-chains or have arbitrary shapes such as ellipsoids etc) and is only a
function of the volume fraction of particles c and of their individual saturation magnetization ms

p.
In particular, CIP have saturation magnetization much higher than that for NdFeB that attains
values of µ0m

s
p = 2.5T.

In turn, the function 2F1 is typically expressed in terms of a series given by,

2F1[a, b, c; z] =

∞∑
n=0

(a)n(b)n
(c)n

zn

n!
, (81)

with
(x)0 = 1 and (x)n = x(x+ 1) · · · (x+ n− 1).

It can be shown via rigorous convergence tests that the infinite series in (81) converge for all z < 0
and non-negative a, b and c (Abramowitz and Stegun, 1972, p. 81-86). Hence, (81) can be evaluated
numerically in a straightforward manner (Perger et al., 1993; Hankin, 2015). Of interest, however,
are the first and second derivatives of ΨH

mag with respect to h, which, as shown in the following,
take very simple algebraic forms. The derivative of the Gaussian Hypergeometric function 2F1

with respect to its argument has a very simple form, which reads

m = −ρ0

µ0

∂ΨH
mag

∂H
FT =

χh[
1 + (χ)kH

(
|h|/ms

)kH]1/kH . (82)

Here, the initial susceptibility is always χ irrespective of the value of kH thus leading to the same
initial effective magnetization response of the s-MRE. The same is true for the saturation response,
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which gives |m| = ms = cms
p as required by the homogenization, experimental and numerical

results. On the other hand, the rate of magnetization at moderate fields depends on the power
coefficient kH, which may be calibrated to follow closely available numerical or experimental data.
Specifically, by direct calibration, we find in Section 7.1 that a value

kH = 4 (83)

leads to a good fit for the magnetization response for all volume fractions c ∈ [0, 0.3] and matrix

Figure 4: Comparison of (a) the magnetic energy functions and of (b) their derivatives obtained from and hyper-
geometric ΨH

mag saturation function given in equation (82) for various exponents kH, the Langevin function and the
hyperbolic tangent function (see (85). (Taken from Mukherjee et al. (2020)).

shear moduli analyzed in the present study. Of course, given any alternative experimental data, a
different value for kH may be used. For illustration purposes, we show in Fig. 4 representative curves
of the hypergeometric function and its derivative, which gives the m−h response as evaluated from
equation (82). For comparison, we also show magnetization curves obtained by the Langevin-type
and hyberbolic tangent functions (Danas, 2017) defined by

Langevin :

ρ0ΨH
mag(F,H) = −µ0(m

s)2

3χ

{
ln

[
sinh

(
3χ

ms

√
IH5

)]
− ln

[
3χ

ms

√
IH5

]}
(84)

Tanh : ρ0ΨH
mag(F,H) = −µ0(m

s)2

χ
ln

[
cosh

(
χ

ms

√
IH5

)]
(85)

such that

Langevin : m = msL
(

3χ|h|
ms

)
h

|h|
(86)

Tanh : m = ms tanh

(
χ|h|
ms

)
h

|h|
. (87)

Here, L denotes the Langevin function

L(x) = cothx− x−1, x ∈ R, (88)
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Remark 10. The use of a hypergeometric function is done in order to allow for flexibility in
the calibration process since the homogenized response of an MRE comprising magnetic particles
with Langevin-type magnetization saturation response does not lead to an effective magnetization
response of a Langevin-type. Before proceeding to the coupled energy part, we note further that the
decoupled mechanical and magnetic energies are expressed in terms of the homogenized material
parameters, which can be evaluated directly in terms of the constituents’ properties and the particle
volume fraction c.

Coupled energy.. Subsequently, and similar to the h-MRE models, we express the coupled magneto-
mechanical energy as a function of the two invariants IH4 and IH5 , thus taking the form

ΨH
couple(I

H
4 , I

H
5 ) = ΨH

4(IH4 )−ΨH
5(IH5 ), (89)

with

ρ0ΨH
i(I

H
i ) = βH1

µ0(m
s)2

2χ
ln

[
1 +

4∑
q=1

1

c

(
4

5
χ

)q+1( c

βH2

)q(√IHi
ms

)2q
]
, (90)

with i = 4, 5. Following the analysis in Mukherjee et al. (2020) and modifying slightly the coeffi-
cient βH1 in order to fit better with the corresponding numerical RVE simulations for c > 0.2, we
write

βH1 =
5g(c) (1− c)χ

16
βH2 , (91)

with

g(c) = 1 + g0 tanh

 5∑
q=1

gqc
q+5

 ,∀c ∈ [0, 0.5]

g0, g1, g2, g3, g4, g5 = {2530,−3.4, 38.5,−146, 231,−132} (92)

and

βH2(G∗m, c) = αH1 (G∗m)− αH2(G∗m)L
[
c αH3(G∗m)

]
, (93)

with

G∗m = Gm/G
Ref
m , GRef

m = 1MPa,

αH1(G∗m) = exp
[
− 0.29 tanh

{
0.27(lnG∗m + 7)

}
− 1.575

]
,

αH2(G∗m) = exp
[
4.4L(−0.78 lnG∗m)− 5.2

]
,

αH3(G∗m) =
0.1

G∗m + 0.0007
− 5.4G∗m + 6.75.

Here, L(.) is the Langevin function given by (88). Specifically, the function g(c) is almost unit
for c ≤ 0.2 and thus results to no changes with respect to the work of Mukherjee et al. (2020).
However, in that work, it was shown that the proposed model (which was calibrated by use of
the implicit homogenization model of Lefèvre et al. (2017)) tends to underestimate the coupling
for c > 0.2 by comparison to numerical RVE simulations. The function g(c) (which remains the
same for the subsequent F − B formulation) serves to improve upon this issue. Also it becomes
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equal to zero for c ≈ 0.5. Beyond that value the coupling is almost negligible since the mechanical
response becomes substantially stiff prohibiting any magnetostriction (see corresponding results in
two-dimensions Danas (2017)).

In turn, the evolution of βH2 with respect to G∗m is mainly controlled by the coefficients αH1 and
αH2. By contrast, the third coefficient αH3 is used to model the variation of βH2 with respect to c for
a given G∗m. Beyond G∗m > 1 a constant βH2 ≈ 0.155 is sufficient. On the other hand, for very soft,
gel-like MREs, i.e., in the range of 0.001 ≤ G∗m ≤ 0.01, the coupling coefficient βH2 becomes highly
sensitive to G∗m and c, resulting in a significant variation of βH2 in this particular range. A more
detailed discussion on the calibration process may be found in Mukherjee et al. (2020).

Remark 11. The parameters βH1 and βH2 may be regarded more generally as fitting constants that
may be calibrated each time to describe a specific material composition. Then, the functional form
of the model is straightforward and very simple to implement since it is explicit and analytical.
An important observation in this context is related to the form of the coupled energy (89), and
in particular the subtraction term ΨH

4(IH4 ) − ΨH
5(IH5 ). This is done for two reasons. First, the

derivation of ΨH
couple with respect to h leaves the magnetization response completely unaffected

at small and very large applied magnetic fields, thus allowing the hypergeometric function in
equation (79) to completely control the m − h response at the initial regime and the saturation
regime. The second reason is that only the IH4 = FTh · FT h part of the function contributes to
the magnetostriction whenever a Eulerian field h is applied, while the corresponding IH5 = h · h
part induces no magnetostriction. Moreover, we observe that ΨH

i is non-convex with respect to√
IHi since its derivative increases rapidly from zero to a maximum and then gradually decreases

to zero (see Fig. 5b). As we will see in the following, such a function allows to obtain a material
magnetostriction response that is initially quadratic, subsequently increases in a non-quadratic
manner until finally reaching a saturating state.

Figure 5: Representative plots of (a) the function ΨH
i (with i = 4, 5) and (b) of its derivative with respect to

√
IHi

for q = 1, 2, 4. (Taken from Mukherjee et al. (2020)).

Quasi-incompressible extension. In spite of the fact that the assumption of an incompressible
matrix and rigid particles leads to very efficient analytical modeling of the effective response,
quasi-incompressible models for the MREs are employed in most of the computational investiga-
tions due to their simplicity to incorporate them in a finite-element solver. Unfortunately, carry-
ing out the homogenization problem for even a quasi-incompressible matrix is extremely difficult
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and no rigorous model is available up to date neither for the purely mechanical part nor for the
magneto-mechanical part. In this regard, we propose an ad-hoc extension of the incompressible
phenomenological model (78) that essentially relaxes slightly the assumption of incompressibility
without affecting the aforementioned key features of the model at least in the case of high bulk
modulus (i.e. quasi-incompressible materials). The proposed model reads

W H
comp(F,H) = ρ0Ψ

comp
mech(I1, J) + ρ0ΨH

mag(I
H
5 ) + ρ0ΨH

couple(I
H
4 , I

H
5 )− ρ0

J µ0
2
IH5 , (94)

where Ψ
comp
mech has already been defined in (60), while the remaining of the functions remain un-

changed.

5.2. F-B expressions for s-MREs

In principle, one may attempt to obtain an equivalent F −B model via the partial Legendre-
Fenchel transformation (37) of (78) with respect to H. However, due to the strong nonlinearity
of the functions associated with the proposed F −H model (78), one can not obtain its comple-
mentary energy in an explicit form. By contrast, in the context of h-MREs that is possible by
the introduction of the internal variable, which carries all the associated nonlinearities, while the
dependence of the function on the main variables H (or B) is fairly simple and thus transformable.

In any case, for completeness, we propose a complementary energy W B, which has the exact
same form as that of W H in (78), such that

W B(F,B) = ρ0Ψmech(F) + ρ0ΨB
mag(I

B
5 ) + ρ0ΨB

couple(I
B
5 , I

B
6 ) +

1

2µ0
IB5 , (95)

where the magneto-mechanical invariants IB5 and IB6 have been defined in (53). Evidently, the first
term of (95) that represents the purely mechanical component of W B is identical to that in (78),
and is given by (59). Also, the last term of (95) represents the F−B version of the magnetostatic
energy of free space (Dorfmann and Ogden, 2004).

It remains then to prescribe the two free energies, namely, the magnetic and the coupled free
energy. Due to their intrinsic properties, ΨB

mag and ΨB
couple retain the same functional form as

their F −H counterparts (79) and (89), respectively. Note that, as shown in Figs. 4 and 5, the
hypergeometric 2F1 and the ΨH

i functions are rich enough to model a wide variety of constitutive
responses.

Magnetic energy. In this regard, the purely magnetic part ΨB
mag is chosen as

ΨB
mag(I

B
5 ) = − χ

2µ0 (1 + χ)
IB5 2F1

 1

kB
,

2

kB
, 1 +

2

kB
,−

(
χ
√
IB5

(1 + χ)µ0ms

)kB . (96)

Similar to the F−H version, a single exponent

kB = 6 (97)

provides a good fit to the magnetization response for all particle volume fractions and matrix
shear moduli considered in this study. Note that the purely magnetic energy (96) in the F − B
model is not an exact Legendre transform of the corresponding magnetic energy (79) of the F−H
model. Thus, no direct correlation can be drawn between the model parameters kB and kH and
their calibration values.
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Coupled energy. The coupled energy is defined by

ΨB
couple(I

B
5 , I

B
6 ) = ΨB

6(IB6 )−ΨB
5(IB5 ), (98)

with

ΨB
i(I

B
i ) = βB1

(1 + χ)µ0(m
s)2

2χ
ln

[
1 +

4∑
q=1

1

c

(
5

4

χ

1 + χ

)q+1( c

βB2

)q( √IBi
µ0ms

)2q
]
, (99)

where i = 5, 6 and again ms = cms
p.

As in the F−H version, and following Mukherjee et al. (2020), we have

βB1 =
16

5

χ(χ+ 1)(1− c)
([5(χ+ 1)− 2(1− c)χ2] [(1− c)χ2 + 5(χ+ 1)]

g(c)βB2 . (100)

The function g(c) is the same with that used in (92). In turn, for βB2 , we use two piecewise
continuous functions of G∗m and c to model the variation of βB2 in the G∗m − c space, which reads

βB2(G∗m, c) =

{
αB1(G∗m)− αB2(G∗m)L

[
c αB3(G∗m)

]
, if G∗m ≤ 0.1

0.4055− 0.5 c
[
1− 0.67L(15G∗m)

]
otherwise

(101)

with

αB1(G∗m) = exp
[
− 0.029 lnG∗m − 0.982

]
,

αB2(G∗m) = exp
[
1.78L(−0.32 lnG∗m)− 1.78

]
,

αB3(G∗m) = exp
[
0.14− 0.54 lnG∗m

]
.

Here, L(.) is again the Langevin function defined in (88). The first function is similar to βH2 with
three coefficients αB1, αB2 and αB3, which are functions of G∗m, whereas, the second function, which
models βB2 for all G∗m > 0.1, is rather a simple function of G∗m and c. We note that the two fitting
functions for βB2 have approximately the same magnitude near G∗m = 0.1. Thus, the particular
choice of piecewise continuous βB2 ensures a constant transition from the Langevin decay to the
linear decrease regime.

Remark 12. As stated earlier, (98) retains an identical functional form as its F−H counterpart
in (89) except that the magneto-mechanical coupling is now modeled in terms of the invariant IB6 .
This choice of the coupling invariant is not arbitrary, rather, is directly equivalent to the F −H
model. The invariant IH4 can be expressed in terms of the Eulerian h as IH4 = FTh · FTh. The
Legendre-Fenchel transform of that invariant leads to the invariant IB6 = FTb · FTb.

Quasi-incompressible extension. A quasi-incompressible version of (95) is given by

W B
comp(F,B) = ρ0Ψ

comp
mech(I1, J) + ρ0ΨB

mag(I
B
5 )

+ ρ0ΨB
couple(I

B
5 , I

B
6 ) +

1

2µ0J
IB5 , (102)

where ρ0Ψ
comp
mech is given by (60).

32



5.3. Total Cauchy stress in s-MREs

Similar to the h-MRE analysis, the expression for the total Cauchy stress in terms of the
current magnetic and mechanical variables are often sought after to gain more insight to the
different stress contributions. Thus, the expressions for σ in terms of B, h and b, where B = FFT

is the left Cauchy-Green tensor, in the F −H and F − B settings are provided in the following.
The expressions obtained in the context of s-MREs may be retrieved readily from those for the
h-MREs in equations (75) and (77) by simply setting the remanent part equal to zero.

5.3.1. Cauchy stress in the F-H model

We first express W H in terms of F, H and subsequently express it to be W H(F,H) ≡ wh(B,h) =
ρoψ

h(B,h) − (µ0/2)Jh · h, where ψh is the Helmholtz free energy density associated with the s-
MRE. Moreover, we treat the Eulerian fields to be functions of F and their referential counterparts,
such that h = h(F,H). This leads to

σ =
2ρ0

J

[
∂ψh

∂B

]
h

B︸ ︷︷ ︸
σe≡σmech

+

[
h⊗ b− µ0

2
|h|2I

]
︸ ︷︷ ︸

σmaxw

, (103)

where two distinct components of the total σ, namely the elastic or mechanical σmech and Maxwell
σmaxw stress parts are obtained. By its very definition from (25)1, where S is given by (31)2, the
total σ is symmetric. However, its components σmech and σmaxw are not, in general, symmetric.

5.3.2. Cauchy stress in the F-B model

Similarly, the expression for total σ in the F − B model can be obtained by first expressing
W B(F,B) ≡ wb(B,b) = ψb(B,b) − (1/2µ0)Jb · b with the Helmholtz free energy density now
expressed in terms of B and b = b(F,B). The expression for σ from the variational statement
(38) and (25) becomes

σ =
2ρ0

J

[
∂ψb

∂B

]
b

B︸ ︷︷ ︸
σe≡σmech

+

[
h⊗ b− µ0

2

(
|h|2 − |m|2

)
I

]
︸ ︷︷ ︸

σmaxw

. (104)

Thus, the expressions for the elastic or mechanical and remanent Cauchy stresses remain the same
in the F−H and F−B models, of course, the latter has a free energy density ψb, while the former
has ψh in their constitutive relations. Moreover, the hydrostatic part of the Maxwell stress gets
modified in the case of the F−B model, which is in agreement with the existing s-MRE constitutive
models (Kankanala and Triantafyllidis, 2004; Dorfmann and Ogden, 2004; Danas, 2017).

Again, the Maxwell stress σmaxw remains independent of the material properties, while only
depending on the local h and b fields at any point in the continuum. The mechanical and Maxwell
parts of the first Piola-Kirchhoff stress can then be obtained directly via Smech = JσmechF−T and
Smaxw = JσmaxwF−T , such that S = Smech + Smaxw.
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6. Numerical implementations for MREs

The rate-type variational principles for the F − H and F − B models in Section 3 are now
expressed in a time discrete form to analyze periodic unit-cells or any practical boundary value
problem (BVP) involving MREs. First, the scalar potential-based F −H model is presented in a
time discrete form. This will be followed by the specification of the corresponding vector potential-
based F−B model. We discuss the general case of h-MREs, whereby that of the s-MREs may be
obtained by omitting the terms related to magnetic dissipation.

6.1. Time discrete variational principle for F-H formulation

The scalar potential-based F−H model needs to be solved for the displacement u and potential
ϕ, such that F = I + Gradu and H = −Gradϕ both satisfy the relevant Dirichlet boundary
conditions. Specifically in the incremental setting of a numerical solution, we consider the state of
the continuum to be known at a time t, from which we solve for the minimizing fields u and ϕ for
the next time step τ = t+ ∆t. We henceforth indicate all the variables with the subscripts “t” or
“τ” to indicate that the variables are computed at a given discrete time.

First, the variational principle (28) upon substitution of D(Ḣr
) from (72) reads

Π̇H = inf
u̇∈Ũ

sup
ϕ̇∈G̃

inf
Ḣr∈R3

[ ∫
R3

Ẇ H(C,H,Hr) dV0 −
∫
∂V0

T · u̇ dS0

+

∫
V0

sup
Br

inf
Λ̇≥0

{
Br · Ḣr − Λ̇Φ(Br)

}
dV0

]
. (105)

Expressing all the rates in time discrete form like u̇ = (uτ − ut)/∆t and taking note on the fact
that the state at time t is already converged, one can express the rate-type variational principle
(105) in a time-discrete form so that

ΠH
τ = inf

uτ∈U
sup
ϕτ∈G

[ ∫
V0
WH
τ (C,H) dV0 +

∫
R3\V0

W H
c=0,τ (C,H) dV0

−
∫
∂V0

T · uτ dS0

]
. (106)

Here the subscript “τ” with W H and WH both indicate that all their arguments are at a discrete
time τ . In (106) we have introduced a reduced energy density WH

τ , which is, in turn, the variational
principle employed for the computation for the internal variable Hr

τ locally at each point of the
computation domain, such that

WH
τ (C,H) = inf

Hr
τ

sup
Br

inf
∆Λ≥0

{
W H
τ (C,H,Hr) + Br ·Hr

τ −∆ΛΦ(Br)
}
. (107)

This last variational statement, in turn, leads to the time-discrete forms of the KKT conditions
stated in (73). Finally, the admissible sets for uτ and ϕτ are given by, respectively,

U ≡
{

uτ : Fτ = I + Graduτ , ∀ X ∈ R3, uτ = uτ ∀ X ∈ ∂Vu0
}
, (108)

G ≡
{
ϕτ : Hτ = −Gradϕτ , ∀ X ∈ R3, ϕτ = ϕτ ∀ X ∈ ∂Vϕ∞

}
. (109)
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Thus, for an initial guess uτ and ϕτ we first update the internal variable Hr
τ via extremizing (107).

Then the updated Hr
τ is used to compute for the corrector for uτ and ϕτ from the global implicit

solver. Thus, the introduction of the reduced energy density allows us to update Hr
τ locally

at each integration point, while computing for uτ and ϕτ from the global variational principle.
This computation algorithm provides efficient update procedure for u, ϕ and Hr and facilitates
the implementation in the commercially-available finite-element solvers like ABAQUS/Standard
(Miehe et al., 2011; Rosato and Miehe, 2014; Mukherjee et al., 2021).

We note further here that corresponding expressions can be obtained for s-MREs by simply
dropping the time discrete character of the previous equations, setting dissipation equal to zero
and using the energy functions presented in Section 5.1.

6.2. Time discrete variational principle for F-B formulation

The time discrete equivalent of the F −B-based variational principle (38) can be obtained in
a similar way to (106) after substituting D(Ḣr

) from (72), finally leading to

ΠB
τ = inf

uτ∈U
inf

Aτ∈B

[ ∫
V0
WB
τ (C,B) dV0 +

∫
R3\V0

W B
c=0,τ (C,B) dV0

−
∫
∂V0

T · uτ dS0

]
, (110)

where the reduced energy density WB
τ (C,B) reads

WB
τ (C,B) = inf

Hr
τ

sup
Br

inf
∆Λ≥0

{
W B
τ (C,B,Hr) + Br ·Hr

τ −∆ΛΦ(Br)
}
. (111)

Again, the extremization of (111) leads to the KKT conditions for the F−B model and thus, to
the update equations for Hr

τ . The admissible set U for the displacement field remains the same as
in (108), while the admissible set for the vector potential Aτ reads

B ≡
{

Aτ : Bτ = Curl Aτ , Div Aτ = 0, ∀ X ∈ R3, Aτ = Aτ , ∀ X ∈ ∂VA0
}
, (112)

where the condition Div Aτ = 0 is the well-known Coulomb gauge that leads to an uniquely defined
vector potential Aτ (Biro and Preis, 1989; Stark et al., 2015). The implementation of the Coulomb
gauge may be done in various manners. Here, we use a penalty formulation described in Dorn
et al. (2021) together with under-integration of the constraint term. Again, for an initial guess
of uτ and Aτ , the internal variable Hr

t is updated to be Hr
τ at the local integration points. The

subsequent global increments for the uτ and Aτ are carried out via using the already updated Hr
τ .

The correction increments for uτ and Aτ continues until a global convergence is achieved.
Again, we note that corresponding expressions can be obtained for s-MREs by simply dropping

the time discrete character of the previous equations, setting dissipation equal to zero and using
the energy functions presented in Section 5.2.

6.3. The periodic numerical homogenization problem

The above general time discrete variational principles can be easily modified to deal with a
periodic problem. The main difference between a periodic and a standard boundary value problem
(BVP) lies in the domain that we analyze the problem and the corresponding boundary conditions.
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While a BVP comprises magnetic or non-magnetic bodies and potentially an air domain that may
extend far from the bodies analyzed, the periodic homogenization problem only considers by def-
inition a unit-cell comprising the phases that are analyzed. By extension, there is no presence
of surrounding air since the surrounding domain is filled by repetition of the principal unit-cell
in all three dimensions ad infinitum. For that to be true, one needs to apply periodic boundary
conditions while maintaining geometric periodicity of the boundary of the unit-cell (Michel et al.,
1999) (although the later is not an absolutely necessary condition but mostly a convenient one).
In the following, we discuss the homogenization problem in the context of h-MREs, i.e., dissipa-
tive systems using the previously presented time discrete variational formulations. Corresponding
straightforward expressions can then be obtained for s-MREs by simply dropping the time discrete
character of the previous formulations.

Figure 6: Schematic diagram of (a) macroscopic boundary value problem involving a MRE sample in air having a
reference volume V0 with unit normal N on the boundary ∂V0 and a representative boundary with fixed displacement
u0, (b) periodic arrangement of a RVE with polydisperse spherical inclusions and (c) a RVE occupying a reference
volume V#

0 and boundary ∂V#
0 .

As shown in Fig. 6, each point of the macro-continuum V0 (Fig. 6a) is assumed to be described

well at the microscale by a representative volume element (RVE) having a reference volume of V#
0

and comprising two (or more) phases, denoted as i = p, m representing the particle and matrix
phase, respectively (Fig. 6c). This assumption may be considered sufficient for the present h-MRE
composites provided that the particle size is sufficiently smaller than the specimen analyzed6. Then,
for spatially and temporally (quasi-static here) slowly varying mechanical and magnetic fields at the
macroscopic scales, the previous microstructural assumptions allow for separation of length scales
(V#

0 � V0). In addition, following Danas (2017), we consider a slowly varying microstructure, so
that the microstructure can be assumed to be (locally) periodic (see Fig. 6b). This interpretation
results in periodic boundary conditions applied on a single RVE (see Fig. 6c).

6The particle size in typical h-MREs is in the order of 10 − 30 µm, while a cubic RVE as we will see contains
approximately five particles per direction, i.e., has a side of ∼ 50 − 150 µm at moderate volume fractions. The
specimen sizes in actual experiments are usually in the centimeter scale and thus are sufficiently larger than the
microstructure. In turn, such models including any type of phenomenological ones should be used with caution
in the context of slender structures such as those in Psarra et al. (2017) and Kim et al. (2018), where one or two
dimensions of the specimen may be a fraction of a millimeter. In that case, additional calibration may be required.
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6.3.1. Local energy density of the constituents

Henceforth, the microscopic field variables along with the energy functions and the correspond-
ing invariants are indicated with a (̆·) symbol in order to distinguish them from their macroscopic
counterparts. Since the microstructure is heterogeneous, the referential representations of the local
energy density W̆ and the local dissipation potential D̆ both depend on the microscopic (here)
reference coordinate X7. Also for brevity in the presentation, we will use the notation introduced
in (44) to denote simultaneously whenever possible with a unique symbol Ğ = {H̆, B̆}. Thus, one
has

W̆ (X, F̆, Ğ, H̆r) = Θ(X)W̆ G
m (F̆, Ğ, H̆r) + (1−Θ(X))W̆ G

p (F̆, Ğ, H̆r) (113)

and
D̆(X,

˙̆Hr) = Θ(X)D̆m(
˙̆Hr) + (1−Θ(X))D̆p(

˙̆Hr), (114)

In this last two expressions, Θ(X) denotes the characteristic function taking the value Θ(X) = 1

if X ∈ V#m
0 and Θ(X) = 0 if X ∈ V#p

0 . The microscopic energy densities W̆ G
p and W̆ G

m are directly
identified with the corresponding ones discussed in the previous sections by simply taking the limits
c = 1 for the particle phase and c = 0 for the matrix phase, while all field variables F̆, Ğ and H̆r

should be simply replaced by the corresponding overscript ones (̆·).

Remark 13. In (114), we may readily set D̆m = 0 since the magnetic dissipation is identically
zero in the non-magnetic polymer matrix in the present analysis. Nonetheless, note that other
microstructures of more phases or different properties may be readily analyzed by the present
approach. For instance, one may have a magnetic polymer together with magnetic particles of
different properties or anything else that one may consider useful to analyze. In this sense, the
above descriptions serve only as a representative example.

6.3.2. Incremental homogenization framework

This section discusses briefly the incremental periodic homogenization framework for h-MREs
based on an incremental micro-potential W̆(X, F̆τ , Ğτ ), which can be defined by substituting all

field quantities with an overscript (̆·). The average deformation gradient F and Lagrangian h-field
H or magnetic field B at a discrete time τ ≡ t+ ∆t are then expressed in terms of the volume
averages of the corresponding microscopic quantities, so that

Fτ =
1

|V#
0 |

∫
V#
0

F̆τ (X) dV, Gτ =
1

|V#
0 |

∫
V#
0

Ğτ (X) dV, (115)

respectively.
The microscopic displacements ŭτ (X), the microscopic scalar potential ϕ̆τ (X) and vector po-

tential Ăτ (X) are additively decomposed into linear (macroscopic) and higher order (microscopic

7In principle, one may introduce a different notation for the position vector to insist that it corresponds to the
reference coordinate in the microscopic scale which is obviously a different measure from the reference coordinate in
the macroscopic scale, i.e., X̆ ≡ X. Nonetheless for the sake of simplicity in notation, we drop the superscript from
X, since all calculation regarding a unit-cell will always take place in the microscopic scale.
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fluctuation) contributions
ŭτ (X) = (Fτ − I) ·X + ũτ (X),

ϕ̆τ (X) = −Hτ ·X + ϕ̃τ (X)

Ăτ (X) =
1

2
B×X + Ãτ (X),

∀ X ∈ V#
0 (116)

where ũτ (X), ϕ̃τ (X) and Ãτ (X) are the relevant periodic (with periodicity that of the unit-cell)

fluctuation fields. Their average over V#
0 is required to vanish such that (116) is consistent with

(115), which is automatically fulfilled for V#
0 -periodic fluctuation fields.

In the dissipative problem, one then has to solve first the local minimization problem with
respect to the internal variable such that we can define the local energy (following exactly the
definition (107) or (111))

W̆G
τ (X, F̆τ , Ğτ ) = inf

H̆r
sup
B̆r

inf
∆Λ̆≥0

{
W̆ G
τ (X, F̆, H̆, H̆r)+

[1ex]B̆r · H̆r
τ −∆Λ̆ Φ(X, B̆r)

}
. (117)

As a consequence, the incremental homogenized energy WG
τ reads

WG
τ (Fτ ,Gτ ) = inf

ŭτ∈K(Fτ )
sup

{ϕ̆τ |Ăτ}∈G(Gτ )

[
1

V#
0

∫
V#
0

W̆G
τ (X, F̆τ , Ğτ ) dV

]
, (118)

where K and G represents the sets of admissible microscopic displacement and magnetic scalar or
vector potential fields, defined, respectively, as

K(Fτ ) =
{
F̆τ = I + Grad ŭτ , ŭτ = (Fτ − I) ·X + ũτ , ũτ periodic in V#

0

}
(119)

and 

F−H case :

G(Hτ ) =
{
H̆τ = −Grad ϕ̆τ , ϕ̆τ = −Hτ ·X + ϕ̃τ , ϕ̃τ periodic in V#

0

}
F− B case :

G(Bτ ) =
{
B̆τ = Curl Ăτ , Ăτ =

1

2
Bτ ×X + Ãτ , Ãτ periodic in V#

0

}
(120)

Applying then the Hill-Mandel lemma, we obtain the homogenized constitutive relations defined
as

Sτ =
∂WG

τ

∂Fτ
(Fτ ,Gτ ),


F−H case : Bτ = −∂W

H
τ

∂Hτ
(Fτ ,Hτ ),

F− B case : Hτ =
∂WB

τ

∂Bτ
(Fτ ,Bτ ).

(121)
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At this stage, the definition of the incremental homogenization problem for h-MREs is formally
complete and one could proceed to compare the explicit model with the numerical RVE homog-
enized response (118). Nevertheless, it has been shown in Danas (2017) that such use of (118)
does not reveal properly the effective magneto-mechanical response that arises from interactions
between the magnetic particles. In fact, it was shown that even for a non-magnetic material, one
would obtain magnetostrictive strains if a magnetic field was applied. This discussion is rather
less straightforward and the reader is referred to the original article for more details. In view of
this observation, further modifications to the incremental variational principle are necessary, as
detailed in the following.

6.3.3. Augmented F-H potential energy for RVE simulations

Recent works of Keip and Rambausek (2016), Danas (2017) and Mukherjee et al. (2020) pointed
out a key difference between the electro-active and magneto-active boundary value problems.
Electro-active elastomers are typically loaded by electrodes that are directly attached to the ma-
terial. In contrast, the MREs are usually immersed in the magnetic field created by fixed poles of
electromagnets that rest at a certain distance away from the MRE sample (Bodelot et al., 2017;
Zhao et al., 2019). One of the main differences between those two problems is that in the first the
electric fields are zero outside the body, implying a zero Maxwell stress in vacuum, while in the
second the magnetic fields and thus the Maxwell stress are not zero. In an effort to appropriately
take into account the pure magneto-mechanical coupling in the RVE, free from the effect of those
macroscopic boundary conditions, Danas (2017) and Mukherjee et al. (2020) proposed an aug-
mented potential energy that involves three additional loading terms to deal with the surrounding
RVE medium, the applied Eulerian magnetic field and the potential control of an average mechan-
ical stress field. This potential energy allows to describe properly the magnetic effects (including
the Maxwell stresses) exerted by the surrounding RVEs on the RVE under study and is briefly
revisited here for completeness. The reader is referred to (Danas, 2017) for a complete discussion
on this highly non-trivial matter.

Specifically, the first additional term serves to describe the application of the current macro-
scopic h-field, happ, at the level of the RVE, instead of the referential one, H. This may be achieved

by the use of a penalty term
µ0

2ζ
|F−Tτ Hτ − h

app
τ |2 with ζ � 1. Next, the macroscopic background

energy −µ0I
H
5/2 (or −µ0JI

H
5/2 in the quasi-incompressible case) is subtracted from (118). This

accounts for the presence of the neighboring RVEs (see Fig. 6b) by imposing the continuity of the
macroscopic Maxwell stresses between neighboring RVEs, far from the boundaries of the specimen.
Finally, to be able to prescribe macroscopic mechanical stress Smech

τ instead of deformation F, one
may consider the term Smech

τ : (Fτ − I). Assembling these three additional terms together, we
obtain the augmented potential energy (Mukherjee et al., 2020)

PH
τ (Fτ ,Hτ ) =WH

τ (Fτ ,Hτ ) +
µ0

2
F−Tτ Hτ · F−Tτ Hτ

+
µ0

2ζ
|F−Tτ Hτ − happ

τ |2 − Smech
τ · (Fτ − I), (122)

withWH
τ defined by (118) by replacing G ≡ H. The resulting Euler-Lagrange equations of the RVE

response under the prescribed magnetic and mechanical loads introduced in (122) are obtained by
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setting δPH
τ (Fτ ,Hτ ) = 0, which leads to

Sτ − Smaxw
τ − Smech

τ = 0, Bτ − µ0C−1Hτ −
µ0

ζ
F−1
τ (F−Tτ Hτ − happ

τ ) = 0. (123)

Here, Smaxw = JσmaxwF−T is the 1st Piola-Kirchhoff expression for the energetic Maxwell stress
given in terms of h and b as defined by (75). In turn, by writing the second equation in (123) in
terms of the Eulerian parts as

bτ − µ0hτ −
µ0

ζ
(hτ − happ

τ ) = 0, (124)

one simply obtains the magnetization constitutive relation (5), with

1

ζ
(hτ − happ

τ ) = m. (125)

This is achieved since hτ → h
app
τ as ζ → 0 making the first term finite and equal to m. Again, the

reader is referred to Danas (2017) for more details on this part.

Remark 14. These additional terms to the homogenization variational principle do not alter the
microscopic constitutive models and thus, the effective incremental energy WH

τ , but changes the
boundary conditions applied across the periodic RVE in terms of the macroscopic fields Sτ and
Hτ . Such a modification allows us to obtain the magneto-mechanical coupling effects arising from
the local particle interactions subject to background average Eulerian magnetic fields.

6.3.4. Augmented F-B potential energy for RVE simulations

In an exactly similar fashion, one may obtain an augmented potential energy in the F−B space.
Specifically, the first additional term serves to describe the application of the current macroscopic b-
field, bapp, at the level of the RVE, instead of the referential one, B. This may be achieved by the use

of a penalty term
J

2ζ µ0
|J−1FτHτ − b

app
τ |2 with ζ � 1. Next, the macroscopic background energy

IB5/2µ0 (or JIB5/2µ0 in the quasi-incompressible case) is subtracted from (118). This accounts for
the presence of the neighboring RVEs (see Fig. 6b) by imposing the continuity of the macroscopic
Maxwell stresses between neighboring RVEs, far from the boundaries of the specimen. Finally,
to be able to prescribe macroscopic mechanical stress Smech

τ instead of deformation F, one may
consider the term Smech

τ : (Fτ − I). Assembling these three additional terms together, we obtain
the augmented potential energy (Danas, 2017)

PB
τ (Fτ ,Bτ ) =WB

τ (Fτ ,Bτ )− 1

2µ0J
FτBτ · FτBτ

+
J

2ζµ0
|J−1FτBτ − bapp

τ |2 − Smech
τ · (Fτ − I), (126)

withWB
τ defined by (118) by replacing G ≡ B. The resulting Euler-Lagrange equations of the RVE

response under the prescribed magnetic and mechanical loads introduced in (126) are obtained by
setting δPB

τ (Fτ ,Bτ ) = 0, which leads to

Sτ − Smaxw
τ − Smech

τ = 0, Hτ −
1

µ0J
CBτ +

1

ζµ0
FT
τ (J−1FτBτ − bapp

τ ) = 0. (127)
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Here, Smaxw = JσmaxwF−T is the 1st Piola-Kirchhoff expression for the energetic Maxwell stress
given in terms of h and b as defined by (77). In turn, by writing the second equation in (127) in
terms of the Eulerian parts as

hτ −
1

µ0
bτ +

1

ζµ0
(bτ − bapp

τ ) = 0, (128)

one simply obtains the magnetization constitutive relation (5), with

1

ζµ0
(bτ − bapp

τ ) = m. (129)

Again, the reader is referred to Danas (2017) for more details on this part.

7. Results: Periodic RVE simulations and model assessment

This section discusses the model assessment via comparisons with the corresponding numerical
RVE results under coupled magneto-mechanical loading conditions. In all subsequent results, we
use a standard incompressible Neo-Hookean energy for the polymer matrix phase, i.e.,

ρ0Ψmech
m (I1) =

Gm

2
(I1 − 3). (130)

This functional form is used in (59) to obtain the effective mechanical energy for the analytical
model. We recall that in the analytical model the mechanical response of the particles is considered
rigid. In turn, the magnetic properties of the particle are reported in Table 2 and correspond to a
commercially available NdFeB material. In particular, these parameters are obtained by fitting the
purely magnetic model with the experimentally measured hysteresis loops of magnetically isotropic
NdFeB particles reported in Deng et al. (2015). Evidently, the model is general enough to be able
to deal with any other type of hard magnetic particles.

Table 2: Magnetic properties of the NdFeB particles

χep χrp µ0m
s
p (T) bcp (T) µ0 (µN ·A2)

0.105 8.0 0.842 1.062 4π10−1

The numerical simulations use the same functions and parameters as the analytical model with
only two differences that do not affect, however, the validity of the comparison. The first difference
is the use of a quasi-incompressible energy for both the matrix and the particle phase, which is
simply obtained by adding compressible terms in (59), such that it becomes

ρ0Ψmech
comp,i(I1, J) =

Gi

2
(I1 − 3− 2 lnJ) +

G′i
2

(J − 1)2, i = m, p. (131)

The quasi-incompressible character of the matrix is ensured by setting G′m = 500Gm. Use of higher
values has shown practically no difference in the simulated effective results. The second difference
is the use of finite but large Lamé moduli for the particle, i.e., Gp = 500Gm and G′p = 500Gp. The
phase contrast ratio of Gp/Gm = 500 has been shown in several earlier studies (see for instance
Idiart et al. (2006a); Lopez-Pamies et al. (2013); Papadioti et al. (2016)) to be sufficiently large
and thus render a nearly rigid mechanical response for the particle.
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The RVE geometries are constructed by use of the RSA (random sequential adsorption) method.
This allows to add sequentially inclusions of spherical (Lopez-Pamies et al., 2013) or ellipsoidal
(Anoukou et al., 2018) shape in a cubic periodic unit cell. We perform the calculation by ranging
the number of particles from 60-300. Three or more realizations are used to obtain an average and
scatter response of those RVEs.

The results in the following sections consider the variation of two parameters, namely, the
particle volume fraction c and the matrix shear modulus Gm, which are, in fact, the two critical
parameters that can be varied during the fabrication of h-MREs. Instead, the magnetic properties
of the particle phase are kept constant.

7.1. h-MRE models versus FE simulations

7.1.1. Cyclic magnetic loading and calibration of β parameter

In this section, the goal is to calibrate the coupling parameter β introduced in the coupled
magneto-mechanical energy (89) and (98) for the analytical models by use of corresponding RVE
simulations. For this purpose, we fix the matrix shear modulus to Gm = 0.5 MPa and vary the
particle volume fraction c = 0.1, 0.2 and 0.3. The proposed shear modulus resembles closely that of
the moderately-soft, commercially-available Sylgard-184 PDMS elastomer (Park et al., 2018; Wang
et al., 2019).

Figure 7: Numerically computed effective (a) magnetization, (b) parallel and (c) transverse magnetostrictions the
h-MRE RVEs, subjected to uniaxial Eulerian happ = happ1 e1 loading/unloading. The average effective responses (solid
lines) along with the range of their fluctuations (light patches) for different realizations of the respective RVEs are
indicated. The RVEs of different volume fractions are comprised of random polydisperse spherical hard-magnetic
inclusions, coming from three distinct families. (Taken from Mukherjee et al. (2021)).

We consider symmetric cyclic magnetic loading in terms of happ = h
app
1 e1 with a maximum

amplitude h
app
1 = 3ms

p. Note that the loading rate does not play any role here, since both the
macro and microscopic h-MRE models are rate-independent. As mechanical boundary conditions
we employ

Smech
11 = Smech

22 = Smech
33 = 0, Fij = 0, ∀i 6= j. (132)

Similar to the numerical RVE results of non-hysteretic s-MREs (Mukherjee et al., 2020), in
h-MREs too, the effective magnetostriction response exhibits a certain variance with respect to
the RVE realizations, even for sufficiently large number of polydisperse spherical inclusions. For
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Figure 8: Contours of the numerically computed (a-c) normalized microscopic b̆1, (d-f) normalized local m̆1 and (g-i)
nominal mechanical strain λ̆1− 1 in the RVEs after the first half cycle of loading along e1, under which the effective
responses are shown in Fig. 7. Three different, RVEs having (a,d,g) c = 0.1, (b,e,h) 0.2 and (c,f,i) 0.3 are shown.
(Taken from Mukherjee et al. (2021)).

the effective RVE half-cycle responses shown in Fig 7, we employ five different RVE realizations per
particle volume fraction c = 0.1, 0.2 and 0.3. The corresponding average magnetization, m1/m

s
p

and the parallel, λ1 − 1 and transverse, λ2,3 − 1, magnetostrictions are shown in Fig. 7. The light-
colored patches around the respective averages indicate the scatter resulting from the considered
realizations.

Specifically, in Fig. 7a, the scatter of the magnetization response is found to be vanishingly
small, whereas, those of the parallel (λ1 in Fig. 7b) and transverse magnetostrictions (λ2 and λ3

in Fig. 7c) are gradually increasing with the magnetic load. Notice from Fig. 7 that neither the
effective magnetization, nor the magnetostriction saturates at higher h-fields. Rather, they main-
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tain a slope with the applied h
app
1 . Such response can be attributed to the inherent non-saturating

magnetization response of the NdFeB particles, as observed in Fig. 3 for χep > 0. Moreover, we

observe that the overall amplitude of the magnetostriction is rather small (∼ 10−3) indicating that
a matrix with shear modulus Gm = 0.5 MPa is rather stiff in relation to the magnetic particle-
to-particle forces. Even so, a permanent deformation is obtained upon complete removal of the
applied magnetic field. This is obviously a direct consequence of the permanent magnetization of
the particles and of their mutual interaction once magnetized permanently.

In Fig. 8a-c, we show the contours of the microscopic b̆1/µ0m
s
p fields after the end of the initial

half-cycle (i.e., final state shown in Fig. 7) in the deformed RVEs for the three particle volume
fractions under consideration. Figure 8a-c also shows that the magnetic self-fields under no applied
happ become considerably stronger with increasing volume fraction. Furthermore, the contours
of microscopic m̆1/m

s
p are shown in Fig. 8d-f, where we observe m̆1 ≈ ms

p in the particles, while
m̆1 = 0 in the non-magnetic matrix phase. In accord with the computed effective magnetostrictions
in Fig. 7b and c, we observe very small overall deformation of the RVEs, although the local
(microscopic) strain fields may be much higher (twice as large) and varying extensively in the
matrix phase. For instance, the contours of the local nominal strain λ̆1 − 1 fields are shown in
Fig. 8g-i.

Figure 9: Comparison of the effective (a) magnetization, (b) parallel and (c) transverse magnetostriction responses
from the F−H and F−B models with the numerical homogenization estimates for a matrix shear modulus Gm = 0.5
MPa. The h-MRE is subjected to an uniaxial cyclic h-field of magnitude |h1| = 3ms

p and the results for three different
particle volume fractions of c = 0.1, 0.2 and 0.3 are shown. The average of the effective responses computed from five
realizations of a RVE are shown without the fluctuation patches for the magnetostrictions. (Taken from Mukherjee
and Danas (2022)).

The magnetization and magnetostriction response under a fully reversed proportional loading
is then computed for c = 0.1, 0.2 and 0.3 by considering a single RVE of each volume fraction.
These RVEs are selected to be those, whose effective response is the closest to the corresponding
average shown by the firm lines in Fig. 7b and c.

Then, the proposed F−H and F−B model responses are compared with the full-field numerical
homogenization response in Fig. 9 for c = 0.1, 0.2 and 0.3. Here we consider a representative matrix
shear modulus Gm = 0.5 MPa, which corresponds to the shear modulus of the PDMS elastomer.
Notice in Fig. 9a that the saturation magnetization of the h-MREs increases in an almost linear
fashion with c, which resembles closely to the s-MREs responses (Lefèvre et al., 2017; Danas, 2017;
Mukherjee et al., 2020). The coercivity bc of the composite, however, undergoes very little change
with the increase in c. Nonetheless, the effective susceptibilities χe and χr also increase with c,

44



which can be observed clearly from Fig. 9a. Overall, the model predictions for the magnetization
in the h-MRE match perfectly with the numerically computed effective response.

The local magnetostriction responses, on the other hand, exhibit a butterfly-shaped hysteresis
loop with the applied cyclic magnetic field (see Fig. 9b and c). This response is essentially controlled
by the coupling parameter β, which is calibrated from the numerically computed magnetostriction
responses and has been provided in (64). Being the closed form complementary energy density,
the F −B model does not need any further calibration. Thus, the same β parameter is used for
the F−B model, yielding excellent match with the numerical homogenization response.

In this regard, we find that the model is capable of reproducing extremely well the effective
magnetic response of the h-MRE for several volume fractions. As a result of this excellent agree-
ment, the effective magnetostriction is also well reproduced by only a single calibration constant
since β is a constant for a given volume fraction c.

In addition, we note that as the volume fraction of the particles decreases, the magnetization
tends to saturate faster. By contrast, the switching point controlled by the magnetic coercivity
bc of the composite seems to be almost insensitive to the particle volume fraction, which justifies
the proposition (69). We further note that the calibrated β parameter in (64) is also found to
predict the effective magnetostriction responses considerably well for all Gm ≥ 0.2 MPa. Some
representative computations to probe this predicting capability of the model have been carried
out. These results are not shown here for brevity.

7.1.2. Effect of bcp and χep

In this section, we explore theoretically the response of an h-MRE material for different values
of bcp and χep. We consider a shear modulus for the matrix phase Gm = 0.3 MPa along with the
magnetic particle parameters shown in Table 3 and the coupling parameter as in (64). Moreover,
we use the inverse Langevin saturation function defined in the last row of Table 1. We further
control the b field and we impose overall

Smech
ij = 0, ∀i, j = 1, 2, 3, Fij = 0, ∀i 6= j, bapp = b1e1. (133)

The choice of these parameters in the limit of vanishing dissipation, i.e., bcp → 0 will allow in
the next section to probe the h-MRE model response against the FE results for purely energetic
s-MREs with carbonyl iron particle (CIP) inclusions, obtained in Mukherjee et al. (2020).

Table 3: Magnetic properties of the CIP particles in h-MRE formulation in Section 4

χep χrp µ0m
s
p (T) bcp (T) µ0 (µN ·A2)

(0, 0.2, 0.4 30.0 2.5 0.05, 0.5, 1 4π10−1

Specifically, Fig. 10 shows the prediction of the h-MRE models (recall that both versions F−H
and F − B are equivalent) for three values of bcp = 0.05, 0.5, 1T and χep = 0. It is plain from
those graphs, that as bcp → 0 dissipation reduces to zero for all variables shown. Perhaps more
interestingly, the internal variable Hr becomes anhysteretic too. In fact, we have that Hr = −m
when χep = 0. More importantly, it takes non-zero values in the limit bcp → 0.

When χep is not zero, as shown in Fig. 11, Hr is directly linked to m but is not equal to
−m. Moreover, in the same figure, we observe that the parameter χep controls the unloading
slope of the h-MRE. It was shown in Mukherjee and Danas (2019) that NdFeB powders have
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Figure 10: Comparison of the (a) magnetization m1, (b) (minus) internal variable −Hr1 and (c) magnetostriction
response λ1 − 1 as predicted by the h-MRE model for three values of bcp = 0.05, 0.5, 1T, χep = 0, particle volume
fraction c = 0.3 and matrix shear modulus Gm = 0.3MPa.
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Figure 11: Comparison of the (a) magnetization m1, (b) (minus) internal variable −Hr1 and (c) magnetostriction
response λ1 − 1 as predicted by the h-MRE model for three values of χep = 0., 0.2, 0.4, coercivity bcp = 1T, particle
volume fraction c = 0.3 and matrix shear modulus Gm = 0.3MPa.

values of χep that range between 0.01 − 0.2. This of course has important implications on the
corresponding magnetization value upon complete removal of the external magnetic field as well
as the corresponding magnetostriction which can reach much higher values when χep is large.

Remark 15. It is interesting to remark at this point that in essence, the magnetization variable
may be seen as some form of an internal variable in the general dissipative model and not an
independent one, as it is usually assumed in the literature (Brown, 1966; James and Kinderlehrer,
1993; Kankanala and Triantafyllidis, 2004; Danas et al., 2012). The reason is that m is directly
related to the internal variable Hr introduced originally in Mukherjee et al. (2021). This interpre-
tation is in fact consistent with the fact that no boundary conditions can be imposed on m and
thus no differential constraints. By contrast, an internal variable serves exactly that purpose, i.e.,
in addition to describe dissipation in the present context, it may be used to provide a measure
of the internal state of the material similar to plastic strain in elasto-plasticity or polarization in
electro-elasticity. In fact, the mechanism itself of magnetic domain motion inducing an internal
state of magnetization or polarization may be thought in similar terms as the dislocation motion
causes an internal state of plasticity. Another example of such a variable is the stress polarization
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in Hashin-Shtrikman estimates and again in that setting the stress polarization can exhibit jumps
along interfaces or boundaries. This makes these polarization/magnetization variables powerful
quantities to establish sometimes analytical approximate results. Nevertheless, they are not able
to describe the material state entirely since either B or H still needs to be used so that actual
boundary conditions can be imposed in a BVP. Finally, when only the energetic response of the
material is analyzed the use of magnetization is in the general sense unnecessary.

7.1.3. The limit of zero dissipation

Following the previous analysis, we now set bc = 10−6 and χep, keeping the remaining parameters
presented in Table 3 and assess the h-MRE models by comparison with the FE results of (Mukherjee
et al., 2020), which correspond to purely energetic s-MRE simulations. We plot the numerical FE
response along with the model magnetization and magnetostriction responses in Fig. 12a and b,c,
respectively. Besides the excellent agreement between the numerical homogenization computations

Figure 12: Comparison of the (a) magnetization, (b) parallel and (c) transverse magnetostriction responses from the
F −H and F − B models with the numerical homogenization estimates. The s-MRE is subjected to an uniaxial
cyclic h-field of magnitude |h1| = 0.5ms

p and the results for three different particle volume fractions of c = 0.1, 0.2
and 0.3 are shown. (Taken from Mukherjee and Danas (2022)).

and the model predictions, we observe two key differences between the s- and h-MREs by comparing
Figs. 9 and 12. Firstly, and the obvious is the absence of hysteresis in the s-MREs. Secondly, s-
MREs tend to saturate at a lower applied h1, while h-MREs saturate very slowly to a constant
magnetization. This is in agreement with the corresponding s-MRE experiments of Danas et al.
(2012) as well as those presented in Mukherjee and Danas (2019) for hard magnets.

7.2. Magnetization independent of stretching in MREs

7.2.1. Uniaxial tension perpendicular to pre-magnetization

In this section, we apply a purely mechanical uniaxial tension loading along the e2 direction,
which is perpendicular to the direction e1 of the pre-magnetization of the h-MRE, while the applied
magnetic field is kept identically zero, i.e.,

Smech
22 6= 0, Smech

11 = Smech
33 = 0, Fij = 0, ∀i 6= j, happ = 0.
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As shown in the inset of Fig. 13a, we consider half a cycle, described by a linear increase of Smech
22

from 0 to Gm and subsequent decrease to 0 (note that the rate of loading is inconsequential since
the models under study are rate-independent). Moreover, we show results for three shear moduli,
Gm = 0.3, 0.5, 1.0.

Figure 13: Evolutions of (a) mechanical stretch λ2 − λ0
2 (with λ0

2 denoting the initial remanent stretch due to the
pre-magnetization) and magnetizations along (b) e1 and (c) e2 under applied uniaxial tensile stress Smech

22 , whose
temporal evolution is shown in the inset of (a). The inset of (c) shows a schematic of the h-MRE with the direction
of pre-magnetization m0 and the applied uniaxial tension. Contours of the b̆ field in the deformed RVE under applied
Smech
22 /Gm = 1 for Gm = (d) 1.0, (e) 0.5 and (f) 0.3 MPa. The arrows on the particles show the average direction of m̆

in them. (Taken from Mukherjee et al. (2021)).

Fig. 13a, b and c show the mechanical stretch λ2 and the magnetizations along the e1 and e2

directions for the numerical RVE and the analytical model. The corresponding deformed RVEs
are depicted in Fig. 13d-f. It is noted that the numerically computed effective stretch λ2 − λ0

2

(with λ0
2 denoting the initial remanent stretch due to the pre-magnetization) does fluctuate with

the different RVE realizations. Nevertheless, as shown in Fig. 7, the magnitude of such realization-
dependent scatter in the strain remain less than 5× 10−4, which is considerably smaller than the
magnitude of the stretch (∼ 0.25), shown in Fig. 13a. Thus, the numerical computations with the
monodisperse RVEs lead to excellent estimates under purely mechanical loading conditions, while
at the same time, they keep the computational expense considerably low. This observation has
already been done in the context of s-MREs by Danas (2017), where the mechanical and magnetic
response was found to converge for RVEs of considerably lower number of particles, whereas the
pure magnetostriction (i.e. for zero overall applied mechanical load) required substantially larger
RVE sizes with more particles.
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In particular, we observe excellent agreement between the numerical homogenization results
and the model estimates in all cases shown in Fig. 13a-c, namely, the principle stretch λ2 and
the effective magnetization responses along e1 and e2. The model predictions for the transverse
stretches λ2 and λ3 also match perfectly the numerically computed responses (not shown explicitly
here). It is noted further that all results shown here are independent of the matrix shear modulus
upon the normalization Smech

22 /Gm. This is a particular feature of the Neo-Hookean model used
for the mechanical description of the matrix phase and simply implies that the overall response
of the h-MRE is also of a Neo-Hookean type at least to a very good approximation (see relevant
discussion in Lopez-Pamies et al. (2013)).

Remark 16. Finally, we close the discussion of Fig. 13 with an important observation, that of the
stretch-independence of the current effective remanent magnetization m0, observed in Fig. 13b,c,
as predicted by the model and confirmed by the RVE simulations. In simple words, we find that
the current remanent magnetization remains unaffected by the stressing (or stretching) of the solid.
As a result, the mechanical cyclic loading of a pre-magnetized h-MRE does not lead to dissipa-
tion. This does not mean that the local magnetization does not change via corresponding particle
rearrangement. On the contrary, particles rearrange due to the finite straining. Nonetheless, this
does not affect the average current magnetization amplitude of the RVE, which is an important
feature that needs to be reproduced both by phenomenological top-down as well as homogeniza-
tion bottom-up models. The ability of the present model to recover this feature is linked to the
definition of the internal variable Hr in the intermediate stretch-free configuration as discussed
in Section 4.1 and the corresponding choice of invariants and coupled energy proposed. In turn,
this feature has also been observed in the context of s-MREs experimentally (Danas et al., 2012),
numerically (Mukherjee et al., 2020) and theoretically (Lefèvre et al., 2017) via an independence of
the current magnetization response to pre-stressing. This feature is linked also to the underlying
(quasi-)incompressibility of the materials under study and should be taken into account in the
modeling of MREs in general. We also note that the same response is observed if the tension is
parallel to the pre-magnetization direction (not shown here).

Remark 17. We further remark that this observation of the stretch independence of magnetization
amplitude in incompressible MREs has been very recently confirmed by Yan et al. (2023) (but see
also Yan et al. (2021a)) experimentally by pressurizing (and thus pre-stretching) thin plates. These
authors have then proposed a modification of the original Zhao et al. (2019) theory. In particular,
they have proposed that the current magnetization m is evaluated in terms of the pre-magnetization
(reference) state m0 as m = Rm0, instead of m = Fm0. Given the direct connection between
Hr and m shown in Fig. 10, this is equivalent to the present proposition of Hr being stretch-
independent and defined in the intermediate configuration (see Fig. 2).

To go a step further, it is rather straightforward to consider a thought example, where a
saturated pre-magnetized h-MRE along direction 1 (i.e. m0

1 = ms) is subjected to a stretch along
direction 1, i.e., F11 > 1. By using the original proposition, m = Fm0, it would simply imply that
the current magnetization m1 = F11m

0
1 > ms is (much) larger than the saturation magnetization

of the h-MRE, which is practically and theoretically impossible. On the contrary, m = Rm0

would simply lead to m1 = m0
1 = ms, a result that is theoretically consistent and as was shown

numerically and experimentally is the case for incompressible s- and h-MREs.

7.2.2. Simple shear parallel to pre-magnetization
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We apply a purely mechanical simple shear stress Smech
12 loading. The corresponding traction

vector is parallel to the pre-magnetization direction e1 of the h-MRE, while the applied magnetic
field is kept identically zero during this step, i.e.,

Smech
12 6= 0, Smech

11 = Smech
22 = Smech

33 = 0, happ = 0,

together with F21 = F13 = F31 = F23 = F32 = 0. Furthermore, the evolution for the applied Smech
12

is shown in the inset of Fig. 14a.

Figure 14: Evolutions of (a) shear strain γ12 and magnetizations along (b) e1 and (c) e2 under applied simple shear
stress Smech

12 , whose loading path is shown in the inset of (a). A schematic of the h-MRE with the direction of pre-
magnetization m0 and the applied shear stress is shown in the inset of (b). Contours of the b̆ field in the deformed
RVE under applied Smech

12 /Gm = 1 for Gm = (d) 1.0, (e) 0.5 and (f) 0.3 MPa. The arrows on the particles show the
average direction of m̆ in them. (Taken from Mukherjee et al. (2021)).

In Fig. 14a-c, we observe an excellent agreement between the model predictions and the nu-
merical homogenization results for the effective shear strain F12 = γ12 as well as for the effective
magnetizations along e1 and e2, respectively. All results, shown in the context of this figures, are
independent of the matrix shear modulus upon the normalization Smech

12 /Gm.
Again, we observe that despite the significant shearing strains and particle rearrangements,

the amplitude of the current effective magnetization m remains unaffected (see inset of Fig. 14b).
Instead, the orientation of the magnetization vector significantly changes with the applied shearing,
as revealed by the change of the individual components m1/m

s
p and m2/m

s
p in Fig. 14b and c,

respectively. Interestingly, this rotation remains (almost) identical to the macroscopic (average)
rotation of the RVE induced by the shearing. Therefore, the affine rotation-based model presented
in this work (as well as that of Yan et al. (2023)) predicts the evolution of m in this case accurately.

Figures 14d-f show three deformed RVEs at Smech
12 /Gm = 1 for the three Gm under consideration.

It is noted that the RVE deformations and the local b̆1 fields remain identical for all three Gm under
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consideration. The only key feature to note here is the uniform distribution of the particle rotations,
which, in turn, rotates the local (microscopic) and therefore the global (effective) magnetization
vectors.

7.3. NdFeB-based h-MRE versus CIP-based s-MRE response

In this section, we provide a useful set of results that serve to discuss practical differences
between actual h-MREs with NdFeB particles and s-MREs with CIP particles. In the very recent
literature, an impressive amount of studies has focused mainly on h-MREs subjected to small
magnetic fields at their fully pre-magnetized state. While this state exploits mainly magnetic
torques in slender objects, it is only a small fraction of the response of the more general class of
MRE materials and potential application (see for instance Moreno-Mateos et al. (2022); Garcia-
Gonzalez et al. (2023)). We use for simplicity the same inverse Langevin saturation function defined
in the last row of Table 1 for both h- and s-MRE results shown next. This changes only slightly the
transition response of h-MREs but not the initial and final saturation response. In order to cover
a variety of effects, we will include in the following also pre-stress effects. In the work of Danas
et al. (2012) related to CIP-filled s-MREs, it was shown that the magnetization response is almost
entirely insensitive to the pre-stress. In contrast, a strong effect of the pre-applied mechanical load
was observed for the magnetostriction. In the following, we will consider various combinations of
the pre-stresses. The magnetic field is always applied along direction 1, i.e., b = b1e1, and the
matrix phase has a shear modulus Gm = 0.05MPa.

In this regard, we analyze first in Fig. 15 the effect of uniaxial pre-stressing parallel to the
applied magnetic field, such that

Smech
11 = {−1, 0, 1}, Smech

22 = Smech
33 = 0, Fij = 0, ∀i 6= j, b = b1e1.

We note first that the pre-stress has no effect on the magnetization response in Fig. 15a. This
is consistent with the early work of Danas et al. (2012) on s-MREs, while we observe that the
same feature is true for the h-MREs too. Moreover, the CIP-based s-MRE has a much higher
saturation magnetization and initial permeability than that for the NdFeB. This allows for the
s-MRE material to reach much higher magnetostrictive strains and at smaller magnetic fields as
clearly shown in Fig. 15b. In turn, the h-MRE exhibits important dissipative effects and much lower
magnetostrictive strains. Similarly, as a direct consequence of this feature, the s-MRE is expected
to exhibit a stronger “magnetorheological” effect (i.e., increase in the apparent shear or Young’s
modulus) upon the application of a magnetic field (Diguet et al., 2021). In turn, the h-MRE retains
a permanent magnetization in the absence of an applied magnetic field and thus is more relevant
for torque-based or permanent magnetic applications. We also observe that tensile pre-stresses
increase the resulting amplitude of the magnetostriction (which remains always negative in this
homogenization analysis), while compressive ones lead to a decrease of |∆λ1|. This observation is
the same for both MREs considered here.

We close the section by considering in Fig. 16, magnetostriction curves for (a) the CIP-based
s-MRE and (b) NdFeB h-MRE for three sets of triaxial pre-stress values

(Smech
11 , Smech

22 )/Gm = (0, 1)|(1, 1)|(1, 0), Smech
22 /Gm = Smech

33 /Gm,

Fij = 0, ∀i 6= j, b = b1e1.

Specifically, Fig. 16a,b shows that uniaxial tension pre-stressing along the magnetic field leads to
higher amplitude of magnetostrictive strains than tension along the perpendicular direction. A
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Figure 15: Comparison of the (a) magnetization and (b) magnetostriction response using the material properties
defined in Table 2 for the h-MRE with NdFeB particles and Table 3 for the s-MRE with CIP particles. Three
uniaxial prestress values Smech

11 /Gm = {−1, 0, 1} are considered along the applied magnetic field. We set the particle
volume fraction to c = 0.3 and matrix shear modulus Gm = 0.05MPa. Magnetostriction in this figure is defined as the
magnetically induced strain minus the mechanical strain induced by the mechanical prestress, i.e. ∆λ1 = λ1 − λmech1 .
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Figure 16: Comparison of the magnetostriction response using the material properties defined (a) in Table 3 for the
s-MRE with CIP particles and (b) in Table 2 for the h-MRE with NdFeB particles. Three prestress sets of values
(Smech

11 , Smech
22 )/Gm = (1, 0)|(1, 1)|(0, 1) are considered. We set the particle volume fraction to c = 0.3 and matrix shear

modulus Gm = 0.05MPa. Magnetostriction in this figure is defined as the magnetically induced strain minus the
mechanical strain induced by the mechanical prestress, i.e. ∆λ1 = λ1 − λ0

1.

hydrostatic tension pre-stress leads to a magnetostriction ∆λ1 that lies in-between the two. This
figure reveals clearly the strong effect of pre-stress upon the magnetostriction and by extension
to the magnetorheological effect, which would be present if instead of pre-stressing a pre-straining
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was applied. Again, the magnetization is not affected in this case by the pre-stresses and is the
same with that shown in Fig. 15.

7.4. Energetic s-MRE models versus h-MRE models with zero dissipation

In Section 4, we have provided a unified modeling framework for isotropic, incompressible hard
and soft MREs. The latter is obtained by considering the limit of bcp → 0. However, in practice this
limit is rather difficult to consider analytically since in that limit Hr becomes a nonlinear function
of H or B, depending on which formulation one uses.

An alternative purely energetic approach, which however, was introduced earlier than the full
dissipative one, has been discussed in Section 5 and originally presented in Mukherjee et al. (2020).
This approach is not dual as already discussed in the aforementioned section but, nonetheless,
provides both an F −H and F − B model that are close to each other. In the original work of
Mukherjee et al. (2020), those models were calibrated against the analytical, implicit homogeniza-
tion model of Lefèvre et al. (2017). As it was shown in that work, while the proposed models (all
of them by construction) do well for CIP volume fractions of c ≤ 0.2, they tend to underestimate
the magnetostriction (but not the magnetization) response for c > 0.25 when compared with cor-
responding FE periodic results. In the present manuscript, we have introduced the new function
(92) to fix this discrepancy.

Table 4: Magnetic properties of the CIP particles in s-MRE formulation in Section 5
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Figure 17: Comparison of the (a) magnetization and (b) magnetostriction response as predicted by the s-MRE
models discussed in Section 5 and the reference h-MRE models at the limit of bcp → 0 for three particle volume
fractions c = 0.1, 0.2 and 0.3 and matrix shear modulus Gm = 0.05MPa.

In view of this, we provide in Figs. 17 and 18 a comparison between the results obtained previously
in the case of vanishing dissipation by the h-MRE model with bcp → 0 and the s-MRE models
presented in Section 5. For the s-MRE models we use the parameters provided in Table 4.
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Figure 18: Comparison of the (a) magnetization and (b) magnetostriction response as predicted by the s-MRE
models discussed in Section 5 and the reference h-MRE models at the limit of bcp → 0 for three particle volume
fractions c = 0.1, 0.2 and 0.3 and matrix shear modulus Gm = 0.3MPa.

In particular, we observe that for both matrix moduli Gm = 0.05, 0.3 MPa considered here as
an example, all models lie fairly close to each other. Moreover, we observe no dependence of the
magnetization response on the moduli of the matrix phase. The h-MRE model is considered as
the reference case given its excellent agreement with the FE simulations discussed in the previous
section. In this view then, the F − H (F − B) s-MRE model tends to slightly underestimate
(overestimate) the magnetostriction amplitude at large volume fractions (e.g., c = 0.3). In turn,
the s-MRE models in general underestimate slightly the magnetization response. For volume
fractions c ≤ 0.2, the agreement between all models is excellent. In this regard, we conclude in this
study that any of the above models may be used to model s-MREs depending on the problem at
hand and convenience. Obviously, the purely energetic s-MRE models are easier to implement since
they do not require any definition of internal variables or incremental procedures (as described in
the general case in Section 6).

8. Results: Numerical BVP simulations

This section shows numerically computed boundary value problem (BVP) solutions for s-MREs
as well as uniformly and non-uniformly pre-magnetized h-MRE beams. The following results make
use of the previously discussed models, which are numerically implemented in user-element Abaqus
subroutines and consider the soft and hard particle magnetization parameters as in Tables 4 and
2, respectively. The particle volume fraction c and the loading conditions for pre-magnetization
and/or actuation steps are discussed under specific subsections depending on the examples ana-
lyzed. Moreover, the specific Dirichlet boundary conditions on uτ , ϕτ and ατ , i.e, the case-specific
versions of the admissible sets U in (108), G in (109) and B in (112), respectively, are detailed in
the following.
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8.1. Generic numerical BVP setting

The discretization of the scalar and vector potential-based variational principles were discussed
in a fairly general setting so far in Section 6. We now specify a geometry for the numerical BVP
of interest. Although the MREs are finding applications in a wide variety of engineering devices,
such as in actuators, most of the recent attention is in fabrication and testing of slender structures,
which find applications in soft robotic devices (Kim et al., 2018; Ren et al., 2019) as well as in
thin membranes or films (Psarra et al., 2017, 2019; Moreno-Mateos et al., 2022). This includes
spatially uniformly and non-uniformly pre-magnetized beams, functionally graded beams with a
distribution of the particle volume fractions c, as well as films resting substrates.

In particular, we consider a representative (but otherwise generic) two-dimensional, plane-strain
analysis of the bending of pre-magnetized slender beams. We emphasize in this context, that the
magnetic fields are applied via the fixed electromagnet poles far away from the MRE (not modeled
explicitly here), both during the pre-magnetization and actuation. Thus, it is necessary to embed
the MREs in a surrounding air. Moreover, since the magnetic fields are applied far away (or
at a given distance), the air domain is considered to be substantially larger than the MRE. In
particular, let us consider the air domain length L > ` (e.g. ten times larger) to ensure that the

MRE deflection is sufficiently far from the boundary of the air ∂VTop
Air ∪ ∂V

Right
Air ∪ ∂VBottom

Air ∪ ∂VLeft
Air

(see Fig. 19a).

Figure 19: (a) Diagram of the full BVP domain having MRE and the surrounding air. The air domain with an
external boundary ∂VTop

Air ∪ ∂V
Right
Air ∪ ∂VBottom

Air ∪ ∂VLeft
Air is considered to be a square of length L. The reference

coordinate system X is considered to have origin at the center of the air domain. (b) Dimensions of the MRE having
the interface ∂VTop

MRE ∪ ∂V
Right
MRE ∪ ∂V

Bottom
MRE ∪ ∂VLeft

MRE with the surrounding air. The MRE length ` is considered to be
` = 0.1L and the aspect ratio of the MRE is defined as rasp = `/w. (c) A part of the structured mesh considered
in the calculations. Standard linear 4-node quadratic isoparametric elements are employed. (Taken from Mukherjee
and Danas (2022)).

As shown in Fig. 19b, the slender MRE beam of length ` and width w has a common interface
∂VTop

MRE ∪ ∂V
Right
MRE ∪ ∂VBottom

MRE ∪ ∂VLeft
MRE with the surrounding air. The aspect ratio of the beam is

hence defined via rasp = `/w. Finally, the structured FE mesh used in the computations is shown in
Fig. 19c. Throughout this paper we consider linear four-node quadrilateral isoparametric elements
in the FE computations.

8.2. Treatment of air

The air surrounding the MRE has (nearly) zero mechanical stiffness, whereas the magnetic b
and h fields in it are finite. Specifically, the former is related to the latter via b = µ0h in the
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surrounding air. Dealing with a material of nearly zero mechanical stiffness in the present fully
implicit, Lagrangian modeling framework leads to extreme mesh distortions at the corners of the
MRE, eventually stopping the numerical simulation from converging.

Till this date, a number of methods have been implemented for dealing with the surrounding
air in the magneto-active structures. The most straightforward way to model the air is to consider
it a nearly incompressible or compressible hyperelastic solid having shear modulus of ∼ 1 Pa
(Rambausek and Keip, 2018; Dorn et al., 2021). However, such an assumption may lead to an
underestimation of the mechanical deformations of the MREs, specifically when undergoing large
deformations or deflections. An alternative approach, namely, the method of constraining the
motion of the air nodes surrounding the MRE is found to yield very accurate results of MRE
deformations in air (Psarra et al., 2019; Mukherjee et al., 2021). In particular, the latter considers
the air shear modulus to be zero but simultaneously applies linear constraints on all nodes in the air
domain to make them move according to the deformation/deflection of the MRE boundary. Having
said that, we also remark that the application of such linear constraints on the air nodes, where two
or more (magnetic or non-magnetic) structures are interacting, may become difficult to implement
properly so that numerical convergence is achieved. A quantitative comparison of the performance
of different modeling approaches for the surrounding air is drawn in a recent paper (Rambausek
et al., 2022). Two additional promising approaches, not discussed here, have been proposed only
recently in Rambausek and Schöberl (2023), where a proper treatment of the Maxwell stress at
the interface between the magnetoelastic solid and the air allows to eliminate the spurious modes
present in such problems and allow for very good convergence. Another potential solution to the
problem could be the use of meshfree methods (see for instance Kumar et al. (2019)). Therein, it
was shown that very large strains may be reached at soft regions of the domain in a straightforward
manner. Nonetheless, those methods are not yet available in more general-use software packages
and thus their use is less visited.

In this paper, we consider standalone MRE solids that are subjected to spatially uniform
magnetic fields, as shown in Fig. 19a. Thus, we employ the air node constraining method to model
the deformation in the domain VAir. In fact, the linear constraints on the displacement field u for
all X ∈ VAir can be applied via directly augmenting the incremental variational principles (106)
and (110) by a penalty energy

Wpenalty(u) =

NAir∑
j=1

2∑
i=1

Gc

2Lcζ

(
C(j)
i

)2
, (134)

where NAir is the number of air nodes, Lc is a reference length parameter usually considered to be
equal to w, Gc is an arbitrary shear modulus that we consider to be identical to that of the matrix
and ζ is the penalty parameter, which is set to 10−3. Nevertheless, any value of ζ in the range
10−6− 10−3 ensures a proper imposition of the constraint, not affecting the numerical convergence
significantly. Given that those constraints are linear one has also the option to directly use the
∗Equation command in Abaqus. Such an approach has also been tested showing no differences
with the penalty approach described here in two and three dimensions. Finally, the pointwise

constraint C(j)
i is defined as (Psarra et al., 2019)

C(j)
i ≡


d

(j)
i u

(j)
i

∣∣∣
∂VMRE

− u(j)
i

∣∣∣
VAir

= 0, if 0 < d
(j)
i ≤ 1

u
(j)
i

∣∣∣
VAir

= 0, otherwise,
(135)
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which ties the displacement of any node j in VAir with that of its nearest node on the Air/MRE
interface ∂VMRE. In practice, we construct a set of two-node elements comprising one node from
VAir and one from the set ∂VMRE that has the least Euclidean distance from the former. Subse-
quently, we add the “force” and “stiffness” terms to the global force and stiffness matrices. Those
terms emerge by considering first and second variations of the corresponding degrees-of-freedom
involved the penalty energy (134).

The constraint “weight” function d
(j)
i is defined in terms of the absolute distance difference

between the Xi (i = 1, 2) coordinates of the points in VAir and on ∂VMRE, such that

d
(j)
i = 1−

∣∣∣X(j)
i

∣∣
VAir
−X(j)

i

∣∣
∂VMRE

∣∣∣
RfL/2

, with i = 1, 2. (136)

Here, Rf ∈ (0.5, 1] is a fraction coefficient that is user-defined and serves to prescribe the range of
the deformable air. The air nodes lying outside that region are simply fixed and are not allowed
to displace. The penalty energy (134) may be added directly to the general variational principles
(106) or (110) or simply impose the linear constraints (135) via an elimination technique (such as
the ∗Equation command in Abaqus).

8.3. Magnetostriction and magnetization response of a spherical s-MRE specimen

In this section, we show qualitative results for the ideal problem of an s-MRE spherical specimen
embedded in a large spherical air domain as shown in Fig. 20a. A remotely applied magnetic field
induces magnetostrictive strains and magnetization inside the inclusion. This problem has been
the focus of various studies starting from the seminal manuscript of Brown (1966), who proposed
a solution in the small strain setting. Therein, he has shown that the presence of a magnetically-
induced traction, i.e., the magnetic part of the Maxwell stress (see for instance equation (103))
leads to non-uniform mechanical fields in the magneto-elastic inclusion. Here, we recall the analysis
carried out in Lefèvre et al. (2017) and Lefèvre et al. (2019) in the context of finite strains. This
is only possible numerically.

We follow the approach of Lefèvre et al. (2017) wherein, for computational expediency, numer-
ical solutions in the specimen and surrounding space —assumed to be air — are generated on a
spatial domain of sufficiently large but finite extent, and not on R3 entirely. While full details of
this approach can be found in Section 6 in (Lefèvre et al., 2017), it is appropriate to mention here
that (i) the finite domain of computation is comprised of the spherical MRE specimen surrounded
by an air-filled thick spherical shell subjected on its external surface to the affine boundary con-
ditions x = X and ϕ = −H∞ ·X (see Fig. 20(a)), (ii) the surrounding air is treated as a highly
compressible magnetoelastic material with vanishingly small mechanical stiffness, and (iii) the nu-
merical solutions are generated by means of a conforming axisymmetric 7-node hybrid triangular
finite element discretization that leverages the axial symmetry of the problem around the direction,
say e3, of the applied magnetic field H∞ = H∞e3.

By providing pointwise solutions for the deformation and magnetic fields in the MRE specimen
and surrounding air, this approach also allows to extract global information about the deformation
and magnetization of the specimen as would be done experimentally (Diguet et al., 2010; Diguet,
2010).

Figure 21 presents contour plots in the e1-e3 plane of the local component F33(X) of the defor-
mation gradient and of the local component m3(x) of the magnetization over spherical specimens
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Figure 20: (a) Schematic of the finite domain utilized to generate numerical solutions for the BVP of a s-MRE sphere
embedded in air. The air domain is defined by a spherical shell of initial outer radius that is twenty times that of the
MRE specimen. Schematics of a spherical MRE specimen of initial radius A in its (b) undeformed and (c) deformed
configuration. (Taken from Lefèvre et al. (2019)).

made of s-MREs containing c = 0.222 volume fraction of CIP particles. We use the same material
properties for the CIP particles introduced in Table 4, while the matrix phase is taken with a shear
modulus Gm = 50kPA. The contours in Fig. 21a-c are shown over the undeformed configuration of
the specimen as implied by the argument X of F33(X), while the contours in Fig. 21d-e are shown
over the deformed configuration of the specimen as implied by the argument x of m3(x). Further,
the contours correspond to the magnitudes H∞ = 0.5, 1.0, 1.5 MA/m of the remotely applied
magnetic field H∞, and the color scale bars in each of them indicate the corresponding variation
of the quantity of interest from its minimum to its maximum.

It is also clear from Figs. 21a-c that the local deformation gradient is highly heterogeneous,
with regions in tension in the core of the specimen and regions in compression at its poles. In
turn, Fig. 21d-e indicate that the local magnetization is practically uniform across the specimen,
at least for the range of strains obtained in the current case. This implies that the material
magnetization response of the s-MRE can be accurately measured using probes at its boundary
(see for instance experimental setup in Bodelot et al. (2017)); the same is not true in general for
cylindrical specimens (Bodelot et al., 2017; Lefèvre et al., 2017). In that case, all fields are highly
heterogeneous. This implies that most experimental results available in the literature should be
analyzed with extreme caution by theoreticians who attempt to propose material models, since the
experimental measurements involve significant structural effects that sometimes are predominant
over the corresponding material response.

8.4. Uniformly pre-magnetized h-MRE cantilever beams

In the following two sections, we consider h-MREs with matrix shear modulus Gm = 0.187
MPa, which resembles closely that of the moderately-soft PDMS elastomers (Kim et al., 2018;
Zhao et al., 2019). Moreover, the matrix bulk modulus is considered to be G′m = 500Gm, which
ensures a nearly incompressible material response.

We start with the simplest case of the uniformly pre-magnetized cantilever beams with the
aspect ratios rasp = 10 and 17.5. Specifically, we simulate the experimental observations of Zhao
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Figure 21: Contour plots of (a)–(c) the component F33(X) of the deformation gradient over the undeformed con-
figuration, and (d)-(e) the component m3(x) of the magnetization over the deformed configuration of a spherical
specimen made of a s-MRE containing c = 0.222 volume fraction of iron particles. The contours correspond to the
remotely applied magnetic field H∞ = H∞e3 with H∞=0.5, 1.0, 1.5 MA/m. (Taken from Lefèvre et al. (2019)).

et al. (2019) for the deflection of pre-magnetized h-MREs under uniform transverse actuation fields.
To accomplish that, the loading is divided in two steps, which are detailed in the following.

• Step-I: First, we carry out the pre-magnetization along Ê1 by considering the air and MRE
boundaries to be fixed. Thus, the Dirichlet boundary conditions on u and ϕ for the F −H
model reads

uτ = 0, ∀ X ∈ ∂VMRE, and uτ = 0, ∀ X ∈ ∂VAir (137)

ϕτ = 0, ∀ X ∈ ∂VLeft
Air , and ϕτ = −

b
mag
1,τ

µ0
L, ∀ X ∈ ∂VLeft

Air , (138)

where b
mag
1,τ is the magnetization field at time τ . In particular, b

mag
1,τ is increased linearly in

time up to 2 T followed by its decrease at the same rate to 0T. The rate of b
mag
1,τ (and all

the following applied fields) is inconsequential in the simulations since the material model
is rate-independent. Similarly, the Dirichlet boundary condition on α for the F − B model
reads

ατ = 0, ∀ X ∈ ∂VBottom
Air and ατ = b

mag
1,τ L, ∀ X ∈ ∂VTop

Air , (139)

while that on uτ remains identical to (137).

• Step-II: Next, we carry out the actuation step, where we apply a uniform field bactu2 along

Ê2, i.e., transverse to the centerline of the beam. The magnitude of bactu2 is increased mono-
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tonically from 0 T. The specific Dirichlet boundary conditions on uτ and ϕτ in this step for
the F−H model reads

uτ = 0, ∀ X ∈ ∂VLeft
MRE, and uτ = 0, ∀ X ∈ ∂VAir (140)

ϕτ = 0, ∀ X ∈ ∂VBottom
Air , and ϕτ = −

bactu2,τ

µ0
L, ∀ X ∈ ∂VTop

Air . (141)

In turn, the boundary condition on α in this step for the F−B model computations reads

ατ = 0, ∀ X ∈ ∂VLeft
Air , and ατ = −bactu2,τ L, ∀ X ∈ ∂VRight

Air . (142)

In addition, we choose to work with a particle volume fraction of c = 0.177, which is identical to
that of the fabricated h-MREs by Zhao et al. (2019). Moreover, we consider Gm = 0.187 MPa,
which leads to an effective shear modulus G = 0.303 MPa for the composite. In fact, the latter is
experimentally measured by Zhao et al. (2019) for the h-MREs with c = 0.177.

In agreement to the experimental observations, the computations show the pre-magnetized h-
MREs to deflect immediately under the applied bactu2 . The end-tip deflections of the pre-magnetized
cantilevers with an increasing bactu2 is plotted in Fig. 22a for rasp = 10 and 17.5. Therein, we

Figure 22: (a) Comparison of the experimentally measured and the model (both F−H and F−B) predicted end-tip
deflections of the pre-magnetized cantilever beams of rasp = 10 and 17.5 under the applied actuation field along e2.
Comparison of the FE predicted deflected beam shape with the respective experimental measurements of Zhao et al.
(2019) under bactu2 = 25 mT for (b) rasp = 10 and (c) 17.5. (Taken from Mukherjee and Danas (2022)).

observe that the F −H and F − B-based numerical simulations yield identical responses, which
also agree with the experimentally measured end-tip deflection values for the two aforementioned
aspect ratios. Moreover, the experimentally captured deflected shape in Fig. 22b, which is of the
cantilever beam having rasp = 10 under bactu2 = 25 mT agrees excellently with its numerically
computed counterpart in Fig. 22c. The FE solutions are carried out via writing an user-defined
element (UEL) and coupling it with the ABAQUS/Standard solver.

The contours of the magnetic b, h and m field magnitudes along with the arrows showing their
directions in and around the pre-magnetized h-MRE cantilever of rasp = 17.5 are shown in Fig. 23.
Specifically, we show the contours under bactu2 = 0 mT and bactu2 = 12.5 mT in Figures 23a-c and d-f,
respectively. Notice from Fig. 23b that the h field in the pre-magnetized cantilever is considerably
smaller than the b and m fields in it. Thus, one can approximate the remanent b-field,i.e., the
b-field in the h-MRE after pre magnetization as shown in Fig. 23a, to be br ≈ µ0m. This is, in
fact, the key feature upon which the magnetic torque-based models (Kim et al., 2018; Zhao et al.,
2019) for the pre-magnetized h-MREs are based. Such simple approximations, however, do not
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Figure 23: Contours of the (a,d) |b|, (b,e) |h| and (c,f) |m| fields in and around a pre-magnetized h-MRE cantilever

of rasp = 17.5, (a-c) before and (d-f) after the application of an actuation field bactu2 = 12.5 mT along Ê2. The black
colored arrows are used to indicate the direction of the respective vector fields. The length of the arrows are scaled
according to the magnitude of the respective vectors. (Taken from Mukherjee and Danas (2022)).

hold in general for the cases of non-uniform pre-magnetization or the hybrid h-/s-MRE beams.
Specific examples of the hybrid hybrid h-/s-MRE beams and non-uniform pre-magnetization will
be discussed later in this section.

The contours in and around the deflected h-MRE under bactu2 = 12.5 mT in Figures 23d-f
show that the magnetic self fields (both, b and h but not m, which is 0 in the air) around it
get perturbed by the external field application and the mechanical deformation of the beam. The
remanent b and m fields in the h-MRE, however, only undergo rotation with a negligible change
in their magnitudes. Clearly, the applied field bactu2 = 12.5 mT, which results in such a rapid
deflection of the cantilever, is too weak to alter the remanent magnetization direction. Thus, in
spite of being a dissipative material in general, such very low field deflections of the pre-magnetized
beams leads to a highly reversible structural response, hence, making them an ideal candidate for
the remotely-actuated soft robots (Ren et al., 2019; Alapan et al., 2020; Lucarini et al., 2022a).

8.5. Non-uniformly pre-magnetized, functionally-graded h-MRE cantilever beams

The increasing trend in the development of remotely-actuated locomotion of mili-robotic struc-
tures necessitates the employment of non-uniformly pre-magnetized h-MREs, exhibiting preferen-
tial deflections patterns depending on the actuation field directions (Ren et al., 2019; Alapan et al.,
2020). Motivated from these recent applications, we employ the proposed incremental variational
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framework in the investigation of non-uniformly pre-magnetized h-MREs, specifically towards their
pre-magnetization patterns and actuation performances.

In particular, we consider a slender h-MRE beam with rasp = 20, Gm = 0.187 MPa and profile
it according to the configurations shown in Fig. 24a and b before applying the pre-magnetization
field along Ê2. Depending on this pre-magnetization profiling, the h-MREs are categorized into
two, namely, S1 and S2, as indicated on Fig. 24a and b. Moreover, we consider two more types of

Figure 24: (a,b) Pre-magnetization profiles along the magnetizing field bmag2 direction for the h-MRE beams of
rasp = 20. The profile S1 in (a) is considered to be the mirror image with respect to X2 axis, whereas, S2 in (b)
is considered to be the mirror image with respect to both, X1 and X2. (c) Volume fraction distribution profiles,
namely, T1 and T2, along the length of the beam. (Taken from Mukherjee and Danas (2022)).

h-MREs, namely, T1 and T2, depending on the spatial distribution of the particle volume fraction.
In particular, we consider a constant c = 0.177 for type T1, while a linearly varying c along the
reference coordinate X1 so that c = 0.054 + 0.492|X1|/` for the type T2 (see Fig. 24c). Notice
that the cumulative volume of the hard-magnetic particles are considered to be identical in T1 and
T2, so that the areas under both the curves in Fig. 24c remain identical. Hence, we investigate
the transverse actuation response of four distinct pre-magnetized h-MREs, namely, SiTj , where
i, j ≡ 1, 2.

Evidently, the initial profiling of the h-MRE beams and their release after the pre-magnetization
necessitates a couple of additional steps of mechanical loading compared to the examples presented
in Sections 8.4. These steps read

• Step-I: First, the profiling of the undeformed to the pre-magnetization shapes are performed
by applying a prescribed displacement uτ = uTop

τ for all X ∈ ∂VTop
MRE for S1 and uτ = uTop

τ for

all X ∈ ∂VTop
MRE, X1 > 0 and uτ = uBottom

τ for all X ∈ ∂VBottom
MRE , X1 < 0 for S2

8. In addition,
we set uτ = 0 for all X ∈ ∂VAir and for all X ∈ VMRE if X1 = 0, i.e., the displacements of
the central vertical section of the beam are also blocked.

• Step-II: Next, the pre-magnetization is carried out along Ê2 in terms of applying a suitable
Dirichlet boundary condition on ϕτ similar to Section 8.4. Moreover, the temporal profile
and amplitude of (b

mag
2 )τ remains identical to that of (b

mag
1 )τ in Section 8.4.

8In practice, we employ the “DISP” subroutine of ABAQUS, which apply an user-defined displacement in terms
of the current coordinates. We thus define the displacements uTop

1 = −0.6`(x1/`)
3 and uTop

2 = 1.2`(|x1|/`)3 for S1
and additionally, uBottom

1 = −0.6`(x1/`)
3 and uBottom

2 = −1.2`(x1/`)
3 to achieve the deformation profile S2. These

displacements are applied incrementally, held to the prescribed constant values and then released incrementally
during the appropriate steps.
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• Step-III: This step gradually releases the constraints on uτ for all X ∈ ∂VTop
MRE and X ∈

∂VBottom
MRE , while keeping uτ = 0 at VAir and the central vertical section of the beam. The

beam comes back to its (almost) undeformed shape after this step.

• Step-IV: This is essentially the actuation step where the field (bactu2 )τ is applied along Ê2.
Hence, the Dirichlet boundary condition on ϕτ is set identical to (141), while that on uτ
remain the same as at the end of Step-III.

The first key outcome from the aforementioned magneto-mechanical loading exercise is the
variation of the remanent magnetization m0 along the beam’s centerline at the end of Step-III.
Specifically, the variation of the magnitude of m0 and its angle with Ê1 for all four combinations
of pre-magnetization and c profiles, namely, SiTj with i, j ≡ 1, 2 are shown in Fig. 25a and b,
respectively. In agreement with the experimental observations (Ren et al., 2019; Alapan et al.,

Figure 25: Variation of the remanent magnetization m0 (a) magnitudes and (b) directions along the length of the
pre-magnetized h-MRE beams of type SiTi (i = 1, 2). (Taken from Mukherjee and Danas (2022)).

2020) , the magnitude of m0 remains the same in the beams S1T1 and S2T1, which have a spatially
uniform c. The beams S1T2 and S2T2, on the other hand, exhibit a variation of |m0| along the
centerline. In fact this variation is proportional to the c variation in these beams. Thus, |m0|
in the beam is primarily controlled by c. In contrast, the orientation of m0 is dictated by its
pre-magnetization profile S1 and S2 (see Fig. 25b). While the S1-type beams show opposite m0

directions along its two flanks, the direction of m0 in S2-type beams are identical in both the
flanks, hence, showing a bell curve like variation in angle with the X1 axis. Even though |m0| in
the beam is predictable in terms of c, the functional relationship of the θm profiles in Fig. 25b
with the respective pre-deformed shapes in Fig. 24a and b are not straightforward and cannot be
predicted beforehand prior solving the full field BVP.

To obtain more insight on the complexity of the non-uniform remanent fields, we plot the spatial
profiles of b0, h0 and m0 fields, both, in terms of magnitude and directions, in Fig. 26 for all four
aforementioned types of beams. The first, and obvious feature observed is the higher magnitude
of b0, h0 and m0 in the beams of type T2, which can directly be attributed to the higher c value
in T2 near the beam flanks (cf. e.g., Figures 26a-c and g-i). Moreover, comparing Fig. 26b,e with
h,k we observe that by linearly increasing c along the flanks, the concentration of h0 field near the
center of the beam can be eliminated. Of course, the spatial gradient of c in the T2-type beams
results in a stiffer gradient in the |b|0 along the beams’s centerline (cf. Figures 26a,d and g,j).

In contrast, the directions of b0, h0 and m0 fields in the h-MRE along with the stray fields
around the MRE domain depend strongly on their pre-magnetization profiles. Thus, we observe
qualitatively similar stray b and h field distributions around the in all the S1 or S2-type beams,
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Figure 26: Magnitude contours along with the directions of the remanent b0, h0 and m0 fields after the pre-
magnetization step (Step-3) for the h-MRE types (depending on the pre-deformation profile and particle distribution)
(a-c) S1T1, (d-f) S2T1, (g-i) S1T2 and (j-l) S2T2. (Taken from Mukherjee and Danas (2022)).

irrespective of the c distributions in them. Specifically, we observe from Figures 26a and g that the
beams with pre-magnetization profile S1 exhibit stronger self fields at the vicinity of their bottom
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boundary as compared to the top. Such preferential self-field distributions are typically achieved
by constructing Halbach chains (Halbach, 1980; Hilton and McMurry, 2012; Mansson, 2014), which
consists of an array of permanent magnets arranged in a particular fashion in order to concentrate
the resulting magnetic self field at one side of the chain. A similar feature is observed here for the
S1-type non-uniformly pre-magnetized hMRE in Figs. 26a and g. Thus, a properly pre-magnetized,
monolithic h-MRE can mimic the properties of classical, essentially heterogeneous, Halbach chain
structures.

In turn, such a concentration of the magnetic self fields are not observed in the beams having
the pre-magnetization profile as S2. Rather, the contours of higher magnetic self fields render an
inverted “S”-type shapes in all the S2-type beams. Thus, proper profiling of the beam before the
pre-magnetization may help engineering different self field distributions in the vicinity of a h-MRE.
The implications of such self field distributions on the actuation response of the S1 and S2-type
beams will be discussed next.

Remark 18. The b, h and m field magnitude contours and directions in Fig. 26 reveal that the
local remanent b and m fields in the h-MREs are not related by the relation b = µ0m. Hence, un-
like the uniformly pre-magnetized h-MREs, it may reveal inaccurate to assume, in general, that the
magnetic torque at a point in the h-MRE is simply given by bactu×µ0m during the actuation under
remotely applied bactu field. Thus, even though the magnetic toque-based, reduced-order models
for slender h-MRE beams exhibit sufficiently accurate deflection profiles (Wang et al., 2020; Yan
et al., 2021a,b), their employment to the non-uniformly pre-magnetized h-MRE structures must
be carried out with caution and certainly use the local non-uniform pre-magnetization profile.
Moreover, the pre-magnetization directions along the beam length do not exhibit any straightfor-
ward correlation with its pre-deformation geometry. Hence, solving for the full-field BVP with a
surrounding air becomes inevitable even for a reduced-order analysis in the later stage.

Finally, we show the transverse magnetic actuation performance of the four types of beams,
namely, SiTj with i, j ≡ 1, 2. First, we investigate the uniformly distributed c cases, i.e., the
response of T1-type h-MREs in Fig. 27a-c. Specifically, Figures 27a and b show the deflected beam
centerline under an actuation field bactu2 = 20 mT along Ê2 and −Ê2 directions. Identical deflection
of both the beam flanks are observed for the beam S1T1. However, the deflection is substantially
higher (∼ 2.5 times) when the fields are applied along −Ê2. This observation can directly be
attributed to the pre-magnetization direction in both the beam flanks, which, eventually leads to
a higher deflection when deflecting in the opposite direction of m0. This preferential deflection
phenomena can be termed as the magneto-mechanical Halbach effect. In fact, this preferential
deflection property is harnessed effectively in locomotion of soft jellyfish-like swimming robot (Ren
et al., 2019; Alapan et al., 2020).

Even though equal in their magnitudes, the two flanks of the S2-type pre-magnetized beams
always deflect in the opposite direction. For example, the deflected centerline of the h-MRE beam
under bactu2 = 20 mT along Ê2 and −Ê2 are shown in Fig. 27b. Of course, here the deflection
magnitude remains identical to the S1-type h-MRE, but overall, leading to a rocking-type motion,
where the two flanks deflect simultaneously in the opposite directions. In particular, the variation
of the vertical displacement of top-right and bottom-left corners of the S1T1 and S2T1-type h-MRE
beams under bactu2 are shown in Fig. 27c. This figure clearly shows that the deflection magnitude

under the same |bactu2 | becomes ∼ 2.5 times when the direction of its application is along −Ê2.
The T2-type beams exhibit a qualitatively similar deflection response under bactu2 vis-a-vis the

T1-type. The only and obvious difference between the former and the latter is that the T2-type
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Figure 27: Deflected centerlines of the h-MREs type (a) S1T1 and (b) S2T1 under the actuation fields bactu2 = 20 and

−20 mT along Ê2. (c) Variation of the top-right corner delfection of S1T1 and bottom left corner delfection S2T1
under bactu2 . Deflected centerlines of the h-MREs type (d) S1T2 and (e) S2T2 under the actuation fields bactu2 = 12.5

and −12.5 mT along Ê2. (f) Variation of the top-right corner delfection of S1T2 and bottom left corner delfection
S2T2 under bactu2 . (Taken from Mukherjee and Danas (2022)).

beams deflect the same amount at a lower actuation field (∼ 0.75 times). The deflected shapes of the
S1T2 and S2T2-type beams are shown in Figures 27d and e, respectively, both, under bactu2 = 12.5
and −12.5. Finally, the deflection variation of the top-right and bottom-left corners of, respectively,
S1T2 and S2T2-type beams under bactu2 are shown in Fig. 27f.

In closing, we remark that except lowering of the actuation field magnitude, the functionally-
graded h-MREs with a linearly increasing c towards the beam flanks do not exhibit any substantial
difference with the actuation performance of its uniform c counterpart. In turn, fabricating the
functionally-graded h-MREs adds on to the difficulty level and cost. The pre-magnetization pro-
filing, in contrast, can dramatically change the actuation performance of the h-MRE beams. In
this regard, the proposed model serves as an efficient tool to analyze the effect of different pre-
magnetization profiles and directions even before the manufacturing of an actual sample is carried
out.
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